
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 468–476, Prague, June 2007. c©2007 Association for Computational Linguistics

Smoothed Bloom filter language models: Tera-Scale LMs on the Cheap

David Talbot and Miles Osborne
School of Informatics, University of Edinburgh
2 Buccleuch Place, Edinburgh, EH8 9LW, UK

d.r.talbot@sms.ed.ac.uk, miles@inf.ed.ac.uk

Abstract

A Bloom filter (BF) is a randomised data
structure for set membership queries. Its
space requirements fall significantly below
lossless information-theoretic lower bounds
but it produces false positives with some
quantifiable probability. Here we present
a general framework for deriving smoothed
language model probabilities from BFs.

We investigate how a BF containing n-gram
statistics can be used as a direct replacement
for a conventional n-gram model. Recent
work has demonstrated that corpus statistics
can be stored efficiently within a BF, here
we consider how smoothed language model
probabilities can be derived efficiently from
this randomised representation. Our pro-
posal takes advantage of the one-sided error
guarantees of the BF and simple inequali-
ties that hold between related n-gram statis-
tics in order to further reduce the BF stor-
age requirements and the error rate of the
derived probabilities. We use these models
as replacements for a conventional language
model in machine translation experiments.

1 Introduction

Language modelling (LM) is a crucial component in
statistical machine translation (SMT). Standard n-
gram language models assign probabilities to trans-
lation hypotheses in the target language, typically
as smoothed trigram models (Chiang, 2005). Al-
though it is well-known that higher-order language

models and models trained on additional monolin-
gual corpora can significantly improve translation
performance, deploying such language models is not
trivial. Increasing the order of an n-gram model can
result in an exponential increase in the number of
parameters; for the English Gigaword corpus, for
instance, there are 300 million distinct trigrams and
over 1.2 billion distinct five-grams. Since a language
model is potentially queried millions of times per
sentence, it should ideally reside locally in memory
to avoid time-consuming remote or disk-based look-
ups.

Against this background, we consider a radically
different approach to language modelling. Instead
of explicitly storing all distinct n-grams from our
corpus, we create an implicit randomised represen-
tation of these statistics. This allows us to drastically
reduce the space requirements of our models. In
this paper, we build on recent work (Talbot and Os-
borne, 2007) that demonstrated how the Bloom filter
(Bloom (1970); BF), a space-efficient randomised
data structure for representing sets, could be used to
store corpus statistics efficiently. Here, we propose
a framework for deriving smoothed n-gram models
from such structures and show via machine trans-
lation experiments that these smoothed Bloom filter
language models may be used as direct replacements
for standard n-gram models in SMT.

The space requirements of a Bloom filter are quite
spectacular, falling significantly below information-
theoretic error-free lower bounds. This efficiency,
however, comes at the price of false positives: the fil-
ter may erroneously report that an item not in the set
is a member. False negatives, on the other hand, will

468

never occur: the error is said to be one-sided. Our
framework makes use of the log-frequency Bloom
filter presented in (Talbot and Osborne, 2007), and
described briefly below, to compute smoothed con-
ditional n-gram probabilities on the fly. It takes
advantage of the one-sided error guarantees of the
Bloom filter and certain inequalities that hold be-
tween related n-gram statistics drawn from the same
corpus to reduce both the error rate and the compu-
tation required in deriving these probabilities.

2 The Bloom filter
In this section, we give a brief overview of the
Bloom filter (BF); refer to Broder and Mitzenmacher
(2005) for a more in detailed presentation. A BF rep-
resents a set S = {x1, x2, ..., xn} with n elements
drawn from a universe U of size N . The structure is
attractive when N � n. The only significant stor-
age used by a BF consists of a bit array of size m.
This is initially set to hold zeroes. To train the filter
we hash each item in the set k times using distinct
hash functions h1, h2, ..., hk. Each function is as-
sumed to be independent from each other and to map
items in the universe to the range 1 to m uniformly
at random. The k bits indexed by the hash values
for each item are set to 1; the item is then discarded.
Once a bit has been set to 1 it remains set for the life-
time of the filter. Distinct items may not be hashed
to k distinct locations in the filter; we ignore col-
lisons. Bits in the filter can, therefore, be shared by
distinct items allowing significant space savings but
introducing a non-zero probability of false positives
at test time. There is no way of directly retrieving or
ennumerating the items stored in a BF.

