
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 827–836, Prague, June 2007. c©2007 Association for Computational Linguistics

Bootstrapping Information Extraction from Field Books

Sander Canisius and Caroline Sporleder
ILK / Communication and Information Sciences

Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands
{S.V.M.Canisius,C.Sporleder }@uvt.nl

Abstract

We present two machine learning ap-
proaches to information extraction from
semi-structured documents that can be used
if no annotated training data are available,
but there does exist a database filled with
information derived from the type of docu-
ments to be processed. One approach em-
ploys standard supervised learning for infor-
mation extraction by artificially constructing
labelled training data from the contents of
the database. The second approach com-
bines unsupervised Hidden Markov mod-
elling with language models. Empirical
evaluation of both systems suggests that it is
possible to bootstrap a field segmenter from
a database alone. The combination of Hid-
den Markov and language modelling was
found to perform best at this task.

1 Introduction

Over the past decades much textual data has be-
come available in electronic form. Many text types
are inherently more or less structured, for example,
classified advertisements for appartments, medical
records, or logs of archaeological finds or zoological
specimens collected during expeditions. Such doc-
uments consist of a number of shorter texts (oren-
tries), each describing an individual object (e.g., an
appartment, or an archaeological find) or event (e.g.,
a patient presenting to a health care provider). These
descriptions in turn typically consist of different seg-
ments (orfields) which contain information of a spe-

cific type drawn from a more or less given inven-
tory. Example (1), for instance, shows two descrip-
tions of zoological specimens (a snake and three
frogs) collected during an expedition. The descrip-
tions contain different segments giving information
about the specimens and the circumstances of their
collection. For example, in the first description,Lep-
tophisandahaetullarefer, respectively, to the genus
and species of the specimen,road to Overtoommen-
tions the place of collection,in bush above wateren-
codes information about the biotope,in the process
of eating Hyla minutais a remark about the circum-
stances of collection,16-V-1968gives the collection
date andRMNH 15100the registration number.

(1) Leptophis ahaetulla, road to Overtoom, in bush
above water in the process of eating Hyla minuta
16-V-1968. RMNH 15100

Hyla minuta 1♀ 2 ♂ Las Claritas, 9-VI-1978 quak-
ing near water 50 cm above water surface, near sec-
ondary vegetation, 200 m, M.S. Hoogmoed, RMNH
27217 27219

Unfortunately, this inherent structure is rarely
made explicit. While the different object or event
descriptions might be indicated by additional white-
space or other formatting means, as in the example
above, the individual fields within a description are
typically not marked in any way. However, knowl-
edge of the inherent structure would be very bene-
ficial for information extraction and retrieval. For
instance, texts in their raw form only allow key word
search. To retrieve all entries describing specimens
of type Hyla minutafrom a zoological field report,
one can only search for occurrences of that string
anywhere in the document. This can return false

827

positives, such as the first description in (1) above,
which does contain the string but is not about aHyla
minutaspecimen but about a specimen of typeLep-
tophis ahaetulla(the stringHyla minuta just hap-
pens to occur in theSPECIAL REMARKSfield). On
the other hand, if the genus and species information
in an entry was explicitly marked, it would be pos-
sible to query specifically for entries whoseGENUS

is Hyla and whoseSPECIESis minuta, thus avoiding
the retrieval of entries in which this string occurs in
another field.

The task of automatically finding and labelling
segments in object or event descriptions has been
referred to asfield segmentation(Grenager et al.,
2005).1 It can be seen as a sequence labelling prob-
lem, where each text is viewed as a sequence of
tokens and the aim is to assign each token a label
indicating to what segment the token belongs (e.g.,
BIOTOPEor LOCATION). If training data in the form
of texts annotated with segment information was
readily available, the problem could be approached
by training a sequence labeller in a supervised ma-
chine learning set-up. However, manually annotated
data is rarely available. Creating it from scratch is
not only time consuming but usually also requires
a certain amount of expert knowledge. Moreover,
the sequence labeller has to be re-trained for each
new domain (e.g., natural history vs. archaeology)
and possibly also each sub-domain (e.g., insects vs.
mammals) due to the fact that the inventory of fields
varies.

