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Abstract

This paper proposes the use of Lexical-
ized Tree-Adjoining Grammar (LTAG) for-
malism as an important additional source
of features for the Semantic Role Labeling
(SRL) task. Using a set of one-vs-all Sup-
port Vector Machines (SVMs), we evalu-
ate these LTAG-based features. Our exper-
iments show that LTAG-based features can
improve SRL accuracy significantly. When
compared with the best known set of fea-
tures that are used in state of the art SRL sys-
tems we obtain an improvement in F-score
from 82.34% to 85.25%.

1 Introduction
Semantic Role Labeling (SRL) aims to identify and
label all the arguments for each predicate occurring
in a sentence. It involves identifying constituents in
the sentence that represent the predicate’s arguments
and assigning pre-specified semantic roles to them.

[A0seller Ports of Call Inc.] reached agreements to
[Vverb sell] [A1thing its remaining seven aircraft]
[A2buyer to buyers that weren’t disclosed] .

is an example of SRL annotation from the PropBank
corpus (Palmer et al., 2005), where the subscripted
information maps the semantic roles A0, A1, A2
to arguments for the predicate sell as defined in the
PropBank Frame Scheme. For SRL, high accuracy
has been achieved by:
(i) proposing new types of features (see Table 1 in
Section 3 for previously proposed features),
(ii) modeling the predicate frameset by capturing de-
pendencies between arguments (Gildea and Juraf-
sky, 2002; Pradhan et al., 2004; Toutanova et al.,
2005; Punyakanok et al., 2005a),

(iii) dealing with incorrect parser output by using
more than one parser (Pradhan et al., 2005b).
Our work in this paper falls into category (i). We
propose several novel features based on Lexicalized
Tree Adjoining Grammar (LTAG) derivation trees
in order to improve SRL performance. To show
the usefulness of these features, we provide an ex-
perimental study comparing LTAG-based features
with the standard set of features and kernel meth-
ods used in state-of-the-art SRL systems. The LTAG
formalism provides an extended domain of locality
in which to specify predicate-argument relationships
and also provides the notion of a derivation tree.
These two properties of LTAG make it well suited
to address the SRL task.

SRL feature extraction has relied on various syn-
tactic representations of input sentences, such as
syntactic chunks (Hacioglu et al., 2004) and full
syntactic parses (Gildea and Jurafsky, 2002). In
contrast with features from shallow parsing, previ-
ous work (Gildea and Palmer, 2002; Punyakanok et
al., 2005b) has shown the necessity of full syntactic
parsing for SRL. In order to generalize the path fea-
ture (see Table 1 in Section 3) which is probably the
most salient (while being the most data sparse) fea-
ture for SRL, previous work has extracted features
from other syntactic representations, such as CCG
derivations (Gildea and Hockenmaier, 2003) and de-
pendency trees (Hacioglu, 2004) or integrated fea-
tures from different parsers (Pradhan et al., 2005b).
To avoid explicit feature engineering on trees, (Mos-
chitti, 2004) used convolution kernels on selective
portions of syntactic trees. In this paper, we also
compare our work with tree kernel based methods.

Most SRL systems exploit syntactic trees as the
main source of features. We would like to take this
one step further and show that using LTAG deriva-
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Figure 1: A parse tree schematic, and two plausible
LTAG derivation trees for it: derivation tree γ1 uses
elementary trees α1 and β1 while γ2 uses α2 and α3.

tion trees as an additional source of features can im-
prove both argument identification and classification
accuracy in SRL.

2 Using LTAG-based Features in SRL
We assume some familiarity with Lexicalized Tree-
Adjoining Grammar (LTAG); (Joshi and Schabes,
1997) is a good introduction to this formalism. A
LTAG is defined to be a set of lexicalized elementary
trees (etree for short), of which there are two types,
initial trees and auxiliary trees. Typically etrees
can be composed through two operations into parse
trees, substitution and adjunction. We use sister ad-
junction which is commonly used in LTAG statisti-
cal parsers to deal with the relatively flat Penn Tree-
bank trees (Chiang, 2000). The tree produced by
composing the etrees is the derived/parse tree and
the tree that records the history of composition is the
derivation tree.