At test time we wish to discover whether a given
item was a member of the original set. The filter is
queried by hashing the test item using the same k
hash functions. If all bits referenced by the k hash
values are 1 then we assume that the item was a
member; if any of them are 0 then we know it was
not. True members are always correctly identified,
but a false positive will occur if all k corresponding
bits were set by other items during training and the
item was not a member of the training set.

The probability of a false postive, f , is clearly the
probability that none of k randomly selected bits in
the filter are still 0 after training. Letting p be the
proportion of bits that are still zero after these n ele-

ments have been inserted, this gives,

f = (1− p)k.

As n items have been entered in the filter by hashing
each k times, the probability that a bit is still zero is,

p
′
=

(
1− 1

m

)kn

≈ e−
kn
m

which is the expected value of p. Hence the false
positive rate can be approximated as,

f = (1− p)k ≈ (1− p
′
)k ≈

(
1− e−

kn
m

)k
.

By taking the derivative we find that the number of
functions k∗ that minimizes f is,

k∗ = ln 2 · m
n

,

which leads to the intuitive result that exactly half
the bits in the filter will be set to 1 when the optimal
number of hash functions is chosen.

The fundmental difference between a Bloom fil-
ter’s space requirements and that of any lossless rep-
resentation of a set is that the former does not depend
on the size of the (exponential) universe N from
which the set is drawn. A lossless representation
scheme (for example, a hash map, trie etc.) must de-
pend on N since it assigns a distinct representation
to each possible set drawn from the universe.

3 Language modelling with Bloom filters
Recent work (Talbot and Osborne, 2007) presented a
scheme for associating static frequency information
with a set of n-grams in a BF efficiently.1

3.1 Log-frequency Bloom filter
The efficiency of the scheme for storing n-gram
statistics within a BF presented in Talbot and Os-
borne (2007) relies on the Zipf-like distribution of
n-gram frequencies: most events occur an extremely
small number of times, while a small number are
very frequent. We assume that raw counts are quan-
tised and employ a logarithmic codebook that maps
counts, c(x), to quantised counts, qc(x), as follows,

qc(x) = 1 + blogb c(x)c. (1)
1Note that as described the Bloom filter is not an associative

data structure and provides only a Boolean function character-
ising the set that has been stored in it.

469

Algorithm 1 Training frequency BF
Input: Strain, {h1, ...hk} and BF = ∅
Output: BF
for all x ∈ Strain do

c(x)← frequency of n-gram x in Strain

qc(x)← quantisation of c(x) (Eq. 1)
for j = 1 to qc(x) do

for i = 1 to k do
hi(x)← hash of event {x, j} under hi

BF [hi(x)]← 1
end for

end for
end for
return BF

The precision of this codebook decays exponentially
with the raw counts and the scale is determined by
the base of the logarithm b; we examine the effect
of this parameter on our language models in experi-
ments below.

Given the quantised count qc(x) for an n-gram
x, the filter is trained by entering composite events
consisting of the n-gram appended by an integer
counter j that is incremented from 1 to qc(x) into
the filter. To retrieve an n-gram’s frequency, the n-
gram is first appended with a counter set to 1 and
hashed under the k functions; if this tests positive,
the counter is incremented and the process repeated.
The procedure terminates as soon as any of the k
hash functions hits a 0 and the previous value of the
counter is reported. The one-sided error of the BF
and the training scheme ensure that the actual quan-
tised count cannot be larger than this value. As the
counts are quantised logarithmically, the counter is
usually incremented only a small number of times.

We can then approximate the original frequency
of the n-gram by taking its expected value given the
quantised count retrieved,

E[c(x)|qc(x) = j] =
bj−1 + bj − 1

2
. (2)

These training and testing routines are repeated here
as Algorithms 1 and 2 respectively.

As noted in Talbot and Osborne (2007), errors for
this log-frequency BF scheme are one-sided: fre-
quencies will never be underestimated. The prob-
ability of overestimating an item’s frequency decays

Algorithm 2 Test frequency BF
Input: x, MAXQCOUNT , {h1, ...hk} and BF
Output: Upper bound on c(x) ∈ Strain

for j = 1 to MAXQCOUNT do
for i = 1 to k do

hi(x)← hash of event {x, j} under hi

if BF [hi(x)] = 0 then
return E[c(x)|qc(x) = j − 1] (Eq. 2)

end if
end for

end for

exponentially with the size of the overestimation er-
ror d (i.e. as fd for d > 0) since each erroneous
increment corresponds to a single false positive and
d such independent events must occur together.

