
Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pp. 1129–1133,
Prague, June 2007. c©2007 Association for Computational Linguistics

A Two-stage Parser for Multilingual Dependency Parsing

Wenliang Chen, Yujie Zhang, Hitoshi Isahara
Computational Linguistics Group

National Institute of Information and Communications Technology
3-5 Hikari-dai, Seika-cho, Soraku-gun, Kyoto, Japan, 619-0289

{chenwl, yujie, isahara}@nict.go.jp

Abstract

We present a two-stage multilingual de-

pendency parsing system submitted to the

Multilingual Track of CoNLL-2007. The

parser first identifies dependencies using a

deterministic parsing method and then labels

those dependencies as a sequence labeling

problem. We describe the features used in

each stage. For four languages with differ-

ent values of ROOT, we design some spe-

cial features for the ROOT labeler. Then we

present evaluation results and error analyses

focusing on Chinese.

1 Introduction

The CoNLL-2007 shared tasks include two tracks:

the Multilingual Track and Domain Adaptation

Track(Nivre et al., 2007). We took part the Multi-

lingual Track of all ten languages provided by the

CoNLL-2007 shared task organizers(Hajič et al.,

2004; Aduriz et al., 2003; Martı́ et al., 2007; Chen

et al., 2003; Böhmová et al., 2003; Marcus et al.,

1993; Johansson and Nugues, 2007; Prokopidis et

al., 2005; Csendes et al., 2005; Montemagni et al.,

2003; Oflazer et al., 2003) .

In this paper, we describe a two-stage parsing

system consisting of an unlabeled parser and a se-

quence labeler, which was submitted to the Multi-

lingual Track. At the first stage, we use the pars-

ing model proposed by (Nivre, 2003) to assign the

arcs between the words. Then we obtain a depen-

dency parsing tree based on the arcs. At the sec-

ond stage, we use a SVM-based approach(Kudo and

Matsumoto, 2001) to tag the dependency label for

each arc. The labeling is treated as a sequence la-

beling problem. We design some special features

for tagging the labels of ROOT for Arabic, Basque,

Czech, and Greek, which have different labels for

ROOT. The experimental results show that our ap-

proach can provide higher scores than average.

2 Two-Stage Parsing

2.1 The Unlabeled Parser

The unlabeled parser predicts unlabeled directed de-

pendencies. This parser is primarily based on the

parsing models described by (Nivre, 2003). The al-

gorithm makes a dependency parsing tree in one left-

to-right pass over the input, and uses a stack to store

the processed tokens. The behaviors of the parser

are defined by four elementary actions (where TOP

is the token on top of the stack and NEXT is the next

token in the original input string):

• Left-Arc(LA): Add an arc from NEXT to TOP;

pop the stack.

• Right-Arc(RA): Add an arc from TOP to

NEXT; push NEXT onto the stack.

• Reduce(RE): Pop the stack.

• Shift(SH): Push NEXT onto the stack.

Although (Nivre et al., 2006) used the pseudo-

projective approach to process non-projective de-

pendencies, here we only derive projective depen-

dency tree. We use MaltParser(Nivre et al., 2006)

1129



V0.41 to implement the unlabeled parser, and use

the SVM model as the classifier. More specifically,

the MaltParser use LIBSVM(Chang and Lin, 2001)

with a quadratic kernel and the built-in one-versus-

all strategy for multi-class classification.

2.1.1 Features for Parsing
The MaltParser is a history-based parsing model,

which relies on features of the derivation history

to predict the next parser action. We represent the

features extracted from the fields of the data repre-

sentation, including FORM, LEMMA, CPOSTAG,

POSTAG, and FEATS. We use the features for all

languages that are listed as follows:

• The FORM features: the FORM of TOP and

NEXT, the FORM of the token immediately

before NEXT in original input string, and the

FORM of the head of TOP.

• The LEMMA features: the LEMMA of TOP

and NEXT, the LEMMA of the token immedi-

ately before NEXT in original input string, and

the LEMMA of the head of TOP.

• The CPOS features: the CPOSTAG of TOP and

NEXT, and the CPOSTAG of next left token of

the head of TOP.

• The POS features: the POSTAG of TOP and

NEXT, the POSTAG of next three tokens af-

ter NEXT, the POSTAG of the token immedi-

ately before NEXT in original input string, the

POSTAG of the token immediately below TOP,

and the POSTAG of the token immediately af-

ter rightmost dependent of TOP.

• The FEATS features: the FEATS of TOP and

NEXT.

But note that the fields LEMMA and FEATS are not

available for all languages.

2.2 The Sequence Labeler
2.2.1 The Sequence Problem

We denote by x = x1, ..., xn a sentence with n
words and by y a corresponding dependency tree. A

dependency tree is represented from ROOT to leaves

1The tool is available at
http://w3.msi.vxu.se/˜nivre/research/MaltParser.html

with a set of ordered pairs (i, j) ∈ y in which xj is a

dependent and xi is the head. We have produced the

dependency tree y at the first stage. In this stage, we

assign a label l(i,j) to each pair.

