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Abstract 

This paper proposes a new bootstrapping 
approach to unsupervised part-of-speech 
induction. In comparison to previous 
bootstrapping algorithms developed for this 
problem, our  approach aims to improve 
the quality of the seed clusters by 
employing seed words that are both 
distributionally and morphologically 
reliable. In particular, we present a novel 
method for combining morphological and 
distributional information for seed 
selection. Experimental results demonstrate 
that our approach works well for English 
and Bengali, thus providing suggestive 
evidence that it is applicable to both 
morphologically impoverished languages 
and highly inflectional languages. 

1 Introduction 

The availability of a high-quality lexicon is crucial 
to the development of fundamental text-processing 
components such as part-of-speech (POS) taggers 
and syntactic parsers. While hand-crafted lexicons 
are readily available for resource-rich languages 
such as English, the same is not true for resource-
scarce languages. Unfortunately, manually 
constructing a lexicon requires a lot of linguistic 
expertise, and is practically infeasible for highly 
inflectional and agglutinative languages, which 
contain a very large number of lexical items. Given 
the scarcity of annotated data for acquiring the 
lexicon in a supervised manner, researchers have 
instead investigated unsupervised POS induction 
techniques for automating the lexicon construction 

process. In essence, the goal of unsupervised POS 
induction is to learn the set of possible POS tags 
for each lexical item from an unannotated corpus. 

 The most common approach to unsupervised 
POS induction to date has been motivated by Har-
ris’s (1954) distributional hypothesis: words with 
similar co-occurrence patterns should have similar 
syntactic behavior. More specifically, unsupervised 
POS induction algorithms typically operate by (1) 
representing each target word (i.e., a word to be 
tagged with its POS) as a context vector that en-
codes its left and right context, (2) clustering dis-
tributionally similar words, and (3) manually label-
ing each cluster with a POS tag by inspecting the 
members of the cluster. 

This distributional approach works under the as-
sumption that the context vector of each word en-
codes sufficient information for enabling accurate 
word clustering. However, many words are dis-
tributionally unreliable: due to data sparseness, 
they occur infrequently and hence their context 
vectors do not capture reliable statistical informa-
tion. To overcome this problem, Clark (2000) pro-
poses a bootstrapping approach, in which he (1) 
clusters the most distributionally reliable words, 
and then (2) incrementally augments each cluster 
with words that are distributionally similar to those 
already in the cluster. 

The goal of this paper is to propose a new boot-
strapping approach to unsupervised POS induction 
that can operate in a resource-scarce setting. Most 
notably, our approach aims to improve the quality 
of the seed clusters by employing seed words that 
are both distributionally and morphologically reli-
able. In particular, we present a novel method for 
combining morphological and distributional infor-
mation for seed selection. Furthermore, given our 
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emphasis on resource-scarce languages, our ap-
proach does not rely on any language resources. In 
particular, the morphological information that it 
exploits is provided by an unsupervised morpho-
logical analyzer.  

It is perhaps not immediately clear why morpho-
logical information would play a crucial role in the 
induction process, especially since the distribu-
tional approach has achieved considerable success 
for English POS induction (see Lamb (1961), 
Schütze (1995) and Clark (2000)). To understand 
the role and significance of morphology, it is im-
portant to first understand why the distributional 
approach works well for English. Recall from the 
above that the distributional approach assumes that 
the information encoded in the context vector of 
each word, which typically consists of the 250 
most frequent words of a given language, is suffi-
cient for accurately clustering the words. This ap-
proach works well for English because the most 
frequent English words are composed primarily of 
closed-class words such as “to” and “is”, which 
provide strong clues to the POS of the target word. 
However, this assumption is not necessarily valid 
for fairly free word order and highly inflectional 
languages such as Bengali. The reason is that (1) 
co-occurrence statistics collected from free word 
order languages are not as reliable as those from 
fixed word order languages; and (2) many of the 
closed-class words that appear in the context vec-
tor for English words are realized as inflections in 
Bengali. The absence of these highly informative 
words implies that the context vectors may no 
longer capture sufficient information for accurately 
clustering Bengali words, and hence the use of 
morphological information becomes particularly 
important for unsupervised POS induction for 
these inflectional languages.  

We will focus primarily on labeling open-class 
words with their POS tags. Our decision is moti-
vated by the fact that closed-class words generally 
comprise a small percentage of the lexical items of 
a language. In Bengali, the percentage of closed-
class words is even smaller than that in English: as 
mentioned before, many closed-class words in 
English are realized as suffixes in Bengali. 