The efficiency of the log-frequency BF scheme
can be understood from an entropy encoding per-
spective under the distribution over frequencies of
n-gram types: the most common frequency (the sin-
gleton count) is assigned the shortest code (length k)
while rarer frequencies (those for more common n-
grams) are assigned increasingly longer codes (k ×
qc(x)).

3.2 Smoothed BF language models
A standard n-gram language model assigns condi-
tional probabilities to target words given a certain
context. In practice, most standard n-gram language
models employ some form of interpolation whereby
probabilities conditioned on the most specific con-
text consisting usually of the n − 1 preceding to-
kens are combined with more robust estimates based
on less specific conditioning events. To compute
smoothed language model probabilities, we gener-
ally require access to the frequencies of n-grams of
length 1 to n in our training corpus. Depending on
the smoothing scheme, we may also need auxiliary
statistics regarding the number of distinct suffixes
for each n-gram (e.g., Witten-Bell and Kneser-Ney
smoothing) and the number of distinct prefixes or
contexts in which they appear (e.g., Kneser-Ney).
We can use a single BF to store these statistics but
need to distinguish each type of event (e.g., raw
counts, suffix counts, etc.). Here we use a distinct
set of k hash functions for each such category.

Our motivation for storing the corpus statistics

470

directly rather than precomputed probabilities is
twofold: (i) the efficiency of the scheme described
above for storing frequency information together
with items in a BF relies on the frequencies hav-
ing a Zipf-like distribution; while this is definitely
true for corpus statistics, it may well not hold for
probabilities estimated from them; (ii) as will be-
come apparent below, by using the corpus statistics
directly, we will be able to make additional savings
in terms of both space and error rate by using simple
inequalities that hold for related information drawn
consistently from the same corpus; it is not clear
whether such bounds can be established for proba-
bilities computed from these statistics.

3.2.1 Proxy items
There is a potential risk of redundancy if we rep-

resent related statistics using the log-frequency BF
scheme presented in Talbot and Osborne (2007). In
particular, we do not need to store information ex-
plicitly that is necessarily implied by the presence
of another item in the training set, if that item can
be identified efficiently at query time when needed.
We use the term proxy item to refer to items whose
presence in the filter implies the existence of another
item and that can be efficiently queried given the im-
plied item. In using a BF to store corpus statistics
for language modelling, for example, we can use the
event corresponding to an n-gram and the counter
set to 1 as a proxy item for a distinct prefix, suffix or
context count of 1 for the same n-gram since (ignor-
ing sentence boundaries) it must have been preceded
and followed by at least one distinct type, i.e.,

qc(w1, ..., wn) ≥ 1 ∈ BF ⇒ s(w1, ..., wn) ≥ 1,

where s(·) is the number of the distinct types follow-
ing this n-gram in the training corpus. We show be-
low that such lower bounds allow us to significantly
reduce the memory requirements for a BF language
model.

3.2.2 Monotonicity of n-gram event space
The error analysis in Section 2 focused on the

false positive rate of a BF; if we deploy a BF within
an SMT decoder, however, the actual error rate will
also depend on the a priori membership probability
of items presented to it. The error rate Err is,

Err = Pr(x /∈ Strain|Decoder)f.

This implies that, unlike a conventional lossless data
structure, the model’s accuracy depends on other
components in system and how it is queried.

Assuming that statistics are entered consistently
from the same corpus, we can take advantage of the
monotonicity of the n-gram event space to place up-
per bounds on the frequencies of events to be re-
trieved from the filter prior to querying it, thereby
reducing the a priori probability of a negative and
consequently the error rate.

Specifically, since the log-frequency BF scheme
will never underestimate an item’s frequency, we
can apply the following inequality recursively and
bound the frequency of an n-gram by that of its least
frequent subsequence,

c(w1, ..., wn) ≤ min {c(w1, ..., wn−1), c(w2, ..., wn)}.

We use this to reduce the error rate of an interpolated
BF language model described below.

