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Abstract

In this paper, we proposed a novel prob-
abilistic generative model to deal with ex-
plicit multiple-topic documents: Parametric
Dirichlet Mixture Model(PDMM). PDMM
is an expansion of an existing probabilis-
tic generative model: Parametric Mixture
Model(PMM) by hierarchical Bayes model.
PMM models multiple-topic documents by
mixing model parameters of each single
topic with an equal mixture ratio. PDMM
models multiple-topic documents by mix-
ing model parameters of each single topic
with mixture ratio following Dirichlet dis-
tribution. We evaluate PDMM and PMM
by comparing F-measures using MEDLINE
corpus. The evaluation showed that PDMM
is more effective than PMM.

1 Introduction

Documents, such as those seen on Wikipedia and
Folksonomy, have tended to be assigned with ex-
plicit multiple topics. In this situation, it is impor-
tant to analyze a linguistic relationship between doc-
uments and the assigned multiple topics . We at-
tempt to model this relationship with a probabilistic
generative model. A probabilistic generative model
for documents with multiple topics is a probability
model of the process of generating documents with
multiple topics. By focusing on modeling the gener-
ation process of documents and the assigned multi-
ple topics, we can extract specific properties of doc-
uments and the assigned multiple topics. The model

can also be applied to a wide range of applications
such as automatic categorization for multiple topics,
keyword extraction and measuring document simi-
larity, for example.

A probabilistic generative model for documents
with multiple topics is categorized into the following
two models. One model assumes a topic as a latent
topic. We call this model the latent-topic model. The
other model assumes a topic as an explicit topic. We
call this model the explicit-topic model.

In a latent-topic model, a latent topic indicates
not a concrete topic but an underlying implicit
topic of documents. Obviously this model uses
an unsupervised learning algorithm. Representa-
tive examples of this kind of model are Latent
Dirichlet Allocation(LDA)(D.M.Blei et al., 2001;
D.M.Blei et al., 2003) and Hierarchical Dirichlet
Process(HDP)(Y.W.Teh et al., 2003).

In an explicit-topic model, an explicit topic indi-
cates a concrete topic such as economy or sports, for
example. A learning algorithm for this model is a
supervised learning algorithm. That is, an explicit
topic model learns model parameter using a training
data set of tuples such as (documents, topics). Rep-
resentative examples of this model are Parametric
Mixture Models(PMM1 and PMM2)(Ueda, N. and
Saito, K., 2002a; Ueda, N. and Saito, K., 2002b). In
the remainder of this paper, PMM indicates PMM1
because PMM1 is more effective than PMM2.

In this paper, we focus on the explicit topic model.
In particular, we propose a novel model that is based
on PMM but fundamentally improved.

The remaining part of this paper is organized as
follows. Sections 2 explains terminology used in the
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following sections. Section 3 explains PMM that is
most directly related to our work. Section 4 points
out the problem of PMM and introduces our new
model. Section 5 evaluates our new model. Section
6 summarizes our work.

2 Terminology

This section explains terminology used in this paper.
K is the number of explicit topics. V is the number
of words in the vocabulary. V = {1, 2, · · · , V } is
a set of vocabulary index. Y = {1, 2, · · · ,K} is a
set of topic index. N is the number of words in a
document. w = (w1, w2, · · · , wN ) is a sequence of
N words where wn denotes the nth word in the se-
quence. w is a document itself and is called words
vector. x = (x1, x2, · · · , xV ) is a word-frequency
vector, that is, BOW(Bag Of Words) representation
where xv denotes the frequency of word v. wv

n

takes a value of 1(0) when wn is v ∈ V (is not
v ∈ V ). y = (y1, y2, · · · , yK) is a topic vector
into which a document w is categorized, where yi

takes a value of 1(0) when the ith topic is (not) as-
signed with a document w. Iy ⊂ Y is a set of topic
index i, where yi takes a value of 1 in y.