Thus, fully supervised machine learning is not
feasible for this task. In this paper, we explore two
approaches which require no or only a very small
amount of manually labelled training data. Both
approaches exploit the fact that there are often re-
sourcesderived from the original documents that
can potentially be utilised to bootstrap a sequence
labeller in the absence of labelled training data. It
is common practice, for example, that information
contained in (semi-structured) field reports or medi-
cal records is manually entered into a database, usu-
ally in an attempt to make the data more accessi-

1The task differs from many other information extraction
problems in which the aim is to extract short pieces of relevant
information from larger text of largely irrelevant information.
In field segmentation, all or most of the information in the input
document is assumed to be relevant and the task is to segment it
into fields containing different types of information.

ble and easier to search. In such databases, each
row corresponds to an entry in the original docu-
ment (e.g., a zoological specimen) and the database
columns correspond to the fields one would like to
discern in the original document. Manually convert-
ing raw text documents into databases is a labori-
ous task though, and it is rather common that the
database covers only a small fraction of the objects
described in the original texts. The research question
we address in this paper is whether it is possible to
bootstrap a domain-specific field segmentation sys-
tem from an existing, manually created database for
that domain. Such a system could then be applied to
the remaining texts in that domain, which could then
be segmented (semi-)automatically and possibly be
added to the original database.

A database does not make perfect training mate-
rial for a field segmenter though, as it is only de-
rived from the original document and there are typ-
ically significant (and sometimes systematic) differ-
ences between the two data sources: First, while
the ordering of the segments in a semi-structured
text document is often not entirely fixed, some or-
derings are more likely than others. This informa-
tion is lost in the derived databases. Second, the
databases may contain information that is not nor-
mally present in the underlying text documents, for
example information relating to the storage of an
object in a collection. Conversely, some of the de-
tails present in the texts might be omitted from the
database, e.g., theSPECIAL REMARKS field might
be significantly shortened in the database. Third,
pieces of information are frequently re-written when
entered in the database, in some cases these differ-
ences may be systematic, e.g., dates, person names,
or registration numbers might be written in a differ-
ent format. Also, field boundaries in the text docu-
ments are sometimes indicated by punctuation, such
as commas, and fields sometimes start with explicit
key words, such ascollector. Both of these features
are missing from the database.

Despite of this, these databases will provide cer-
tain clues about the structure and content of differ-
ent segments in the text documents. We exploit this
in two different ways: (i) by concatenating database
fields to artificially create annotated training data for
a supervised machine learner, and (ii) by using the
database to build language models for the field seg-

828

mentation task.

2 Related Work

Most approaches to field segmentation and related
information extraction tasks, such as filling tem-
plates with information about specific events, have
been supervised. Freitag and Kushmerick (2000)
combine a pattern learner with boosting to perform
field segmentation in raw texts and in highly struc-
tured texts such as web pages and test this approach
on a variety of field segmentation and template fill-
ing tasks. Kushmerick et al. (2001) address the prob-
lem of extracting contact information from busi-
ness cards. They mainly focus on fieldlabelling,
bypassing the segmentation step by assuming that
each line on a business card only contains one field
(though a field likeADDRESS may span several
lines). Their method combines a text classifier, for
assigning likely labels to each field, with a trained
Hidden Markov Model (HMM) for learning order-
ing constraints between fields. Borkar et al. (2001)
identify fields in international postal addresses and
bibliographic records by nesting HMMs: an outer
HMM for modelling field transitions and a num-
ber of inner HMMs for modelling token transitions
within fields. Viola and Narasimhand (2005) also
deal with address segmentation but employ a trained
context-free grammar.

One of the few unsupervised approaches is pro-
vided by Grenager et al. (2005), who perform field
segmentation on bibliographic records and classified
advertisements, using EM to fit an HMM to the data.
They show that an unconstrained model does not
learn the field structure very well and propose aug-
menting the model with a limited amount of domain-
unspecific background knowledge, for example, by
modifying the transition model to bias it towards
recognising larger-scale patterns.

3 Learning Field Segmentation from
Databases

3.1 Data

We tested our approach on two datasets provided
by Naturalis, the Dutch National Museum of Nat-
ural History2 Each dataset consists of (i) a number

2http://www.naturalis.nl

of field book entries describing the circumstances
under which animal specimens were collected, and
(ii) a database containing similar information about
the same group of animals but in a more structured
form. The latter were used for training, the former
for testing. While the databases were manually cre-
ated from the corresponding field books, we made
sure that the field book entries we selected for test-
ing did not overlap with the database entries. The
two data sets are described below. Table 1 lists the
main properties of the data.