Although our attempt to incorporate morpho-
logical information into the distributional POS in-
duction framework was originally motivated by 
inflectional languages, experimental results show 
that our approach works well for both English and 

Bengali, suggesting its applicability to both mor-
phologically impoverished languages and highly 
inflectional languages. Owing to the lack of pub-
licly available resources for Bengali, we manually 
created a 5000-word Bengali lexicon for evaluation 
purposes. Hence, one contribution of our work lies 
in the creation of an annotated dataset for Bengali. 
By making this dataset publicly available 1 , we 
hope to facilitate the comparison of different unsu-
pervised POS induction algorithms and to stimu-
late interest in Bengali language processing.  

The rest of the paper is organized as follows. 
Section 2 discusses related work on unsupervised 
POS induction. Section 3 describes our tagsets for 
English and Bengali. The next three sections de-
scribe the three steps of our bootstrapping ap-
proach: cluster the words using morphological in-
formation (Section 4), remove potentially misla-
beled words from each cluster (Section 5), and 
bootstrap each cluster using a weakly supervised 
learner (Section 6). Finally, we present evaluation 
results in Section 7 and conclusions in Section 8.  

2 Related Work 

Several unsupervised POS induction algorithms 
have also attempted to incorporate morphological 
information into the distributional framework, but 
our work differs from these in two respects.  
Computing morphological information. Previous 
POS induction algorithms have attempted to derive 
morphological information from dictionaries (Ha-
ji�, 2000) and knowledge-based morphological 
analyzers (Duh and Kirchhoff, 2006). However, 
these resources are generally not available for re-
source-scarce languages. Consequently, research-
ers have attempted to derive morphological infor-
mation heuristically (e.g., Cucerzan and Yarowsky 
(2000), Clark (2003), Freitag (2004)). For instance, 
Cucerzan and Yarowsky (2000) posit a character 
sequence x as a suffix if there exists a sufficient 
number of distinct words w in the vocabulary such 
that the concatentations wx are also in the vocabu-
lary.  It is conceivable that such heuristically com-
puted morphological information can be inaccurate, 
thus rendering the usefulness of a more accurate 
morphological analyzer. To address this problem, 
we exploit morphological information provided by 
an unsupervised word segmentation algorithm.   

                                                 
1 See http://www.utdallas.edu/~sajib/posDatasets.html. 
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Tag Description Treebank tags 
JJ Adjective JJ 
JJR Adjective, comparative JJR 
JJS Adjective, superlative JJS 
NN Singular noun NN, NNP 
NNS Plural noun NNS, NNPS 
RB Adverb RB 
VB Verb, non-3rd ps. sing. present VB, VBP 
VBD Verb, past tense or past participle VBD, VBN 
VBG Verb, gerund/present participle VBG 
VBZ Verb, 3rd ps. sing. present VBZ 

Table 1: The English tagset 
 
Using morphological information. Perhaps due to 
the overly simplistic methods employed to com-
pute morphological information, morphology has 
only been used as what Biemann (2006) called 
add-on’s in existing POS induction algorithms, 
which remain primarily distributional in nature. In 
contrast, our approach more tightly integrates mor-
phology into the distributional framework. As we 
will see, we train SVM classifiers using both mor-
phological and distributional features to select seed 
words for our bootstrapping algorithm, effectively 
letting SVM combine these two sources of infor-
mation and perform automatic feature weighting. 
Another appealing feature of our approach is that 
when labeling each unlabeled word with its POS 
tag, an SVM classifier also returns a numeric value 
that indicates how confident the word is labeled. 
This opens up the possibility of having a human 
improve our automatically constructed lexicon by 
manually checking those entries that are tagged 
with low confidence by an SVM classifier. 

Recently, there have been attempts to perform 
(mostly) unsupervised POS tagging without rely-
ing on a POS lexicon. Haghighi and Klein’s (2006) 
prototype-driven approach requires just a few pro-
totype examples for each POS tag, exploiting these 
labeled words to constrain the labels of their dis-
tributionally similar words when training a genera-
tive log-linear model for POS tagging. Smith and 
Eisner (2005) train a log-linear model for POS tag-
ging in an unsupervised manner using contrastive 
estimation, which seeks to move probability mass 
to a positive example e from its neighbors (i.e., 
negative examples created by perturbing e). 