As described in (McDonald et al., 2006), we treat

the labeling of dependencies as a sequence labeling

problem. Suppose that we consider a head xi with

dependents xj1, ..., xjM . We then consider the la-

bels of (i, j1), ..., (i, jM) as a sequence. We use the

model to find the solution:

lmax = arg max
l

s(l, i, y, x) (1)

And we consider a first-order Markov chain of la-

bels.

We used the package YamCha (V0.33)2 to imple-

ment the SVM model for labeling. YamCha is a

powerful tool for sequence labeling(Kudo and Mat-

sumoto, 2001).

2.2.2 Features for Labeling
After the first stage, we know the unlabeled de-

pendency parsing tree for the input sentence. This

information forms the basis for part of the features

of the second stage. For the sequence labeler, we

define the individual features, the pair features, the

verb features, the neighbor features, and the position

features. All the features are listed as follows:

• The individual features: the FORM, the

LEMMA, the CPOSTAG, the POSTAG, and

the FEATS of the parent and child node.

• The pair features: the direction of depen-

dency, the combination of lemmata of the

parent and child node, the combination of

parent’s LEMMA and child’s CPOSTAG, the

combination of parent’s CPOSTAG and child’s

LEMMA, and the combination of FEATS of

parent and child.

• The verb features: whether the parent or child

is the first or last verb in the sentence.

• The neighbor features: the combination of

CPOSTAG and LEMMA of the left and right

neighbors of the parent and child, number of

children, CPOSTAG sequence of children.

2YamCha is available at
http://chasen.org/˜taku/software/yamcha/

1130



• The position features: whether the child is the

first or last word in the sentence and whether

the child is the first word of left or right of par-

ent.

2.2.3 Features for the Root Labeler

Because there are four languages have different

labels for root, we define the features for the root

labeler. The features are listed as follows:

• The individual features: the FORM, the

LEMMA, the CPOSTAG, the POSTAG, and

the FEATS of the parent and child node.

• The verb features: whether the child is the first

or last verb in the sentence.

• The neighbor features: the combination of

CPOSTAG and LEMMA of the left and right

neighbors of the parent and child, number of

children, CPOSTAG sequence of children.

• The position features: whether the child is the

first or last word in the sentence and whether

the child is the first word of left or right of par-

ent.

3 Evaluation Results

We evaluated our system in the Multilingual Track

for all languages. For the unlabeled parser, we chose

the parameters for the MaltParser based on perfor-

mance from a held-out section of the training data.

We also chose the parameters for Yamcha based on

performance from training data.

Our official results are shown at Table 1. Perfor-

mance is measured by labeled accuracy and unla-

beled accuracy. These results showed that our two-

stage system can achieve good performance. For all

languages, our system provided better results than

average performance of all the systems(Nivre et al.,

2007). Compared with top 3 scores, our system

provided slightly worse performance. The reasons

may be that we just used projective parsing algo-

rithms while all languages except Chinese have non-

projective structure. Another reason was that we did

not tune good parameters for the system due to lack

of time.

Data Set LA UA

Arabic 74.65 83.49

Basque 72.39 78.63

Catalan 86.66 90.87

Chinese 81.24 85.91

Czech 73.69 80.14

English 83.81 84.91

Greek 74.42 81.16

Hungarian 75.34 79.25

Italian 82.04 85.91

Turkish 76.31 81.92

average 78.06 83.22

Table 1: The results of proposed approach. LA-

BELED ATTACHMENT SCORE(LA) and UNLA-

BELED ATTACHMENT SCORE(UA)

4 General Error Analysis

4.1 Chinese

For Chinese, the system achieved 81.24% on labeled

accuracy and 85.91% on unlabeled accuracy. We

also ran the MaltParser to provide the labels. Be-

sides the same features, we added the DEPREL fea-

tures: the dependency type of TOP, the dependency

type of the token leftmost of TOP, the dependency

type of the token rightmost of TOP, and the de-

pendency type of the token leftmost of NEXT. The

labeled accuracy of MaltParser was 80.84%, 0.4%

lower than our system.

Some conjunctions, prepositions, and DE3 at-

tached to their head words with much lower ac-

curacy: 74% for DE, 76% for conjunctions, and

71% for prepositions. In the test data, these words

formed 19.7%. For Chinese parsing, coordination

and preposition phrase attachment were hard prob-

lems. (Chen et al., 2006) defined the special features

for coordinations for chunking. In the future, we

plan to define some special features for these words.

Now we focused words where most of the errors

occur as Table 2 shows. For “ /DE”, there was

32.4% error rate of 383 occurrences. And most of

them were assigned incorrect labels between “prop-

erty” and “predication”: 45 times for “property” in-

stead of “predication” and 20 times for “predica-

tion” instead of “property”. For examples, “ /DE”

3including “ / / / ”.