3.3 Witten-Bell smoothed BF LM
As an example application of our framework, we
now describe a scheme for creating and querying
a log-frequency BF to estimate n-gram language
model probabilities using Witten-Bell smoothing
(Bell et al., 1990). Other smoothing schemes, no-
tably Kneser-Ney, could be described within this
framework using additional proxy relations for infix
and prefix counts.

In Witten-Bell smoothing, an n-gram’s probabil-
ity is discounted by a factor proportional to the num-
ber of times that the n − 1-gram preceding the cur-
rent word was observed preceding a novel type in
the training corpus. It is defined recursively as,

Pwb(wi|wi−1
i−n+1) = λwi−1

i−n+1
Pml(wi|wi−1

i−n+1)

+(1−λwi−1
i−n+1

)Pwb(wi|wi−1
i−n+2)

where λx is defined via,

1− λx =
c(x)

s(x) + c(x)
,

and Pml(·) is the maximum likelihood estimator cal-
culated from relative frequencies.

The statistics required to compute the Witten-Bell
estimator for the conditional probability of an n-
gram consist of the counts of all n-grams of length

471

1 to n as well as the counts of the number of distinct
types following all n-grams of length 1 to n − 1.
In practice we use the c(w1, ..., wi) = 1 event as a
proxy for s(w1, ..., wi) = 1 and thereby need not
store singleton suffix counts in the filter.

Distinct suffix counts of 2 and above are stored
by subtracting this proxy count and converting to the
log quantisation scheme described above, i.e.,

qs(x) = 1 + blogb(s(x)− 1)c

In testing for a suffix count, we first query the item
c(w1, ..., wn) = 1 as a proxy for s(w1, ..., wn) =
1 and, if found, query the filter for incrementally
larger suffix counts, taking the reconstructed suffix
count of an n-gram with a non-zero n-gram count to
be the expected value, i.e.,

E[s(x)|qs(x) = j ∩ j > 0] = 1 +
(bj−1 + bj − 1)

2

Having created a BF containing these events, the
algorithm we use to compute the interpolated WB
estimate makes use of the inequalities described
above to reduce the a priori probability of querying
for a negative. In particular, we bound the count of
each numerator in the maximum likelihood term by
the count of the corresponding denominator and the
count of distinct suffixes of an n-gram by its respec-
tive token frequency.

Unlike more traditional LM formulations that
back-off from the highest-order to lower-order mod-
els, our algorithm works up from the lowest-order
model. Since the conditioning context increases in
specificity at each level, each statistic is bound from
above by its corresponding value at the previous less
specific level. The bounds are applied by passing
them as the parameter MAXQCOUNT to the fre-
quency test routine shown as Algorithm 2. We ana-
lyze the effect of applying such bounds on the per-
formance of the model within an SMT decoder in
the experiments below. Working upwards from the
lower-order models also allows us to truncate the
computation before the highest level if the denomi-
nator in the maximum likelihood term is found with
a zero count at any stage (no higher-order terms can
be non-zero given this).

4 Experiments

We conducted a range of experiments to explore
the error-space trade-off of using a BF-based model
as a replacement for a conventional n-gram model
within an SMT system and to assess the benefits of
specific features of our framework for deriving lan-
guage model probabilities from a BF.

4.1 Experimental set-up

All of our experiments use publically available re-
sources. Our main experiments use the French-
English section of the Europarl (EP) corpus for par-
allel data and language modelling (Koehn, 2003).
Decoding is carried-out using the Moses decoder
(Koehn and Hoang, 2007). We hold out 1,000 test
sentences and 500 development sentences from the
parallel text for evaluation purposes. The parame-
ters for the feature functions used in this log-linear
decoder are optimised using minimum error rate
(MER) training on our development set unless other-
wise stated. All evaluation is in terms of the BLEU
score on our test set (Papineni et al., 2002).

Our baseline language models were created us-
ing the SRILM toolkit (Stolcke, 2002). We built 3,
4 and 5-gram models from the Europarl corpus us-
ing interpolated Witten-Bell smoothing (WB); no n-
grams are dropped from these models or any of the
BF-LMs. The number of distinct n-gram types in
these baseline models as well as their sizes on disk
and as compressed by gzip are given in Table 1; the
gzip figures are given as an approximate (and opti-
mistic) lower bound on lossless representations of
these models.2

The BF-LM models used in these experiments
were all created from the same corpora following the
scheme outlined above for storing n-gram statistics.
Proxy relations were used to reduce the number of
items that must be stored in the BF; in addition, un-
less specified otherwise, we take advantage of the
bounds described above that hold between related
statistics to avoid presenting known negatives to the
filter. The base of the logarithm used in quantization
is specified on all figures.