∑
i∈Iy

and Πi∈Iy denote the sum and product for all i in
Iy, respectively. Γ(x) is the Gamma function and
Ψ is the Psi function(Minka, 2002). A probabilistic
generative model for documents with multiple top-
ics models a probability of generating a document w
in multiple topics y using model parameter Θ, i.e.,
models P (w|y,Θ). A multiple categorization prob-
lem is to estimate multiple topics y∗ of a document
w∗ whose topics are unknown. The model parame-
ters are learned by documents D = {(wd, yd)}Md=1,
where M is the number of documents.

3 Parametric Mixture Model

In this section, we briefly explain Parametric Mix-
ture Model(PMM)(Ueda, N. and Saito, K., 2002a;
Ueda, N. and Saito, K., 2002b).

3.1 Overview

PMM models multiple-topic documents by mixing
model parameters of each single topic with an equal
mixture ratio, where the model parameter θiv is the
probability that word v is generated from topic i.
This is because it is impractical to use model param-

eter corresponding to multiple topics whose num-
ber is 2K − 1(all combination of K topics). PMM
achieved more useful results than machine learn-
ing methods such as Naive Bayes, SVM, K-NN and
Neural Networks (Ueda, N. and Saito, K., 2002a;
Ueda, N. and Saito, K., 2002b).

3.2 Formulation
PMM employs a BOW representation and is formu-
lated as follows.

P (w|y, θ) = ΠV
v=1(ϕ(v,y, θ))xv (1)

θ is a K × V matrix whose element is θiv =
P (v|yi = 1). ϕ(v,y, θ) is the probability that word
v is generated from multiple topics y and is de-
fined as the linear sum of hi(y) and θiv as follows:
ϕ(v,y, θ) =

∑K
i=1 hi(y)θiv

hi(y) is a mixture ratio corresponding to topic i
and is formulated as follows:

hi(y) = yi∑K
j=1 yj

,
∑K

i=1 hi(y) = 1.

(if yi = 0, then hi(y) = 0)

3.3 Learning Algorithm of Model Parameter
The learning algorithm of model parameter θ in
PMM is an iteration method similar to the EM al-
gorithm. Model parameter θ is estimated by max-
imizing ΠM

d=1P (wd|yd, θ) in training documents
D = {(wd, yd)}Md=1. Function g corresponding to
a document d is introduced as follows:

gd
iv(θ) =

h(yd)θiv∑K
j=1 hj(yd)θjv

(2)

The parameters are updated along with the following
formula.

θ
(t+1)
iv =

1
C

(
M∑
d

xdvg
d
iv(θ

(t)) + ζ − 1) (3)

xdv is the frequency of word v in document d. C
is the normalization term for

∑V
v=1 θiv = 1. ζ is

a smoothing parameter that is Laplace smoothing
when ζ is set to two. In this paper, ζ is set to two
as the original paper.

4 Proposed Model

In this section, firstly, we mention the problem re-
lated to PMM. Then, we explain our solution of the
problem by proposing a new model.
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4.1 Overview
PMM estimates model parameter θ assuming that
all of mixture ratios of single topic are equal. It is
our intuition that each document can sometimes be
more weighted to some topics than to the rest of the
assigned topics. If the topic weightings are averaged
over all biases in the whole document set, they could
be canceled. Therefore, model parameter θ learned
by PMM can be reasonable over the whole of docu-
ments.

However, if we compute the probability of gener-
ating an individual document, a document-specific
topic weight bias on mixture ratio is to be consid-
ered. The proposed model takes into account this
document-specific bias by assuming that mixture ra-
tio vector π follows Dirichlet distribution. This is
because we assume the sum of the element in vec-
tor π is one and each element πi is nonnegative.
Namely, the proposed model assumes model param-
eter of multiple topics as a mixture of model pa-
rameter on each single topic with mixture ratio fol-
lowing Dirichlet distribution. Concretely, given a
document w and multiple topics y , it estimates
a posterior probability distribution P (π|x, y) by
Bayesian inference. For convenience, the proposed
model is called PDMM(Parametric Dirichlet Mix-
ture Model).