A reasonable way to define SRL features is to pro-
vide a strictly local dependency (i.e. within a sin-
gle etree) between predicate and argument. There
have been many different proposals on how to main-
tain syntactic locality (Xia, 1999; Chen and Vijay-
Shanker, 2000) and SRL locality (Chen and Ram-
bow, 2003; Shen and Joshi, 2005) when extract-
ing LTAG etrees from a Treebank. These proposed
methods are exemplified by the derivation tree γ1 in
Fig. 1. However, in most cases they can only provide
a local dependency between predicate and argument
for 87% of the argument constituents (Chen and
Rambow, 2003), which is too low to provide high

SRL accuracy. In LTAG-based statistical parsers,
high accuracy is obtained by using the Magerman-
Collins head-percolation rules in order to provide
the etrees (Chiang, 2000). This method is exem-
plified by the derivation tree γ2 in Fig. 1. Compar-
ing γ1 with γ2 in Fig. 1 and assuming that join is
the predicate and the NP is the potential argument,
the path feature as defined over the LTAG deriva-
tion tree γ2 is more useful for the SRL task as it dis-
tinguishes between main clause and non-finite em-
bedded clause predicates. This alternative derivation
tree also exploits the so-called extended domain of
locality (Joshi and Schabes, 1997) (the examples in
Section 2.1 show this clearly). In this paper, we cru-
cially rely on features defined on LTAG derivation
trees of the latter kind. We use polynomial kernels
to create combinations of features defined on LTAG
derivation trees.

2.1 LTAG-based Feature Extraction

In order to create training data for the LTAG-based
features, we convert the Penn Treebank phrase struc-
ture trees into LTAG derivations. First, we prune the
Treebank parse tree using certain constraints. Then
we decompose the pruned parse trees into a set of
LTAG elementary trees and obtain a derivation tree.
For each constituent in question, we extract features
from the LTAG derivation tree. We combine these
features with the standard features used for SRL
and train an SVM classifier on the combined LTAG
derivation plus SRL annotations from the PropBank
corpus.

For the test data, we report on results using the
gold-standard Treebank data, and in addition we also
report results on automatically parsed data using the
Charniak parser (Charniak, 2000) as provided by the
CoNLL 2005 shared task. We did this for three rea-
sons: (i) our results are directly comparable to those
who have used the Charniak parses distributed with
the CoNLL 2005 data-set; (ii) we avoid the possi-
bility of a better parser identifying a larger number
of argument constituents and thus leading to bet-
ter results, which is orthogonal to the discrimina-
tive power of our proposed LTAG-based features;
and (iii) the quality of LTAG derivation trees de-
pends indirectly on the quality of head dependen-
cies recovered by the parser and it is a well-known
folklore result (see Table 3 in (McDonald et al.,
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2005)) that applying the head-percolation heuristics
on parser output produces better dependencies when
compared to dependencies directly recovered by the
parser (whether the parser is an LTAG parser or a
lexicalized PCFG parser).

2.1.1 Pruning Parse Trees

Given a parse tree, the pruning component iden-
tifies the predicate in the tree and then only admits
those nodes that are sisters to the path from the pred-
icate to the root. It is commonly used in the SRL
community (cf. (Xue and Palmer, 2004)) and our ex-
periments show that 91% of the SRL targets can be
recovered despite this aggressive pruning. We make
two enhancements to the pruned Propbank tree: we
enrich the sister nodes with head information, a part-
of-speech tag and word pair: 〈t, w〉 and PP nodes are
expanded to include the NP complement of the PP
(including head information). The target SRL node
is still the PP. Figure 2 is a pruned parse tree for a
sentence from the PropBank.

2.1.2 Decompositions of Parse Trees

After pruning, the pruned tree is decom-
posed around the predicate using standard head-
percolation based heuristic rules1 to convert a Tree-
bank tree into an LTAG derivation tree. Figure 3
shows the resulting etrees after decomposition. Fig-
ure 4 is the derivation tree for the entire pruned tree.
Each node in this derivation tree represents an etree
in Figure 3. In our model we make an independence
assumption that each SRL is assigned to each con-
stituent independently, conditional only on the path
from the predicate etree to the argument etree in the
derivation tree. Different etree siblings in the LTAG
derivation tree do not influence each other in our cur-
rent models.