Reptiles and Amphibians (RA) This dataset de-
scribes a number of reptile and amphibian speci-
mens. The database consists of 16,670 entries and
41 columns. The columns relate, for example, to the
circumstances of a specimen’s collection, its taxo-
nomic classification, how and where it is stored, who
entered the entry into the database and when. Many
database cells are empty. Those that are filled come
in a variety of format, i.e., numbers, dates, individ-
ual words, and free text of various lengths. 22 of
the columns contained information that was miss-
ing from the field books, e.g., information relating
to the storage of the specimens; these columns were
excluded from the experiments.

From the corresponding field books, 210 entries
were selected randomly and manually annotated
with segment information. To test the reliability of
the manual annotation, 50 entries were labelled by
two annotators. The inter-annotator accuracy on the
token level was 92.84% and the kappa .92. The num-
ber of distinct field types found in the entries was 19,
some of which only occurred in two entries, others
occurred in virtually every entry. The average field
length was four tokens, with a maximum average of
21 for theSPECIAL REMARKSfield, and a minimum
of one for fields such asSPECIES. The average num-
ber of tokens per entry was 60. Punctuation marks
that did not clearly belong to any field were labelled
asOTHER. In the experiments, 200 entries were used
for testing and 10 for parameter tuning.

Pisces The second dataset contains information
about the stations where fish specimens were caught.
The database consists of 1,375 entries and four
columns which provide information on the location
of the stations. From the corresponding field books,
we manually labelled 100 entries. Compared to the

829

RA Pisces
entries in DB 16,670 1,375
fields 19 4
entry length (avg.) 60.17 39.79
segment length (avg.) 4.08 4.75

Table 1: Properties of the two datasets

first data set, this set is much more regular, with less
variation in the number of segments per entry and in
the average segment length. The field book entries
are also much shorter and there are fewer segments
(see Table 1).

3.2 Baselines

In order to get a sense of the difficulty of the task, we
implemented five baseline approaches. For the first,
Majority (MajB), we always assign the field label
that occurs most frequently in the manually labelled
test data, namelySPECIAL REMARKS. The other
four baselines implement different look-up strate-
gies, using the database to determine which label
should be assigned to a token or token sequence.

Exact (ExactB) looks for substrings in a field
book entry which exactly match the content of a
database cell and then assigns each token in the
matched string the corresponding column label from
the database. There are normally several ways to
match a field book entry to the database cells; we
employed a greedy search, labelling the longest
matching substrings first. All tokens that could
not be matched in this way were assigned the label
OTHER.

Unigram (UniB) assigns each token the column
label of the database cell in which it occurs most
frequently. If a token is not found in the database, it
is assigned the labelOTHER.

Trigram (TriB) assigns each token the most fre-
quent column label of the trigram centred on it. If
a trigram is not found in the database, the baseline
backs off to the two bigrams covering the token and
then to the unigram. If the token is not found in the
database,OTHER is assigned.

Trigram+Voting (TriB+Vote) is based on a tech-
nique proposed by Van den Bosch and Daelemans
(2005) for sequence labelling tasks. The main idea
is to assign labels to trigrams in the sequence using
a sliding window. Because each token, except the
boundary tokens, is contained in three different tri-

grams (i.e., the one centred on the token to its left,
the one centred on itself, and the one centred on the
token to its right), each token gets three labels as-
signed to it, over which voting can be performed. In
our case the labels are assigned by database look-up.
If a trigram is not found in the database, no label is
assigned to it. If the labels assigned to a given token
differ, majority voting is used to resolve the conflict.
If this does not break the tie (i.e., because all three
trigrams assign different labels), the label of the tri-
gram that occurs most frequently in the database is
assigned. We also implemented two post-processing
rules: (i) turning the labelOTHERbetween two iden-
tical neighbouring labels into the surrounding labels,
and (ii) labelling commas asOTHER if the neigh-
bouring labels are not identical.