In Figure 1, the mixture ratio(bias) π =
(π1, π2, π3),

∑3
i=1 πi = 1, πi > 0 of three topics is

expressed in 3-dimensional real space R3. The mix-
ture ratio(bias) π constructs 2D-simplex in R3. One
point on the simplex indicates one mixture ratio π of
the three topics. That is, the point indicates multiple
topics with the mixture ratio. PMM generates doc-
uments assuming that each mixture ratio is equal.
That is, PMM generates only documents with mul-
tiple topics that indicates the center point of the 2D-
simplex in Figure 1. On the contrary, PDMM gen-
erates documents assuming that mixture ratio π fol-
lows Dirichlet distribution. That is, PDMM can gen-
erate documents with multiple topics whose weights
can be generated by Dirichlet distribution.

4.2 Formulation
PDMM is formulated as follows:

P (w|y, α, θ)

=
∫

P (π|α, y)ΠV
v=1(ϕ(v,y, θ, π))xvdπ (4)

Figure 1: Topic Simplex for Three Topics

π is a vector whose element is πi(i ∈ Iy). πi is a
mixture ratio(bias) of model parameter correspond-
ing to single topic i where πi > 0,

∑
i∈Iy

πi = 1.
πi can be considered as a probability of topic i , i.e.,
πi = P (yi = 1|π). P (π|α, y) is a prior distri-
bution of π whose index i is an element of Iy, i.e.,
i ∈ Iy. We use Dirichlet distribution as the prior. α
is a parameter vector of Dirichlet distribution corre-
sponding to πi(i ∈ Iy). Namely, the formulation is
as follows.

P (π|α, y) =
Γ(

∑
i∈Iy

αi)

Πi∈IyΓ(αi)
Πi∈Iyπ

αi−1
i (5)

ϕ(v,y, θ, π) is the probability that word v is gener-
ated from multiple topics y and is denoted as a linear
sum of πi(i ∈ Iy) and θiv(i ∈ Iy) as follows.

ϕ(v,y, θ, π) =
∑
i∈Iy

πiθiv (6)

=
∑
i∈Iy

P (yi = 1|π)P (v|yi = 1, θ) (7)

4.3 Variational Bayes Method for Estimating
Mixture Ratio

This section explains a method to estimate the
posterior probability distribution P (π|w, y, α, θ)
of a document-specific mixture ratio. Basically,
P (π|w, y, α, θ) is obtained by Bayes theorem us-
ing Eq.(4). However, that is computationally im-
practical because a complicated integral computa-
tion is needed. Therefore we estimate an approx-
imate distribution of P (π|w, y, α, θ) using Varia-
tional Bayes Method(H.Attias, 1999). The concrete
explanation is as follows
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Use Eqs.(4)(7).
P (w, π|y, α, θ) =
P (π|α, y)ΠV

v=1(
∑
i∈Iy

P (yi = 1|π)P (v|yi = 1, θ))xv

Transform document expression of above equa-
tion into words vector w = (w1, w2, · · · , wN ).
P (w, π|y, α, θ) =
P (π|α, y)ΠN

n=1

∑
in∈Iy

P (yin = 1|π)P (wn|yin = 1, θ)

By changing the order of
∑

and Π, we have
P (w, π|y, α, θ) =
P (π|α, y)

∑
i∈IN

y

ΠN
n=1P (yin = 1|π)P (wn|yin = 1, θ)

(
∑
i∈IN

y

≡
∑
i1∈Iy

∑
i2∈Iy

· · ·
∑

iN∈Iy

)

Express yin = 1 as zn = i.

P (w|y, α, θ) =∫ ∑
z∈IN

y

P (π|α, y)ΠN
n=1P (zn|π)P (wn|zn, θ)dπ

(
∑
z∈IN

y

≡
∑

z1∈Iy

∑
z2∈Iy

· · ·
∑

zN∈Iy

) (8)

Eq.(8) is regarded as Eq.(4) rewritten by introducing
a new latent variable z = (z1, z2, · · · , zN ).