2.1.3 LTAG-based Features

We defined 5 LTAG feature categories: predicate
etree-related features (P for short), argument etree-
related features (A), subcategorization-related fea-
tures (S), topological relation-related features (R),
intermediate etree-related features (I). Since we
consider up to 6 intermediate etrees between the
predicate and the argument etree, we use I-1 to I-6
to represent these 6 intermediate trees respectively.

1using http://www.isi.edu/∼chiang/software/treep/treep.html
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Figure 2: The pruned tree for the sentence “Ports of
Call Inc. reached agreements to sell its remaining
seven aircraft to buyers that weren’t disclosed.”
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Figure 3: Elementary trees after decomposition of
the pruned tree.

Category P: Predicate etree & its variants Pred-
icate etree is an etree with predicate, such as e0 in
Figure 3. This new feature complements the pred-
icate feature in the standard SRL feature set. One
variant is to remove the predicate lemma. Another
variant is a combination of predicate tree w/o predi-
cate lemma&POS and voice. In addition, this variant
combined with predicate lemma comprises another
new feature. In the example, these three variants are
(VP(VB)) and (VP) active and (VP) active sell re-
spectively.
Category A: Argument etree & its variants Anal-
ogous to the predicate etree, the argument etree is an
etree with the target constituent and its head. Similar
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Figure 4: LTAG derivation tree for Figure 2.

to predicate etree related features, argument etree,
argument etree with removal of head word, combi-
nation of argument etree w/o head POS&head word
and head Named Entity (NE) label (if any) are con-
sidered. For example, in Figure 3, these 3 features
for e6 are e6, (NP(NNP)) and (NP) LOC with head
word “Inc.” having NE label “LOC”.
Category S: Index of current argument etree in
subcat frame of predicate etree Sub-categorization
is a standard feature that denotes the immediate ex-
pansion of the predicate’s parent. For example, it
is V NP PP for predicate sell in the given sentence.
For argument etree e1 in Figure 3, the index feature
value is 1 since it is the very first element in the (or-
dered) subcat sequence.
Category R:
Relation type between argument etree & predi-
cate etree This feature is a combination of position
and modifying relation. Position is a binary valued
standard feature to describe if the argument is before
or after the predicate in a parse tree. For each argu-
ment etree and intermediate etree, we consider three
types of modifying relations they may have with the
predicate etree: modifying (value 1), modified (value
2) and neither (value 3). From Figure 4, we can see
e1 modifies e0 (predicate tree). So their modifying
relation type value is 1; Combining this value with
the position value, this feature for e1 is “1 after”.
Attachment point of argument etree This fea-
ture describes where the argument etree is sister-
adjoined/adjoined to the predicate etree, or the other
way around. For e1 in the example, VP in the predi-
cate tree is the attachment point.
Distance This feature is the number of intermediate
etrees between argument etree and predicate etree in
the derivation tree. In Figure 4, the distance from e4

to the predicate etree is 1 since only one intermediate
etree e3 is between them.
Category I:
Intermediate etree related features Intermediate
etrees are those etrees that are located between the
predicate etree and argument etrees. The set of fea-
tures we propose for each intermediate etree is quite
similar to those for argument etrees except we do
not consider the named-entity label for head words
in this case.
Relation type of intermediate etree & predicate
etree.
Attachment point of intermediate etree.
Distance between intermediate etree and predicate
etree.

Up to 6 intermediate etrees are considered and the
category I features are extracted for each of them (if
they exist).

Each etree represents a linguistically meaningful
fragment. The features of relation type, attachment
point as well as the distance characterize the topo-
logical relations among the relevant etrees. In par-
ticular, the attachment point and distance features
can explicitly capture important information hidden
in the standard path feature. The intermediate tree
related features can give richer contextual informa-
tion between predicate tree and argument trees. We
added the subcat index feature to be complemen-
tary to the sub-cat and syntactic frame features in
the standard feature set.