3.3 Supervised Learning from Automatically
Generated Training Data

Our first strategy was to automatically generate
training data for a supervised machine learner from
the database. Since the rows in the database corre-
spond to field book entries and the columns corre-
sponds to the fields that we want to identify, train-
ing data can be obtained by concatenating the cells
in each database row. The order of the fields in the
field book entries is not fixed and this should also be
reflected in the artificially generated training data.
However, the field sequence is not entirely random,
i.e., not all sequences are equally likely. If a small
amount of manually annotated data is available, the
field transition probabilities can be estimated from
this, otherwise the best one can do is to assume uni-
form probabilities for all possible orderings. We
experimented with both strategies, creating two dif-
ferent training sets, one in which the database cells
were concatenated randomly with uniform probabil-
ities, and another in which the cells were concate-
nated to reflect the field ordering probabilities esti-
mated from ten entries in the manually labelled de-
velopment set.3 When estimating the field transition

3We found that 10 annotated entries are enough for this pur-
pose; the field segmentation results we obtained by estimating
the sequence probabilities for the training set from 100 entries
were not significantly different. This is probably because the
probabilities are only used indirectly, i.e. to bias the field order-
ings for the generated training data. If the probabilities were
used directly in the model, the amount of manually annotated
data would probably matter much more.

830

probabilities, we computed a probability distribution
over the initial fields of an entry as well as the condi-
tional probability distributions of a fieldx following
a fieldy for all seen segment pairs in the ten entries.
To account for unobserved events, we used Laplace
smoothing.

The artificially created training data were then
converted to a token-based representation in which
each token corresponds to an instance to be labelled
with the field to which it belongs. On the whole, we
had just under 700,000 instances (i.e., tokens) in our
training data. We implemented 107 features, falling
in three classes:

• the neighbouring tokens (in a window of 5 cen-
tering on the token in focus)

• the typographic properties of the focus token
(word vs. number, capitalisation, number of
characters in the token etc.)

• the tfidf weight of the focus token in its con-
text with respect to each of the columns in the
database (i.e., the fields)

The tfidf-based features were computed for a win-
dow of three, centering on the token in focus. For all
n-grams in this window covering the token in focus
(i.e., the trigram, the two bigrams, and the unigram
of the focus token), we calculated thetfidf simi-
larity with the columns in the database, where the
similarity between ann-gramti and a columncolx
is defined as:

tfidfti,colx = tfti,colx log idfti

The term frequency,tfti,colx is the number of oc-
currences ofti in colx divided by the number of oc-
currences of alln-grams of lengthn in colx (0 if
then-gram does not occur in the column). The in-
verse document frequency,idfti , is the number of
all columns in the database divided by the number
of columns containingti. A high tfidf weight for a
given n-gram in a given column means that it fre-
quently occurs in that column but rarely in other
columns, thus it is a good indicator for that column.

The training data was then used to train a
memory-based machine learner (TiMBL (Daele-
mans et al., 2004), default settings,k = 3, numeric
features declared) to determine which field each to-
ken belongs to.4

4We chose TiMBL because it has been applied successfully

3.4 Hidden Markov Models

Our second approach combines language modelling
and Hidden Markov Models (HMMs) (Rabiner,
1989). Hidden Markov Models have been in use for
information extraction tasks for a long time. A prob-
abilistic model is trained to assign a label, orstate
to each of a sequence of observations, where both
labels and observations are expected to be sequen-
tially correlated; hence the popularity of HMMs in
natural language processing and information extrac-
tion. Recently, a large number of more sophisticated
learning techniques have largely replaced HMMs
for information extraction; however unlike most of
those newer techniques, HMMs offer the advantage
of having a well-established unsupervised training
procedure: the Baum-Welch algorithm (Baum et al.,
1970).

Training a Hidden Markov Model, whether su-
pervised or unsupervised, comes down to estimating
three probability distributions.

1. An initial state distributionπ, which models
the probability of the first observation of a se-
quence to have a certain label.

2. A state-transition distributionA, modelling the
conditional probability of being in a certain
states, given that the previous state wass′.

3. A state-emission distributionB, which models
the conditional probability of observing a cer-
tain objecto given some states.

For information extraction tasks, the typical in-
terpretation of anobservationas referred to above,
is that of a token, where the entire observation se-
quence commonly corresponds to one sentence. In
the current study, we chose to apply HMMs on a
somewhat higher level, where an observation corre-
sponds to asegmentof the field book entry. Ideally,
one such segment maps one-to-one to a cell in the
specimen database, though we leave open the possi-
bility of merging several segments into one database
cell.