P (w|y, α, θ) =
∫ ∑
z∈IN

y

P (π, z, w|y, α, θ)dπ (9)

Use Eqs.(8)(9)
P (π, z, w|y, α, θ)
= P (π|α, y)ΠN

n=1P (zn|π)P (wn|zn, θ) (10)

Hereafter, we explain Variational Bayes Method
for estimating an approximate distribution of
P (π, z|w, y, α, θ) using Eq.(10). This approach is
the same as LDA(D.M.Blei et al., 2001; D.M.Blei et
al., 2003). The approximate distribution is assumed
to be Q(π, z|γ, φ). The following assumptions are
introduced.

Q(π, z|γ, φ) = Q(π|γ)Q(z|φ) (11)

Q(π|γ) =
Γ(

∑
i∈Iy

γi)

Πi∈IyΓ(γi)
Πi∈Iyπ

γi−1
i (12)

Q(z|φ) = ΠN
n=1Q(zn|φ) (13)

Q(zn|φ) = ΠK
i=1(φni)zi

n (14)

Q(π|γ) is Dirichlet distribution where γ is its pa-
rameter. Q(zn|φ) is Multinomial distribution where
φni is its parameter and indicates the probability
that the nth word of a document is topic i, i.e.
P (yin = 1). zi

n is a value of 1(0) when zn is (not)
i. According to Eq.(11), Q(π|γ) is regarded as an
approximate distribution of P (π|w, y, α, θ)

The log likelihood of P (w|y, α, θ) is derived as
follows.

log P (w|y, α, θ)

=
∫ ∑
z∈IN

y

Q(π, z|γ, φ)dπ log P (w|y, α, θ)

=
∫ ∑
z∈IN

y

Q(π, z|γ, φ) log
P (π, z, w|y, α, θ)

Q(π, z|γ, φ)
dπ

+
∫ ∑
z∈IN

y

Q(π, z|γ, φ) log
Q(π, z|γ, φ)

P (π, z|w, y, α, θ)
dπ

log P (w|y, α, θ) = F [Q] + KL(Q,P ) (15)

F [Q] = ∫ ∑
z∈IN

y
Q(π,z|γ,φ) log

P (π,z,w|y,α,θ)
Q(π,z|γ,φ)

dπ

KL(Q,P ) = ∫ ∑
z∈IN

y
Q(π,z|γ,φ) log

Q(π,z|γ,φ)
P (π,z|w,y,α,θ)dπ

KL(Q,P ) is the Kullback-Leibler Divergence
that is often employed as a distance between
probability distributions. Namely, KL(Q,P )
indicates a distance between Q(π, z|γ, φ) and
P (π, z|w, y, α, θ). log P (w|y, α, θ) is not
relevant to Q(π, z|γ, φ). Therefore, Q(π, z|γ, φ)
that maximizes F [Q] minimizes KL(Q,P ),
and gives a good approximate distribution of
P (π, z|w, y, α, θ).

We estimate Q(π, z|γ, φ), concretely its param-
eter γ and φ, by maximizing F [Q] as follows.

Using Eqs.(10)(11).

F [Q] =
∫

Q(π|γ) log P (π|α, y)dθ (16)

+
∫ ∑
z∈IN

y

Q(π|γ)Q(z|φ) log ΠN
n=1P (zn|π)dθ (17)

+
∑
z∈IN

y

Q(z|φ) log ΠN
n=1P (wn|zn, θ) (18)

−
∫

Q(π|γ) log Q(π|γ)dθ (19)

−
∑
z∈IN

y

Q(z|φ) log Q(z|φ) (20)
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= log Γ(
∑

i∈Iy
αj)−

∑
i∈Iy

log Γ(αi)

+
∑

i∈Iy
(αi − 1)(Ψ(γi)−Ψ(

∑
j∈Iy

γj))(21)

+
N∑

n=1

∑
i∈Iy

φni(Ψ(γi)−Ψ(
∑
j∈Iy

γj)) (22)