The SRILM and BF-based models are both
queried via the same interface in the Moses decoder.

2Note, in particular, that gzip compressed files do not sup-
port direct random access as required by in language modelling.

472

n Types Mem. Gzip’d BLEU
3 5.9M 174Mb 51Mb 28.54
4 14.1M 477Mb 129Mb 28.99
5 24.2M 924Mb 238Mb 29.07

Table 1: WB-smoothed SRILM baseline models.

We assign a small cache to the BF-LM models (be-
tween 1 and 2MBs depending on the order of the
model) to store recently retrieved statistics and de-
rived probabilities. Translation takes between 2 to 5
times longer using the BF-LMs as compared to the
corresponding SRILM models.

4.2 Machine translation experiments

Our first set of experiments examines the relation-
ship between memory allocated to the BF-LM and
translation performance for a 3-gram and a 5-gram
WB smoothed BF-LM. In these experiments we use
the log-linear weights of the baseline model to avoid
variation in translation performance due to differ-
ences in the solutions found by MER training: this
allows us to focus solely on the quality of each BF-
LM’s approximation of the baseline. These exper-
iments consider various settings of the base for the
logarithm used during quantisation (b in Eq. (1)).

We also analyse these results in terms of the re-
lationships between BLEU score and the underlying
error rate of the BF-LM and the number of bits as-
signed per n-gram in the baseline model.

MER optimised BLEU scores on the test set are
then given for a range of BF-LMs.

4.3 Mean squared error experiments

Our second set of experiments focuses on the accu-
racy with which the BF-LM can reproduce the base-
line model’s distribution. Unfortunately, perplex-
ity or related information-theoretic quantities are not
applicable in this case since the BF-LM is not guar-
anteed to produce a properly normalised distribu-
tion. Instead we evaluate the mean squared error
(MSE) between the log-probabilites assigned by the
baseline model and by BF-LMs to n-grams in the
English portion of our development set; we also con-
sider the relation between MSE and the BLEU score
from the experiments above.

 22

 24

 26

 28

 30

 32

 0.02 0.0175 0.015 0.0125 0.01 0.0075 0.005 0.0025

B
LE

U
 S

co
re

Memory in GB

WB-smoothed BF-LM 3-gram model

BF-LM base 1.1
BF-LM base 1.5

BF-LM base 3
SRILM Witten-Bell 3-gram (174MB)

Figure 1: WB-smoothed 3-gram model (Europarl).

4.4 Analysis of BF-LM framework

Our third set of experiments evaluates the impact of
the use of upper bounds between related statistics on
translation performance. Here the standard model
that makes use of these bounds to reduce the a pri-
ori negative probability is compared to a model that
queries the filter in a memoryless fashion.3

We then present details of the memory savings ob-
tained by the use of proxy relations for the models
used here.

5 Results

5.1 Machine translation experiments

Figures 1 and 2 show the relationship between trans-
lation performance as measured by BLEU and the
memory assigned to the BF respectively for WB-
smoothed 3-gram and 5-gram BF-LMs. There is a
clear degradation in translation performance as the
memory assigned to the filter is reduced. Models
using a higher quantisation base approach their opti-
mal performance faster; this is because these more
coarse-grained quantisation schemes store fewer
items in the filter and therefore have lower underly-
ing false positive rates for a given amount of mem-
ory.

Figure 3 presents these results in terms of the re-
lationship between translation performance and the
false positive rate of the underlying BF. We can see
that for a given false positive rate, the more coarse-
grained quantisation schemes (e.g., base 3) perform

3In both cases we apply ‘sanity check’ bounds to ensure that
none of the ratios in the WB formula (Eq. 3) are greater than 1.

473

 22

 24

 26

 28

 30

 32

 0.07 0.06 0.05 0.04 0.03 0.02 0.01

B
LE

U
 S

co
re

Memory in GB

WB-smoothed BF-LM 5-gram model

BF-LM base 1.1
BF-LM base 1.5

BF-LM base 3
SRILM Witten-Bell 5-gram (924MB)

Figure 2: WB-smoothed 5-gram model (Europarl).