Provided that a field book entry can be segmented
reliably, we have turned one part of the learn-
ing problem, that of estimating the state-emission

to sequence labelling tasks (Van den Bosch and Canisius, 2006;
Van den Bosch and Daelemans, 2005).

831

distribution, into one for which we have (almost)
perfect supervised training data: the contents of
the database cells. The general form of a Hid-
den Markov Model’s state-emission distribution is
P (o|s), wheres is the state, i.e. a field type in our
case, ando is the observation. As mentioned be-
fore, we treat a segment of tokens as one observa-
tion, therefore our state-emission distribution will
look like P (o = t1, t2, ..., tn|s). Essentially, what
we have here is a language model, conditioned on
the current state. Since the specimen database pro-
vides a large amount of labelled segment sequences,
any probabilistic language modelling method can be
used to estimate the state-emission distribution.

Whereas the specimen database provides suffi-
cient information to estimate the state-emission dis-
tribution in a fully supervised way, the initial-state
and state-transition distributions cannot be derived
from the database alone. Columns in a database
are either unordered or ordered in a way that does
not necessarily reflect the order they had in the field
book entries they were extracted from. However, the
original field book entries do show a rather system-
atic structure. Often, using information about the
order fields typically occur in, seems to be the only
way to distinguish certain field types from one an-
other. To estimate the two missing probability dis-
tributions, the Baum-Welch algorithm was used, up-
dating the initial-state and state-transition distribu-
tions, while keeping the state-emission distributions
unchanged.

3.4.1 Segmentation of Field Book Entries

In our setup, the Hidden Markov Model expects
the input texts to be pre-segmented. To come up
with a good initial segmentation of an input entry,
we again chose a language-modelling approach. It is
expected that segment boundaries can best be recog-
nised by looking for unusual token subsequences;
that is, token sequences that are highly unlikely to
occur within a field according to the information we
obtained from the specimen database about what a
typical segment does look like. A bigram language
model has been trained on the contents ofall the
columns of the specimen database. Using this lan-
guage model and the Viterbi algorithm, the globally
most-likely segmentation of the input text is pre-
dicted.

3.4.2 The State-emission Model

The state-emission model is constructed by train-
ing a separate bigram language model for each col-
umn of the specimen database. Combining those
gives us the conditional distribution required for a
Hidden Markov Model. However, in a database, not
every column has necessarily been filled for every
record. For example, in the Reptiles and Amphib-
ians database, there are columns that only contain
actual data as infrequently as in 5% of the records.
Relative to columns that contain data more often,
these sparsely-filled columns tend to be overesti-
mated when simply computing a likelihood accord-
ing to the language model. For this reason, a penalty
term is added to the state-emission distribution cor-
responding to the probability that a record contains
data for the given column. The likelihood com-
puted by the language model and the corresponding
penalty term are then simply multiplied.

3.4.3 Language Modelling

For building both types of language model pre-
sented in the two previous sections, we usedn-
gram language modelling as implemented by the
SRI Language Modelling Toolkit (Stolcke, 2002).
With this toolkit, high-ordern-gram models can be
built, where the sparsity problem often encountered
with such models is tackled by various smoothing
methods. We supplemented this built-inn-gram
smoothing, with our own smoothing on the token
level by replacing low-frequent words with symbols
reflecting certain orthographic features of the origi-
nal word, and numbers with a symbol only encoding
the number of digits in the original number.

In addition to these general measures to deal
with sparsity, we also applied a small number of
knowledge-driven modifications to the training data
for the language models. The need for those is
caused by the fact that the contents of the specimen
database are almost, but not entirely extracted liter-
ally from the original field book entries. For exam-
ple, for the second entry of Example 1, the following
information is stored in the database.

Genus Hyla

Speciesminuta

Gender 1 f + 2 m

Place Las Claritas

832

Collection date 9-6-1978

Biotope quaking near water 50 cm above water sur-
face, near secondary vegetation

Height 200 m

Collector M.S. Hoogmoed

Registration number 27217 27219

Comparing just this single field book entry with
its corresponding database record, one can already
see several mismatches. The gender symbols♂ and
♀ in the field book texts are stored asm and f in
the database. The collection date 9-VI-1978, has
been converted to 9-6-1978 before adding it to the
database, i.e. the Roman numeral for the month
number has been mapped to the corresponding Ara-
bic numeral. As a final example, in the field book en-
try the registration number for the specimen is pre-
ceded by the symbolRMNH; in the database this stan-
dard symbol is stripped of and only the number is
stored. Each of these differences, while only small,
will hinder the performance of a language model
trained on the contents of the database and applied
to field book texts.