3 Standard Feature Set
Our standard feature set is a combination of features
proposed by (Gildea and Jurafsky, 2002), (Surdeanu
et al., 2003; Pradhan et al., 2004; Pradhan et al.,
2005b) and (Xue and Palmer, 2004). All features
listed in Table 1 are used for argument classifica-
tion in our baseline system; and features with aster-
isk are not used for argument identification2. We
compare this baseline SRL system with a system
that includes a combination of these features with
the LTAG-based features. Our baseline uses all fea-
tures that have been used in the state-of-the-art SRL
systems and as our experimental results show, these
standard features do indeed obtain state-of-the-art

2This is a standard idea in the SRL literature: removing fea-
tures more useful for classification, e.g. named entity features,
makes the classifier for identification more accurate.
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Table 1: Standard features adopted by a typical SRL
system. Features with asterisk ∗ are not used for ar-
gument identification.

Basic features from (Gildea and Jurafsky, 2002)

• predicate lemma and voice
• phrase type and head word
• path from phrase to predicate 1

• position: phrase relative to predicate: before or after

• sub-cat records the immediate structure that expands from
predicate’s parent

2

Additional features proposed by (Surdeanu et al. 2003;
Pradhan et al., 2004, 2005)
• predicate POS
• head word POS
• first/last word/POS
• POS of word immediately before/after phrase
• path length 1

• LCA(Lowest Common Ancestor) path from phrase to its
lowest common ancestor with predicate
• punctuation immediately before/after phrase∗
• path trigrams∗: up to 9 are considered

• head word named entity label such as “PER, ORG,
LOC”∗
• content word named entity label for PP parent node∗
Additional features proposed by (Xue and Palmer, 2004)

• predicate phrase type
• predicate head word
• voice position
• syntactic frame∗

1 In Fig. 2 NNS↑NP↓S↓VP↓VB is the path from the con-

stituent NNS(agreements) to the predicate VB(sell) and the

path length is 4.
2 This feature is different from the frame feature which usu-

ally refers to all the semantic participants for the particular

predicate.

accuracy on the SRL task. We will show that adding
LTAG-based features can improve the accuracy over
this very strong baseline.

4 Experiments

4.1 Experimental Settings

Training data (PropBank Sections 2-21) and test
data (PropBank Section 23) are taken from CoNLL-
2005 shared task3 All the necessary annotation in-
formation such as predicates, parse trees as well as
Named Entity labels is part of the data. The ar-

3http://www.lsi.upc.es/∼srlconll/.

gument set we consider is {A0, A1, A2, A3, A4,
AM} where AM is a generalized annotation of all
adjuncts such as AM-TMP, AM-LOC, etc., where
PropBank function tags like TMP or LOC in AM-
TMP, AM-LOC are ignored (a common setting for
SRL, see (Xue and Palmer, 2004; Moschitti, 2004)).
We chose these labels for our experiments because
they have sufficient training/test data for the per-
formance comparison and provide sufficient counts
for accurate significance testing. However, we also
provide the evaluation result on the test set for full
CoNLL-2005 task (all argument types).

We use SVM-light4 (Joachims, 1999) with a poly-
nomial kernel (degree=3) as our binary classifier for
argument classification. We applied a linear kernel
to argument identification because the training cost
of this phase is extremely computationally expen-
sive. We use 30% of the training samples to fine tune
the regularization parameter c and the loss-function
cost parameter j for both stages of argument identifi-
cation and classification. With parameter validation
experiments, we set c = 0.258 and j = 1 for the ar-
gument identification learner and c = 0.1 and j = 4
for the argument classification learner.

The classification performance is evaluated using
Precision/Recall/F-score (p/r/f) measures. We ex-
tracted all the gold labels of A0-A4 and AM with
the argument constituent index from the original test
data as the “gold output”. When we evaluate, we
contrast the output of our system with the gold out-
put and calculate the p/r/f for each argument type.

Our evaluation criteria which is based on predict-
ing the SRL for constituents in the parse tree is based
on the evaluation used in (Toutanova et al., 2005).
However, we also predict and evaluate those Prop-
Bank arguments which do not have a corresponding
constituent in the gold parse tree or the automatic
parse tree: the missing constituent case. We also
evaluate discontinuous PropBank arguments using
the notation used in the CoNLL-2005 data-set but
we do not predict them. This is contrast with some
previous studies where the problematic cases have
been usually discarded or the largest constituents in
the parse tree that almost capture the missing con-
stituent cases are picked as being the correct answer.
Note that, in addition to the constituent based evalu-

4http://svmlight.joachims.org/
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Gold Standard Charniak Parser
std std+ltag std std+ltag

p(%) 95.66 96.79 87.71 89.11
r(%) 94.36 94.59 84.86 85.51
f(%) 95.00 95.68 86.26 87.27∗

Table 2: Argument identification results on test data

ation, in Section 4.4 we also provide the evaluation
of our model on the CoNLL-2005 data-set.