 22

 23

 24

 25

 26

 27

 28

 29

 30

 0.01 0.1 1

B
LE

U
 S

co
re

False positive rate (probability)

WB-smoothed BF-LM 3-gram model

BF-LM base 1.1
BF-LM base 1.5

BF-LM base 3

Figure 3: False positive rate vs. BLEU .

worse than the more fine-grained schemes.4

Figure 4 presents the relationship in terms of the
number of bits per n-gram in the baseline model.
This suggests that between 10 and 15 bits is suf-
ficient for the BF-LM to approximate the baseline
model. This is a reduction of a factor of between 16
and 24 on the plain model and of between 4 and 7
on gzip compressed model.

The results of a selection of BF-LM models with
decoder weights optimised using MER training are
given in Table 2; these show that the models perform
consistently close to the baseline models that they
approximate.

5.2 Mean squared error experiments

Figure 5 shows the relationship between memory as-
signed to the BF-LMs and the mean squared error

4Note that in this case the base 3 scheme will use approxi-
mately two-thirds the amount of memory required by the base
1.5 scheme.

 20

 22

 24

 26

 28

 30

 32

 19 17 15 13 11 9 7 5 3 1

B
LE

U
 S

co
re

Bits per n-gram

WB-smoothed BF-LM 3-gram model

BF-LM base 1.1
BF-LM base 1.5

BF-LM base 3

Figure 4: Bits per n-gram vs. BLEU.

n Memory Bits / n-gram base BLEU
3 10MB 14 bits 1.5 28.33
3 10MB 14 bits 2.0 28.47
4 20MB 12 bits 1.5 28.63
4 20MB 12 bits 2.0 28.63
5 40MB 14 bits 1.5 28.53
5 40MB 14 bits 2.0 28.72
5 50MB 17 bits 1.5 29.31
5 50MB 17 bits 2.0 28.67

Table 2: MERT optimised WB-smoothed BF-LMS.

(MSE) of log-probabilities that these models assign
to the development set compared to those assigned
by the baseline model. This shows clearly that the
more fine-grained quantisation scheme (e.g. base
1.1) can reach a lower MSE but also that the more
coarse-grained schemes (e.g., base 3) approach their
minimum error faster.

Figure 6 shows the relationship between MSE
between the BF-LM and the baseline model and
BLEU. The MSE appears to be a good predictor of
BLEU score across all quantisation schemes. This
suggests that it may be a useful tool for optimising
BF-LM parameters without the need to run the de-
coder assuming a target (lossless) LM can be built
and queried for a small test set on disk. An MSE of
below 0.05 appears necessary to achieve translation
performance matching the baseline model here.

5.3 Analysis of BF-LM framework

We refer to (Talbot and Osborne, 2007) for empiri-
cal results establishing the performance of the log-
frequency BF-LM: overestimation errors occur with

474

 0.01

 0.025

 0.05

 0.1

 0.25

 0.5

 0.03 0.02 0.01 0.005 0.0025 0.001

M
ea

n
sq

ua
re

d
er

ro
r

of
 lo

g
pr

ob
ab

ili
te

s

Memory in GB

MSE between WB 3-gram SRILM and BF-LMs

Base 3
Base 1.5
Base 1.1

Figure 5: MSE between SRILM and BF-LMs

 22

 23

 24

 25

 26

 27

 28

 29

 30

 0.01 0.1 1

B
LE

U
 S

co
re

Mean squared error

WB-smoothed BF-LM 3-gram model

BF-LM base 1.1
BF-LM base 1.5

BF-LM base 3

Figure 6: MSE vs. BLEU for WB 3-gram BF-LMs

a probability that decays exponentially in the size of
the overestimation error.

Figure 7 shows the effect of applying upper
bounds to reduce the a priori probability of pre-
senting a negative event to the filter in our in-
terpolation algorithm for computing WB-smoothed
probabilities. The application of upper bounds im-
proves translation performance particularly when
the amount of memory assigned to the filter is lim-
ited. Since both filters have the same underlying
false positive rate (they are identical), we can con-
clude that this improvement in performance is due
to a reduction in the number of negatives that are
presented to the filter and hence errors.