As a simple illustration of this, when encounter-
ing the symbolRMNHin a field book entry, this most
likely indicates the start of a new (registration num-
ber) segment. However, in the database, on which
all language models are trained,RMNHnever occurs
as a symbol in the registration number column; it
does occur a few times in the column for special re-
marks but never at the start of the text. As a result,
a segmentation model trained on the contents of the
database, on encountering the symbolRMNHwill al-
ways opt for continuing the existing segment as op-
posed to starting a new one, which is most likely the
better choice.

Fortunately, many such mismatches between the
text in field books and the database are systematic
and can easily be covered by a small number of man-
ually constructed rules that modify the training data
for the language models. Among others, we added
the RMNHsymbol in front of registration numbers,
and randomly changed some month numbers from
Arabic numerals to Roman numerals.

Another difference between the field books and
the database that turned out to be rather crucial is
the fact that many segments in the field book en-
tries are separated by commas. Such commas used

Token Segment
Acc. Prec. Rec. Fβ=1 WDiff

MajB 24.8 0.0 0.0 0.0 .346
ExactB 16.0 25.7 23.1 24.3 .425
UniB 27.0 8.9 22.8 12.8 .818
TriB 43.8 12.9 24.8 16.9 .582
TriB+Vote 45.1 14.9 27.8 19.4 .536

MBL rand. 44.6 7.1 19.2 10.4 .568
MBL bias 53.4 12.1 32.0 17.6 .533

HMM 56.9 62.7 58.1 60.3 .177

Table 2: Performance of all baseline and learning
approaches on the Reptiles and Amphibians data,
expressed in token accuracy, precision, recall, F-
score, and WindowDiff. For WindowDiff, lower
scores are better.

as delimitersbetween fieldsdo not appear in the
database, where fields correspond to columns and
boundaries between fields consequently do not have
to be explicitly marked by punctuation. For exam-
ple, the comma between Las Claritas and 9-VI-1978
only serves to separate thePlacesegment from the
Collection datesegment; the comma is not copied
to the database. However, commas do occurfield-
internally in the database, especially in longer fields
such asSPECIAL REMARKS. Hence a language
model trained on the database in its original form
will never have encountered a comma functioning as
a segment boundary marker and thus will not recog-
nise that commas may be used for this purpose in the
field book entries. To deal with this, we modified the
training data for the segment model by randomly in-
serting commas at the end of some segments. Exper-
imental results point out that this modification has a
large impact on the performance of the segmentation
model.

3.5 Results and Discussion

To evaluate the performance of the two approaches,
we applied them to the Reptiles and Amphibians
database. First we computed baseline scores using
the approaches described in Section 3.2. All result-
ing scores are listed in Table 2.

Performance of the systems was measured us-
ing a number of different metrics, each reflecting
different qualities of the output. The most basic
one, token accuracy, simply measures the percent-
age of tokens that were assigned the correct field

833

type. It has the disadvantage that it does not reflect
the quality of the segments that were found. For a
more segment-oriented evaluation, we used preci-
sion, recall and F-score on correctly identified and
labelled segments. As a last measure for segmen-
tation quality we used WindowDiff (Pevzner and
Hearst, 2002), which only evaluates segment bound-
aries not the labels assigned to them. In comparison
with F-score, it is more forgiving with respect to seg-
ment boundaries that are slightly off.

The baseline performance scores support our as-
sumption that the contents of the database can be
used to learn how to segment and label field book
entries, i.e. the increasingly more sophisticated
database matching strategies each cause a substan-
tial performance improvement up to 45.1 token ac-
curacy for the trigram lookup with voting strategy.
The biggest problem of all baseline approaches is
that their performance with respect to the segment-
oriented measures is disappointing. Even trigram
lookup with voting only reaches an F-score of 19.4.

Looking at the performance of the two memory-
based learners in Table 2 (MBL rand.was trained on
randomly concatenated training data,MBL biason
data modelled after 10 training sequences), we see
that the small amount of prior knowledge used for
generating the artificial training data results in a sub-
stantial improvement compared with the memory-
based learner that was trained on randomly concate-
nated training data with uniform probabilities.