1131



num any head dep both

/ DE 383 124 35 116 27

/ C 117 38 36 37 35

/ P 67 20 6 19 5

/ N 31 10 8 4 2

/ V 72 8 8 8 8

Table 2: The words where most of errors occur in

Chinese data.

in “ / / / (popular TV channel)” was

to be tagged as “property” instead of “predication”,

while “ /DE” in “ / / (volunteer of

museum)” was to be tagged as “predication” instead

of “property”. It was very hard to tell the labels be-

tween the words around “ ”. Humans can make

the distinction between property and predication for

“ ”, because we have background knowledge of

the words. So if we can incorporate the additional

knowledge for the system, the system may assign

the correct label.

For “ /C”, it was hard to assign the head, 36

wrong head of all 38 errors. It often appeared at

coordination expressions. For example, the head

of “ ” at “ / / / / / / / / /(Besides

extreme cool and too amazing)” was “ ”, and

the head of “ ” at “ / / / / / /

/ / (Give the visitors solid and methodical

knowledge)” was “ ”.

5 Conclusion

In this paper, we presented our two-stage depen-

dency parsing system submitted to the Multilingual

Track of CoNLL-2007 shared task. We used Nivre’s

method to produce the dependency arcs and the se-

quence labeler to produce the dependency labels.

The experimental results showed that our system can

provide good performance for all languages.

References
A. Abeillé, editor. 2003. Treebanks: Building and Using

Parsed Corpora. Kluwer.

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa,
A. Diaz de Ilarraza, A. Garmendia, and M. Oronoz.
2003. Construction of a Basque dependency treebank.
In Proc. of the 2nd Workshop on Treebanks and Lin-
guistic Theories (TLT), pages 201–204.

A. Böhmová, J. Hajič, E. Hajičová, and B. Hladká. 2003.
The PDT: a 3-level annotation scenario. In Abeillé
(Abeillé, 2003), chapter 7, pages 103–127.

C.C. Chang and C.J. Lin. 2001. LIBSVM: a library
for support vector machines. Software available at
http://www. csie. ntu. edu. tw/cjlin/libsvm, 80:604–
611.

K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C. Huang,
and Z. Gao. 2003. Sinica treebank: Design criteria,
representational issues and implementation. In Abeillé
(Abeillé, 2003), chapter 13, pages 231–248.

Wenliang Chen, Yujie Zhang, and Hitoshi Isahara. 2006.
An empirical study of chinese chunking. In COL-
ING/ACL 2006(Poster Sessions), Sydney, Australia,
July.

D. Csendes, J. Csirik, T. Gyimóthy, and A. Kocsor. 2005.
The Szeged Treebank. Springer.

J. Hajič, O. Smrž, P. Zemánek, J. Šnaidauf, and E. Beška.
2004. Prague Arabic dependency treebank: Develop-
ment in data and tools. In Proc. of the NEMLAR In-
tern. Conf. on Arabic Language Resources and Tools,
pages 110–117.

R. Johansson and P. Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proc. of the 16th Nordic Conference on Computational
Linguistics (NODALIDA).

Taku Kudo and Yuji Matsumoto. 2001. Chunking
with support vector machines. In In Proceedings of
NAACL01.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: the Penn
Treebank. Computational Linguistics, 19(2):313–330.

M. A. Martı́, M. Taulé, L. Màrquez, and M. Bertran.
2007. CESS-ECE: A multilingual and multilevel
annotated corpus. Available for download from:
http://www.lsi.upc.edu/∼mbertran/cess-ece/.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proceedings of the
Tenth Conference on Computational Natural Lan-
guage Learning (CoNLL-X), pages 216–220, New
York City, June. Association for Computational Lin-
guistics.

S. Montemagni, F. Barsotti, M. Battista, N. Calzolari,
O. Corazzari, A. Lenci, A. Zampolli, F. Fanciulli,
M. Massetani, R. Raffaelli, R. Basili, M. T. Pazienza,
D. Saracino, F. Zanzotto, N. Nana, F. Pianesi, and
R. Delmonte. 2003. Building the Italian Syntactic-
Semantic Treebank. In Abeillé (Abeillé, 2003), chap-
ter 11, pages 189–210.

1132



J. Nivre, J. Hall, J. Nilsson, G. Eryigit, and S Marinov.
2006. Labeled pseudo-projective dependency parsing
with support vector machines.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson,
S. Riedel, and D. Yuret. 2007. The CoNLL 2007
shared task on dependency parsing. In Proc. of the
Joint Conf. on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL).

J. Nivre. 2003. An efficient algorithm for projective
dependency parsing. Proceedings of the 8th Inter-
national Workshop on Parsing Technologies (IWPT),
pages 149–160.

K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür.
2003. Building a Turkish treebank. In Abeillé
(Abeillé, 2003), chapter 15, pages 261–277.

P. Prokopidis, E. Desypri, M. Koutsombogera, H. Papa-
georgiou, and S. Piperidis. 2005. Theoretical and
practical issues in the construction of a Greek depen-
dency treebank. In Proc. of the 4th Workshop on Tree-
banks and Linguistic Theories (TLT), pages 149–160.

1133