Table 3 shows the amount of memory saved by
the use of proxy items to avoid storing singleton
suffix counts for the Witten-Bell smoothing scheme.
The savings are given as ratios over the amount of
memory needed to store the statistics without proxy
items. These models have the same underlying false

 22

 24

 26

 28

 30

 32

 0.01 0.0075 0.005 0.0025

B
LE

U
 S

co
re

Memory in GB

WB-smoothed BF-LM 3-gram model

BF-LM base 2 with bounds
BF-LM base 2 without bounds

Figure 7: Effect of upper bounds on BLEU

n-gram order Proxy space saving
3 0.885
4 0.783
5 0.708

Table 3: Space savings via proxy items .

positive rate (0.05) and quantisation base (2). Sim-
ilar savings may be anticipated when applying this
framework to infix and prefix counts for Kneser-Ney
smoothing.

6 Related Work
Previous work aimed at reducing the size of n-gram
language models has focused primarily on quanti-
sation schemes (Whitaker and Raj, 2001) and prun-
ing (Stolcke, 1998). The impact of the former seems
limited given that storage for the n-gram types them-
selves will generally be far greater than that needed
for the actual probabilities of the model. Pruning
on the other hand could be used in conjunction with
the framework proposed here. This holds also for
compression schemes based on clustering such as
(Goodman and Gao, 2000). Our approach, however,
avoids the significant computational costs involved
in the creation of such models.

Other schemes for dealing with large language
models include per-sentence filtering of the model
or its distribution over a cluster. The former requires
time-consuming adaptation of the model for each
sentence in the test set while the latter incurs sig-
nificant overheads for remote calls during decoding.
Our framework could, however, be used to comple-
ment either of these approaches.

475

7 Conclusions and Future Work
We have proposed a framework for computing
smoothed language model probabilities efficiently
from a randomised representation of corpus statis-
tics provided by a Bloom filter. We have demon-
strated that models derived within this framework
can be used as direct replacements for equivalent
conventional language models with significant re-
ductions in memory requirements. Our empirical
analysis has also demonstrated that by taking advan-
tage of the one-sided error guarantees of the BF and
simple inequalities that hold between related n-gram
statistics we are able to further reduce the BF stor-
age requirements and the effective error rate of the
derived probabilities.

We are currently implementing Kneser-Ney
smoothing within the proposed framework. We hope
the present work will, together with Talbot and Os-
borne (2007), establish the Bloom filter as a practi-
cal alternative to conventional associative data struc-
tures used in computational linguistics. The frame-
work presented here shows that with some consider-
ation for its workings, the randomised nature of the
Bloom filter need not be a significant impediment to
is use in applications.

Acknowledgements

References
T.C. Bell, J.G. Cleary, and I.H. Witten. 1990. Text Compres-

sion. Prentice Hall, Englewood Cliffs, NJ.

B. Bloom. 1970. Space/time tradeoffs in hash coding with
allowable errors. CACM, 13:422–426.

A. Broder and M. Mitzenmacher. 2005. Network applications
of Bloom filters: A survey. Internet Mathematics, 1(4):485–
509.

David Chiang. 2005. A hierarchical phrase-based model for
statistical machine translation. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Lin-
guistics (ACL’05), pages 263–270, Ann Arbor, Michigan,
June. Association for Computational Linguistics.

J. Goodman and J. Gao. 2000. Language model size reduction
by pruning and clustering. In ICSLP’00, Beijing, China.

Philipp Koehn and Hieu Hoang. 2007. Factored translation
models. In Proc. of the 2007 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP/Co-NLL).

P. Koehn. 2003. Europarl: A multilingual corpus for
evaluation of machine translation, draft. Available
at:http://people.csail.mit.edu/ koehn/publications/europarl.ps.

K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. 2002. BLEU:
a method for automatic evaluation of machine translation.
In ACL-2002: 40th Annual meeting of the Association for
Computational Linguistics.

Andreas Stolcke. 1998. Entropy-based pruning of back-off lan-
guage models. In Proc. DARPA Broadcast News Transcrip-
tion and Understanding Workshop, pages 270–274.

A. Stolcke. 2002. SRILM – an extensible language modeling
toolkit. In Proc. Intl. Conf. on Spoken Language Processing.

D. Talbot and M. Osborne. 2007. Randomised language mod-
elling for statistical machine translation. In 45th Annual
Meeting of the Association of Computational Linguists (To
appear).

E. Whitaker and B. Raj. 2001. Quantization-based language
model compression (tr-2001-41). Technical report, Mit-
subishi Electronic Research Laboratories.

476