+
N∑

n=1

∑
i∈Iy

V∑
j=1

φniw
j
n log θij (23)

− log Γ(
∑
j∈Iy

γj) +
∑
i∈Iy

log Γ(
∑
j∈Iy

γj)

−
∑
i∈Iy

(γi − 1)(Ψ(γi)−Ψ(
∑
j∈Iy

γj)) (24)

−
N∑

n=1

∑
i∈Iy

φni log φni (25)

F [Q] is known to be a function of γi and φni from
Eqs.(21) through (25). Then we only need to re-
solve the maximization problem of nonlinear func-
tion F [Q] with respect to γi and φni. In this case,
the maximization problem can be resolved by La-
grange multiplier method.

First, regard F [Q] as a function of γi, which
is denoted as F [γi]. Then ,γi does not have con-
straints. Therefore we only need to find the follow-
ing γi, where ∂F [γi]

∂γi
= 0. The resultant γi is ex-

pressed as follows.

γi = αi +
N∑

n=1

φni (i ∈ Iy) (26)

Second, regard F [Q] as a function of φni, which is
denoted as F [φni]. Then, considering the constraint
that

∑
i∈Iy

φni = 1, Lagrange function L[φni] is ex-
pressed as follows:

L[φni] = F [φni] + λ(
∑
i∈Iy

φni − 1) (27)

λ is a so-called Lagrange multiplier.
We find the following φni where ∂L[φni]

∂φni = 0.

φni =
θiwn

C
exp(Ψ(γi)−Ψ(

∑
j∈Iy

γj)) (i ∈ Iy)) (28)

C is a normalization term. By Eqs.(26)(28), we ob-
tain the following updating formulas of γi and φni.

γ
(t+1)
i = αi +

N∑
n=1

φ
(t)
ni (i ∈ Iy) (29)

φ
(t+1)
ni =

θiwn

C
exp(Ψ(γ(t+1)

i )−Ψ(
∑
j∈Iy

γ
(t+1)
j )) (30)

Using the above updating formulas , we can es-
timate parameters γ and φ, which are specific to a
document w and topics y. Last of all , we show a
pseudo code :vb(w, y) which estimates γ and φ. In
addition , we regard α , which is a parameter of a
prior distribution of π, as a vector whose elements
are all one. That is because Dirichlet distribution
where each parameter is one becomes Uniform dis-
tribution.
• Variational Bayes Method for PDMM————

function vb(w, y):

1. Initialize αi← 1 ∀i ∈ Iy

2. Compute γ(t+1), φ(t+1) using Eq.(29)(30)
3. if ‖ γ(t+1) − γ(t) ‖< ε

& ‖ φ(t+1) − φ(t) ‖< ε
4. then return (γ(t+1), φ(t+1)) and halt
5. else t← t + 1 and goto step (2)

————————————————————

4.4 Computing Probability of Generating
Document

PMM computes a probability of generating a docu-
ment w on topics y and a set of model parameter Θ
as follows:

P (w|y,Θ) = ΠV
v=1(ϕ(v,y, θ))xv (31)

ϕ(v,y, θ) is the probability of generating a word
v on topics y that is a mixture of model parame-
ter θiv(i ∈ Iy) with an equal mixture ratio. On the
other hand, PDMM computes the probability of gen-
erating a word v on topics y using θiv(i ∈ Iy) and
an approximate posterior distribution Q(π|γ) as fol-
lows:
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ϕ(v,y, θ, γ)

=
∫

(
∑
i∈Iy

πiθiv)Q(π|γ)dπ (32)

=
∑
i∈Iy

∫
πiQ(π|γ)dπθiv (33)

=
∑
i∈Iy

π̃iθiv (34)

π̃i =
∫

πiQ(π|γ)dπ = γi∑
j∈Iy

γj
(C.M.Bishop,

2006)
The above equation regards the mixture ratio of

topics y of a document w as the expectation π̃i(i ∈
Iy) of Q(π|γ). Therefore, a probability of gener-
ating w P (w|y,Θ) is computed with ϕ(v,y, θ, γ)
estimated in the following manner:

P (w|y,Θ) = ΠV
v=1(ϕ(v,y, θ, γ)))xv (35)

4.5 Algorithm for Estimating Multiple Topics
of Document

PDMM estimates multiple topics y∗ maximizing
a probability of generating a document w∗, i.e.,
Eq.(35). This is the 0-1 integer problem(i.e., NP-
hard problem), so PDMM uses the same approxi-
mate estimation algorithm as PMM does. But it is
different from PMM’s estimation algorithm in that
it estimates the mixture ratios of topics y by Varia-
tional Bayes Method as shown by vb(w,y) at step 6
in the following pseudo code of the estimation algo-
rithm:
• Topics Estimation Algorithm———————–

function prediction(w):

1. Initialize S ← {1, 2, · · · }, yi ← 0 for
i(1, 2 · · · ,K)

2. vmax ← −∞
3. while S is not empty do
4. foreach i ∈ S do
5. yi ← 1, yj∈S\i ← 0
6. Compute γ by vb(w, y)
7. v(i)← P (w|y)
8. end foreach
9. i∗ ← argmax v(i)

10. if v(i∗) > vmax

11. yi∗ ← 1, S ← S\i∗, vmax ← v(i∗)
12. else
13. return y and halt

————————————————————

5 Evaluation

We evaluate the proposed model by using F-measure
of multiple topics categorization problem.

5.1 Dataset

We use MEDLINE1 as a dataset. In this experiment,
we use five thousand abstracts written in English.
MEDLINE has a metadata set called MeSH Term.
For example, each abstract has MeSH Terms such as
RNA Messenger and DNA-Binding Proteins. MeSH
Terms are regarded as multiple topics of an abstract.
In this regard, however, we use MeSH Terms whose
frequency are medium(100-999). We did that be-
cause the result of experiment can be overly affected
by such high frequency terms that appear in almost
every abstract and such low frequency terms that ap-
pear in very few abstracts. In consequence, the num-
ber of topics is 88. The size of vocabulary is 46,075.
The proportion of documents with multiple topics on
the whole dataset is 69.8%, i.e., that of documents
with single topic is 30.2%. The average of the num-
ber of topics of a document is 3.4. Using TreeTag-
ger2, we lemmatize every word. We eliminate stop
words such as articles and be-verbs.

5.2 Result of Experiment

We compare F-measure of PDMM with that of
PMM and other models.

F-measure(F) is as follows:
F = 2PR

P+R , P = |Nr∩Ne|
|Ne| , R = |Nr∩Ne|

|Nr| .

Nr is a set of relevant topics . Ne is a set of esti-
mated topics. A higher F-measure indicates a better
ability to discriminate topics. In our experiment, we
compute F-measure in each document and average
the F-measures throughout the whole document set.

We consider some models that are distinct in
learning model parameter θ. PDMM learns model
parameter θ by the same learning algorithm as
PMM. NBM learns model parameter θ by Naive
Bayes learning algorithm. The parameters are up-
dated according to the following formula: θiv =
Miv+1

C . Miv is the number of training documents
where a word v appears in topic i. C is normaliza-
tion term for

∑V
v=1 θiv = 1.

1http://www.nlm.nih.gov/pubs/factsheets/medline.html
2http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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The comparison of these models with respect to
F-measure is shown in Figure 2. The horizontal axis
is the proportion of test data of dataset(5,000 ab-
stracts). For example, 2% indicates that the number
of documents for learning model is 4,900 and the
number of documents for the test is 100. The vertical
axis is F-measure. In each proportion, F-measure is
an average value computed from five pairs of train-
ing documents and test documents randomly gener-
ated from dataset.

F-measure of PDMM is higher than that of other
methods on any proportion, as shown in Figure
2. Therefore, PDMM is more effective than other
methods on multiple topics categorization.