Because the main focus of this work is to evaluate
the impact of the LTAG-based features, we did not
consider the frameset or a distribution over the en-
tire argument set or apply any inference/constraints
as a post-processing stage as most current SRL sys-
tems do. We focus our experiments on showing the
value added by introducing LTAG-based features to
the SRL task over and above what is currently used
in SRL research.

4.2 Argument Identification

Table 2 shows results on argument identification (a
binary classification of constituents into argument or
non-argument). To fully evaluate the influence of the
LTAG-based features, we report the identification re-
sults on both Gold Standard parses and on Charniak
parser output (Charniak, 2000)5.

As we can see, after combing the LTAG-based
features with the standard features, F-score in-
creased from 95.00% to 95.68% with Gold-standard
parses; and from 86.26% to 87.27% with the Char-
niak parses (a larger increase). We can see LTAG-
based features help in argument identification for
both cases. This result is better than (Xue and
Palmer, 2004), and better on gold parses com-
pared to (Toutanova et al., 2005; Punyakanok et al.,
2005b).

4.3 Argument Classification

Based on the identification results, argument clas-
sification will assign the semantic roles to the ar-
gument candidates. For each argument of A0-A4
and AM, a “one-vs-all” SVM classifier is trained on
both the standard feature set (std) and the augmented
feature set (std+ltag). Table 3 shows the classifi-
cation results on the Gold-standard parses with the

5We use the parses supplied with the CoNLL-2005 shared
task for reasons of comparison.

gold argument identification; Table 4 and 5 show the
classification results on the Charniak parser with the
gold argument identification and the automatic ar-
gument identification respectively. Scores for multi-
class SRL are calculated based on the total number
of correctly predicted labels, total number of gold
labels and the number of labels in our prediction for
this argument set.

class std(p/r/f)% std+ltag(p/r/f)%

A0 96.69 96.71 96.71 96.77
96.70 96.74

A1 93.82 93.30 97.30 94.87
93.56 96.07

A2 87.05 79.98 92.43 81.42
83.37 86.58

A3 94.44 68.79 97.69 73.41
79.60 83.33

A4
96.55 82.35 94.11 78.43

88.89 85.56

AM 98.41 96.61 98.67 97.88
97.50 98.27

multi- 95.35 93.62 97.15 94.70
class 94.48 95.91

Table 3: Argument classification results on Gold-
standard parses with gold argument boundaries

4.4 Discussion

From the results shown in the tables, we can see that
by adding the LTAG-based features, the overall per-
formance of the systems is improved both for argu-
ment identification and for argument classification.

Table 3 and 4 show that with the gold argu-
ment identification, the classification for each class
in {A0, A1, A2, A3, AM} consistently benefit from
LTAG-based features. Especially for A3, LTAG-
based features lead to more than 3 percent improve-
ment. But for A4 arguments, the performance drops
3 percent in both cases. As we noticed in Table
5, which presents the argument classification results
on Charniak parser output with the automatic ar-
gument identification, the prediction accuracy for
classes A0, A1, A3, A4 and AM is improved, but
drops a little for A2.

In addition, we also evaluated our feature set
on the full CoNLL 2005 shared task. The over-
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class std(p/r/f)% std+ltag(p/r/f)%

A0 96.04 92.92 96.07 92.92
94.46 94.47

A1 90.64 85.71 94.64 86.67
88.11 90.48

A2 84.46 75.72 89.26 75.22
79.85 81.64

A3 87.50 62.02 87.10 68.35
72.59 76.60

A4
90.00 79.12 90.54 73.62

84.21 81.21

AM 95.14 85.54 96.60 86.51
90.09 91.27

multi- 93.25 86.45 94.71 87.15
class 89.72 90.77

Table 4: Argument classification results on Charniak
parser output with gold argument boundaries

all performance using LTAG features increased from
74.41% to 75.31% in terms of F-score on the full ar-
gument set. Our accuracy is most closely compara-
ble to the 78.63% accuracy achieved on the full task
by (Pradhan et al., 2005a). However, (Pradhan et
al., 2005a) uses some additional information since it
deals with incorrect parser output by using multiple
parsers. The 79.44% accuracy obtained by the top
system in CoNLL 2005 (Punyakanok et al., 2005a)
is not directly comparable since their system used
the more accurate n-best parser output of (Charniak
and Johnson, 2005). In addition their system also
used global inference. Our focus in this paper was
to propose new LTAG features and to evaluate im-
pact of these features on the SRL task.