As can be seen in the last row of Table 2, the Hid-
den Markov Model outperforms all other approaches
in all aspects; it attains both the best token accuracy
(56.9), and by far the best F-score (60.3). The most
probable explanation for the superior performance
of the HMM-based approach is that this approach
models sequential constraints between different seg-
ments, whereas the baselines and the memory-based
models are predominantly local.

In Table 3, we consider the effect that the
knowledge-based rewriting rules discussed in Sub-
section 3.4.3 have on the performance of both the
segmentation and the labelling step. We evaluate
both (i) the performance of the two processing steps
separately—for labelling this presupposes perfectly
segmented input— and (ii) the performance of the
cascade of segmentation and labelling. As before,
the performance of the labelling and the cascade is

expressed in F-score on segments. Performance of
the segmentation is measured in F-score on inserted
segmentboundaries.

The first row of the table shows the scores if no
modification rules are used. This proves detrimen-
tal for the segmentation, only attaining an F-score
of 28.4. With 62.3, the F-score for labelling is rea-
sonable; however, the weakness of the segmentation
causes the output of the entire cascade to be use-
less. Modifying the training data for the segmen-
tation model by randomly inserting a comma at the
end of segments gives a substantial improvement in
segmentation performance, and as a result the qual-
ity of the cascade improves with it, as can be seen in
the second row. All remaining rows list the scores
of a single modification rule applied to the training
datain addition tothe comma rule. Each of the rules
gives a slight performance increase. Using all rules
together makes a big difference: the F-score of the
cascade increases from 44.7 with the comma rule
only, to 60.3.

Rule Boundaries Labels Cascade

None 28.4 62.3 17.2

Comma 69.7 62.3 44.7

Comma+Collection Date 69.7 64.4 46.8
Comma+Reg. Number 72.9 68.6 50.9
Comma+Gender 71.5 65.0 49.5
Comma+Collector 70.4 65.8 45.3

All 72.0 78.3 60.3

Table 3: The effect of systematically modifying the
training data for both the segmentation and labelling
models. The comma rule is used only in the train-
ing of the segmentation model. The other rules are
named after the database field they are applied to.
The scores reflect their performance when applied
in conjunction with the comma rule.

To confirm that the HMM-based approach carries
over to other datasets, we also tested it on the Pisces
data. The results of this experiment, as well as all
baseline scores are presented in Table 4.5 The fact
that this data set is more regular and contains fewer
segments is reflected by the relatively high token ac-
curacies attained by the baseline approaches. With

5We did not test the memory-based approaches as these led
to significantly worse results than the HMM-based model on the
Reptiles and Amphibians data set.

834

the simple database lookup strategies, however, al-
most no entire segments are predicted correctly. At-
taining a token accuracy of 94.4 and an F-score of
86.9, the performance of the Hidden Markov Model
is again more than satisfactory, confirming the re-
sults observed with the Reptiles and Amphibians
data.

Token Segment
Acc. Prec. Rec. Fβ=1 WDiff

MajB 50.0 0.0 0.0 0.0 .279
ExactB 9.3 0.0 0.0 0.0 .565
UniB 53.7 1.5 3.6 2.1 .588
TriB 68.6 0.2 0.2 0.2 .359
TriB+Vote 67.1 2.2 2.8 2.4 .384

HMM 94.4 87.6 86.3 86.9 .049

Table 4: Performance of Hidden Markov Model and
all baseline approaches on the Pisces data, expressed
in token accuracy, precision, recall, F-score, and
WindowDiff. For WindowDiff, lower scores are bet-
ter.

4 Conclusion

Information extraction is often used to automate the
process of filling a structured database with content
extracted from written texts. Supervised machine
learning approaches have been successfully applied
for creating systems capable of performing this task.
However, the supervised nature of these approaches
requires large amounts of annotated training data;
the acquisition of which is often a laborious and
time-consuming process. In this study, we experi-
mented with two machine learning techniques that
do not require such annotated training data, but can
be trained on a database containing information de-
rived from the type of documents targeted by the ap-
plication.