Figure 3 shows the comparison of models with
respect to F-measure, changing proportion of mul-
tiple topic document for the whole dataset. The pro-
portion of document for learning and test are 40%
and 60%, respectively. The horizontal axis is the
proportion of multiple topic document on the whole
dataset. For example, 30% indicates that the pro-
portion of multiple topic document is 30% on the
whole dataset and the remaining documents are sin-
gle topic , that is, this dataset is almost single topic
document. In 30%. there is little difference of F-
measure among models. As the proportion of mul-
tiple topic and single topic document approaches
90%, that is, multiple topic document, the differ-
ences of F-measure among models become appar-
ent. This result shows that PDMM is effective in
modeling multiple topic document.

Figure 2: F-measure Results

5.3 Discussion

In the results of experiment described in section
5.2, PDMM is more effective than other models in

Figure 3: F-measure Results changing Proportion of
Multiple Topic Document for Dataset

multiple-topic categorization. If the topic weight-
ings are averaged over all biases in the whole of
training documents, they could be canceled. This
cancellation can lead to the result that model pa-
rameter θ learned by PMM is reasonable over the
whole of documents. Moreover, PDMM computes
the probability of generating a document using a
mixture of model parameter, estimating the mixture
ratio of topics. This estimation of the mixture ra-
tios, we think, is the key factor to achieve the re-
sults better than other models. In addition, the es-
timation of a mixture ratio of topics can be effec-
tive from the perspective of extracting features of
a document with multiple topics. A mixture ratio
of topics assigned to a document is specific to the
document. Therefore, the estimation of the mixture
ratio of topics is regarded as a projection from a
word-frequency space of QV where Q is a set of
integer number to a mixture ratio space of topics
[0, 1]K in a document. Since the size of vocabu-
lary is much more than that of topics, the estima-
tion of the mixture ratio of topics is regarded as a
dimension reduction and an extraction of features in
a document. This can lead to analysis of similarity
among documents with multiple topics. For exam-
ple, the estimated mixture ratio of topics [Compara-
tive Study]C[Apoptosis] and [Models,Biological] in
one MEDLINE abstract is 0.656C0.176 and 0.168,
respectively. This ratio can be a feature of this doc-
ument.

Moreover, we can obtain another interesting re-
sults as follows. The estimation of mixture ratios of
topics uses parameter γ in section 4.3. We obtain
interesting results from another parameter φ that
needs to estimate γ. φni is specific to a document. A
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Table 1: Word List of Document X whose Topics are
[Female], [Male] and [Biological Markers]

Ranking Top10 Ranking Bottom10
1(37) biomarkers 67(69) indicate
2(19) Fusarium 68(57) problem
3(20) non-Gaussian 69(45) use
4(21) Stachybotrys 70(75) %
5(7) chrysogenum 71(59) correlate
6(22) Cladosporium 72(17) population
7(3) mould 73(15) healthy
8(35) Aspergillus 7433) response
9(23) dampness 75(56) man
10(24) 1SD 76(64) woman

φni indicates the probability that a word wn belongs
to topic i in a document. Therefore we can compute
the entropy on wn as follows:

entropy(wn) =
∑K

i=1 φni log(φni)

We rank words in a document by this entropy. For
example, a list of words in ascending order of the
entropy in document X is shown in Table 1. A value
in parentheses is a ranking of words in decending or-
der of TF-IDF(= tf · log(M/df),where tf is term
frequency in a test document, df is document fre-
quency and M is the number of documents in the set
of doucuments for learning model parameters) (Y.
Yang and J. Pederson, 1997) . The actually assigned
topics are [Female] , [Male] and [Biological Mark-
ers], where each estimated mixture ratio is 0.499 ,
0.460 and 0.041, respectively.

The top 10 words seem to be more technical than
the bottom 10 words in Table 1. When the entropy of
a word is lower, the word is more topic-specific ori-
ented, i.e., more technical . In addition, this ranking
of words depends on topics assigned to a document.
When we assign randomly chosen topics to the same
document, generic terms might be ranked higher.
For example, when we rondomly assign the topics
[Rats], [Child] and [Incidence], generic terms such
as ”use” and ”relate” are ranked higher as shown
in Table 2. The estimated mixture ratio of [Rats],
[Child] and [Incidence] is 0.411, 0.352 and 0.237,
respectively.