We also compared our proposed feature set
against predicate/argument features (PAF) proposed
by (Moschitti, 2004). We conducted an experiment
using SVM-light-TK-1.2 toolkit6. The PAF tree ker-
nel is combined with the standard feature vectors by
a linear operator. With settings of Table 5, its multi-
class performance (p/r/f)% is 83.09/80.18/81.61
with linear kernel and 85.36/81.79/83.53 with poly-
nomial kernel (degree=3) over std feature vectors.

6http://ai-nlp.info.uniroma2.it/moschitti/TK1.2-
software/Tree-Kernel.htm

class std(p/r/f)% std+ltag(p/r/f)%

A0 86.50 86.18 88.17 87.70
86.34 87.93∗

A1 78.73 83.82 88.78 85.22
81.19 86.97∗

A2 85.40 73.93 83.11 75.42
79.25 79.08

A3 85.71 60.76 85.71 68.35
71.11 76.06∗

A4 84.52 78.02 89.47 74.72
81.15 81.43

AM 80.47 82.11 83.87 81.54
81.29 82.69∗

multi- 81.79 82.90 86.04 84.47
class 82.34 85.25∗

Table 5: Argument classification results on Charniak
parser output with automatic argument boundaries

4.5 Significance Testing

To assess the statistical significance of the im-
provements in accuracy we did a two-tailed sig-
nificance test on the results of both Table 2 and
5 where Charniak’s parser outputs were used.
We chose SIGF7, which is an implementation
of a computer-intensive, stratified approximate-
randomization test (Yeh, 2000). The statistical dif-
ference is assessed on SRL identification, classifica-
tion for each class (A0-A4, AM) and the full SRL
task (overall performance). In Table 2 and 5, we la-
beled numbers under std+ltag that are statistically
significantly better from those under std with aster-
isk. The significance tests show that for identifica-
tion and full SRL task, the improvements are statis-
tically significant with p value of 0.013 and 0.0001
at a confidence level of 95%. The significance test
on each class shows that the improvement by adding
LTAG-based features is statistically significant for
class A0, A1, A3 and AM. Even though in Table 5
the performance of A2 appears to be worse it is not
significantly so, and A4 is not significantly better. In
comparison, the performance of PAF did not show
significantly better than std with p value of 0.593 at
the same confidence level of 95%.

7http://www.coli.uni-saarland.de/∼pado/sigf/index.html
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full full−P full−R full−S full−A full−I std
id 90.5 90.6 90.0 90.5 90.5 90.1 89.6
A0 84.5 84.3 84.6 84.5 84.3 83.5 84.2
A1 89.8 90.1 89.4 89.3 89.6 89.3 88.9
A2 84.2 84.2 84.0 83.7 83.6 83.6 84.9
A3 76.7 80.7 75.1 76.0 75.6 76.7 78.6
A4 80.0 83.3 80.0 79.6 80.0 80.0 79.2
AM 82.8 83.3 82.9 82.8 82.6 83.1 82.4

Table 6: Impact of each LTAG feature category (P, R, S, A, I defined in Section 2.1.3) on argument classi-
fication and identification on CoNLL-2005 development set (WSJ Section 24). full denotes the full feature
set, and we use −α to denote removal of a feature category of type α. For example, full−P is the feature set
obtained by removing all P category features. std denotes the standard feature set.

5 Analysis of the LTAG-based features

We analyzed the drop in performance when a partic-
ular type of LTAG feature category is removed from
the full set of LTAG features (we use the broad cat-
egories P, R, S, A, I as defined in Section 2.1.3).
Table 6 shows how much performance is lost (or
gained) when a particular type of LTAG feature is
dropped from the full set.