The first approach is an attempt to employ a stan-
dard supervised machine learning algorithm, train-
ing it on artificial labelled training data. These data
are created by concatenating the contents of the cells
of the database records in random order. Experi-
ments with this approach pointed out that truly ran-
dom concatenation of database fields results in weak
performance; a rather simple baseline approach,
which only matches substrings of a field book en-
try with the contents of the database, leads to better

results. However, if a small amount of annotated
field book entries is available —in this study, 10 en-
tries turned out to be sufficient— one can estimate
field ordering probabilities that can be used to gener-
ate more realistic training data from the database. A
machine learner trained on these data labelled 10%
more tokens correctly than the system trained on the
randomly generated data.

Our second approach is based on unsupervised
Hidden Markov modelling. First, ann-gram lan-
guage model is used to divide the field book en-
tries into unlabelled segments. Then, a Hidden
Markov Model is trained on these segmented entries
using the Baum-Welch algorithm to estimate state-
transition probabilities. The resulting HMM labels
the segments found in the preceding segmentation
step. The HMM state-emission distributions are es-
timated by trainingn-gram language models on the
contents of the database columns.

The performance of the HMM proved to be supe-
rior to the other approaches, outperforming the su-
pervised learner by labelling 56.9% of the tokens
correctly, as well as attaining good results in terms
of segment-level F-score (60.3). Experiments with
the HMM approach on a second, independent data
set confirmed its generality.

Acknowledgements

The research reported in this paper was funded
by the Netherlands Organisation for Scientific Re-
search (NWO) as part of the IMIX and CATCH pro-
grammes. We are grateful to Antal van den Bosch,
Marieke van Erp, Steve Hunt, and the staff at Natu-
ralis, the Dutch National Museum for Natural His-
tory, for interesting discussions and help in prepar-
ing the data.

References
Leonard E. Baum, Ted Petrie, George Soules, and Nor-

man Weiss. 1970. A Maximization Technique Occur-
ring in the Statistical Analysis of Probabilistic Func-
tions of Markov Chains.The Annals of Mathematical
Statistics, 41(1):164–171.

Vinayak Borkar, Kaustubh Deshmukh, and Sunita
Sarawagi. 2001. Automatic segmentation of text into
structured records. InProceedings of the 2001 ACM
SIGMOD International Conference on Management of
Data, pages 175–186.

835

Walter Daelemans, Jakub Zavrel, Ko Van der Sloot, and
Antal Van den Bosch, 2004.TiMBL: Tilburg Memory
Based Learner, version 5.1, Reference Guide. ILK Re-
search Group Technical Report Series no. 04-02.

Dayne Freitag and Nicholas Kushmerick. 2000.
Boosted wrapper induction. InProceedings of the
17th National Conference on Artificial Intelligence
(AAAI/IAAI-2000), pages 577–583.

Trond Grenager, Dan Klein, and Christopher D. Man-
ning. 2005. Unsupervised learning of field segmen-
tation models for information extraction. InProceed-
ings of the 43nd Annual Meeting of the Association for
Computational Linguistics (ACL 2005), pages 371–
378.

Nicholas Kushmerick, Edward Johnston, and Stephen
McGuinness. 2001. Information extraction by text
classification. InProceedings of the IJCAI-01 Work-
shop on Adaptive Text Extraction and Mining.

Lev Pevzner and Marti A. Hearst. 2002. A critique and
improvement of an evaluation metric for text segmen-
tation. Computational Linguistics, 28(1):19–36.

Lawrence R. Rabiner. 1989. A tutorial on Hidden
Markov Models and selected applications in speech
recognition.Proceedings of the IEEE, 77(2):257–286.

Andreas Stolcke. 2002. SRILM - an extensible language
modeling toolkit. Proceedings of the International
Conference on Spoken Language Processing (ICSLP
2002), 2:901–904.

Antal Van den Bosch and Sander Canisius. 2006.
Improved morpho-phonological sequence processing
with constraint satisfaction inference. InProceed-
ings of the Eighth Meeting of the ACL Special Interest
Group in Computational Phonology (SIGPHON ’06).

Antal Van den Bosch and Walter Daelemans. 2005. Im-
proving sequence segmentation learning by predicting
trigrams. InProceedings of the Ninth Conference on
Natural Language Learning, CoNLL-2005, pages 80–
87.

Paul Viola and Mukund Narasimhand. 2005. Learning
to extract information from semi-structured text using
a discriminative context free grammar. InProceedings
of the 28th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Re-
trieval, pages 330–337.

836