For another example, a list of words in ascending
order of the entropy in document Y is shown in Ta-
ble 3. The actually assigned topics are Female, An-
imals, Pregnancy and Glucose.. The estimated mix-
ture ratio of [Female], [Animals] ,[Pregnancy] and

Table 2: Word List of Document X whose Topics are
[Rats], [Child] and [Incidence]

Ranking Top10 Ranking Bottom10
1(69) indicate 67(56) man
2(63) relate 68(47) blot
3(53) antigen 69(6) exposure
4(45) use 70(54) distribution
5(3) mould 71(68) evaluate
6(4) versicolor 72(67) examine
7(35) Aspergillus 73(59) correlate
8(7) chrysogenum 74(58) positive
9(8) chartarum 75(1) IgG
10(9) herbarum 76(60) adult

[Glucose] is 0.442, 0.437, 0.066 and 0.055, respec-
tively In this case, we consider assigning sub topics
of actual topics to the same document Y.

Table 4 shows a list of words in document Y as-
signed with the sub topics [Female] and [Animals].
The estimated mixture ratio of [Female] and [An-
imals] is 0.495 and 0.505, respectively. Estimated
mixture ratio of topics is chaged. It is interesting
that [Female] has higher mixture ratio than [Ani-
mals] in actual topics but [Female] has lower mix-
ture ratio than [Animals] in sub topics [Female] and
[Animals]. According to these different mixture ra-
tios, the ranking of words in docment Y is changed.

Table 5 shows a list of words in document Y as-
signed with the sub topics [Pregnancy] and [Glu-
cose]. The estimated mixture ratio of [Pregnancy]
and [Glucose] is 0.502 and 0.498, respectively. It
is interesting that in actual topics, the ranking of
gglucose-insulinh and ”IVGTT” is high in document
Y but in the two subset of actual topics, gglucose-
insulinh and ”IVGTT” cannot be find in Top 10
words.

The important observation known from these ex-
amples is that this ranking method of words in a doc-
ument can be assosiated with topics assigned to the
document. φ depends on γ seeing Eq.(28). This is
because the ranking of words depends on assigned
topics, concretely, mixture ratios of assigned topics.
TF-IDF computed from the whole documents can-
not have this property. Combined with existing the
extraction method of keywords, our model has the
potential to extract document-specific keywords us-
ing information of assigned topics.
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Table 3: Word List of Document Y whose Ac-
tual Topics are [Femaile],[Animals],[Pregnancy]
and [Glucose]

Ranking Top 10 Ranking Bottom 10
1(2) glucose-insulin 94(93) assess
2(17) IVGTT 95(94) indicate
3(11) undernutrition 96(74) CT
4(12) NR 97(28) %
5(13) NRL 98(27) muscle
6(14) GLUT4 99(85) receive
7(56) pregnant 100(80) status
8(20) offspring 101(100) protein
9(31) pasture 102(41) age
10(32) singleton 103(103) conclusion

Table 4: Word List of Document Y whose Topics are
[Femaile]and [Animals]

Ranking Top 10 Ranking Bottom 10
1(31) pasture 94(65) insulin
2(32) singleton 95(76) reduced
3(33) insulin-signaling 96(27) muscle
4(34) CS 97(74) CT
5(35) euthanasia 98(68) feed
6(36) humane 99(100) protein
7(37) NRE 100(80) status
8(38) 110-term 101(85) receive
9(50) insert 102(41) age
10(11) undernutrition 103(103) conclusion

6 Concluding Remarks

We proposed and evaluated a novel probabilistic
generative models, PDMM, to deal with multiple-
topic documents. We evaluated PDMM and other
models by comparing F-measure using MEDLINE
corpus. The results showed that PDMM is more ef-
fective than PMM. Moreover, we indicate the poten-
tial of the proposed model that extracts document-
specific keywords using information of assigned
topics.
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