These experiments were done on the development
set from CoNLL-2005 shared task, using the pro-
vided Charniak parses. All the SVM models were
trained using a polynomial kernel with degree 3. It
is clear that the S, A, I category features help in most
cases and P category features hurt in most cases,
including argument identification. It is also worth
noting that the R and I category features help most
for identification. This vindicates the use of LTAG
derivations as a way to generalize long paths in the
parse tree between the predicate and argument. Al-
though it seems LTAG features have negative impact
on prediction of A3 arguments on this development
set, dropping the P category features can actually
improve performance over the standard feature set.
In contrast, for the prediction of A2 arguments, none
of the LTAG feature categories seem to help.

Note that since we use a polynomial kernel in the
full set, we cannot rule out the possibility that a fea-
ture that improves performance when dropped may
still be helpful when combined in a non-linear ker-
nel with features from other categories. However,
this analysis on the development set does indicate
that overall performance may be improved by drop-

ping the P feature category. We plan to examine this
effect in future work.

6 Related Work

There has been some previous work in SRL that uses
LTAG-based decomposition of the parse tree. (Chen
and Rambow, 2003) use LTAG-based decomposi-
tion of parse trees (as is typically done for statis-
tical LTAG parsing) for SRL. Instead of extracting
a typical “standard” path feature from the derived
tree, (Chen and Rambow, 2003) uses the path within
the elementary tree from the predicate to the con-
stituent argument. Under this frame, they only re-
cover semantic roles for those constituents that are
localized within a single etree for the predicate, ig-
noring cases that occur outside the etree. As stated
in their paper, “as a consequence, adjunct seman-
tic roles (ARGM’s) are basically absent from our
test corpus”; and around 13% complement seman-
tic roles cannot be found in etrees in the gold parses.
In contrast, we recover all SRLs by exploiting more
general paths in the LTAG derivation tree. A simi-
lar drawback can be found in (Gildea and Hocken-
maier, 2003) where a parse tree path was defined in
terms of Combinatory Categorial Grammar (CCG)
types using grammatical relations between predicate
and arguments. The two relations they defined can
only capture 77% arguments in Propbank and they
had to use a standard path feature as a replacement
when the defined relations cannot be found in CCG
derivation trees. In our framework, we use interme-
diate sub-structures from LTAG derivations to cap-
ture these relations instead of bypassing this issue.
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Compared to (Liu and Sarkar, 2006), we have
used a more sophisticated learning algorithm and a
richer set of syntactic LTAG-based features in this
task. In particular, in this paper we built a strong
baseline system using a standard set of features and
did a thorough comparison between this strong base-
line and our proposed system with LTAG-based fea-
tures. The experiments in (Liu and Sarkar, 2006)
were conducted on gold parses and it failed to show
any improvements after adding LTAG-based fea-
tures. Our experimental results show that LTAG-
based features can help improve the performance of
SRL systems. While (Liu and Sarkar, 2006) propose
some new features for SRL based on LTAG deriva-
tions, we propose several novel features and in ad-
dition they do not show that their features are useful
for SRL.

Our approach shares similar motivations with the
approach in (Shen and Joshi, 2005) which uses Prop-
Bank information to recover an LTAG treebank as if
it were hidden data underlying the Penn Treebank.
However their goal was to extract an LTAG grammar
using PropBank information from the Treebank, and
not the SRL task.

Features extracted from LTAG derivations are dif-
ferent and provide distinct information when com-
pared to predicate-argument features (PAF) or sub-
categorization features (SCF) used in (Moschitti,
2004) or even the later use of argument spanning
trees (AST) in the same framework. The adjunc-
tion operation of LTAG and the extended domain of
locality is not captured by those features as we have
explained in detail in Section 2.

7 Conclusion and Future Work
In this paper we show that LTAG-based features
improve on the best known set of features used in
current SRL prediction systems: the F-score for
argument identification increased from 86.26% to
87.27% and from 82.34% to 85.25% for the SRL
task. The analysis of the impact of each LTAG fea-
ture category shows that the intermediate etrees are
important for the improvement. In future work we
plan to explore the impact that different types of
LTAG derivation trees have on this SRL task, and ex-
plore the use of tree kernels defined over the LTAG
derivation tree. LTAG derivation tree kernels were
previously used for parse re-ranking by (Shen et al.,

2003). Our work also provides motivation to do SRL
and LTAG parsing simultaneously.
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