3 The English and Bengali Tagsets 

Given our focus on automatically labeling open 
class words, our English and Bengali tagsets are 
designed  to essentially  cover  all of the open-class 

Tag Description Examples 
JJ Adjective vhalo, garam, kharap 
NN Singular noun kanna, ridoy, shoshon 
NN2 2nd order inflectional noun dhopake, kalamtike 
NN6 6th order inflectional noun gharer, manusher 
NN7 7th order inflectional noun dhakai, barite, graame 
NNP Proper noun arjun, ahmmad 
NNS Plural noun manushgulo, pakhider 
NNSH Noun ending with “sh” barish, jatrish 
VB Finite verb kheyechi, krlam, krI 
VBN Non-finite verb kre, giye, jete, kadte 

Table 2: The Bengali tagset 
 

words. Our English tagset, which is composed of 
ten tags, is shown in Table 1. As we can see, a tag 
in our tagset can be mapped to more than one Penn 
Treebank tags. For instance, we use the tag “NN” 
for both singular and plural common nouns. Our 
decision of which Penn Treebank tags to group 
together is based on that of Schütze (1995).  

Our Bengali tagset, which also consists of ten 
tags, is adapted from the one proposed by Saha et 
al. (2004) (see Table 2). It is worth noting that 
unlike English, we assign different tags to Bengali 
proper nouns and common nouns. The reason is 
that for English, it is not particularly crucial to dis-
tinguish the two types of nouns during POS induc-
tion, since they can be distinguished fairly easily 
using heuristics such as initial capitalization. For 
Bengali, such simple heuristics do not exist, as the 
Bengali alphabet does not have any upper and 
lower case letters. Hence, it is important to distin-
guish Bengali proper nouns and common nouns 
during POS induction. 

4 Clustering the Morphologically Similar 
Words 

As mentioned before, our approach aims to more 
tightly integrate morphological information into 
the distributional POS induction framework. In 
fact, our POS induction algorithm begins by clus-
tering the morphologically similar words (i.e., 
words that combine with the same set of suffixes). 
The motivation for clustering morphologically 
similar words can be attributed to our hypothesis 
that words having similar POS should combine 
with a similar set of suffixes. For instance, verbs in 
English combine with suffixes like “ing”, “ed” and 
“s”, whereas adjectives combine with suffixes like 
“er” and “est”. Note, however, that the suffix “s” 
can attach to both verbs and nouns in English, and 
so it is not likely to be a useful feature for identify-
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ing the POS of a word. The question, then, is how 
to determine which suffixes are useful for the POS 
identification task in an unsupervised setting where 
we do not have any prior knowledge of language-
specific grammatical constraints. This section pro-
poses a method for identifying the “useful” suf-
fixes and employing them to cluster the morpho-
logically similar words. As we will see, our clus-
tering algorithm not only produces soft clusters, 
but it also automatically determines the number of 
clusters for a particular language.   

Before we describe how to identify the useful 
suffixes, we need to (1) induce all of the suffixes 
and (2) morphologically segment the words in our 
vocabulary. 2  However, neither of these tasks is 
simple for a truly resource-scarce language for 
which we do not have a dictionary or a knowledge-
based morphological analyzer. As mentioned in the 
introduction, our proposed solution to both tasks is 
to use an unsupervised morphological analyzer that 
can be built just from an unannotated corpus. In 
particular, we have implemented an unsupervised 
morphological analyzer that outperforms Gold-
smith’s (2001) Linguistica and Creutz and Lagus’s 
(2005) Morfessor for our English and Bengali 
datasets and compares favorably to the best-
performing morphological parsers in MorphoChal-
lenge 20053 (see Dasgupta and Ng (2007)).  

Given the segmentation of each word and the 
most frequent 30 suffixes4 provided by our mor-
phological analyzer, our clustering algorithm oper-
ates by (1) clustering the similar suffixes and then 
(2) assigning words to each cluster based on the 
suffixes a word combines with. To cluster similar 
suffixes, we need to define the similarity between 
two suffixes. Informally, we say that two suffixes x 
and y are similar if a word that combines with x 
also combines with y and vice versa. In practice, 
we will rarely posit two suffixes as similar under 
this definition unless we assume access to a com-
plete vocabulary – an assumption that is especially 
unrealistic for resource-scarce languages. As a re-
sult, we relax this definition and consider two suf-
fixes x and y similar if P(x | y) > t and P(y | x) > t, 
where P(x | y) is the probability of a word combin-
ing with suffix x given that it combines with suffix 
                                                 
2 A vocabulary is simply a set of (distinct) words extracted 
from an unannotated corpus. We extracted our English and 
Bengali vocabulary from WSJ and Prothom Alo, respectively.  
3 http://www.cis.hut.fi/morphochallenge2005/ 
4 We found that 30 suffixes are sufficient to cluster the words. 

y, and t is a threshold that we set to 0.4 in all of our 
experiments. Note that both probabilities can be 
estimated from an unannotated corpus.5 Given this 
definition of similarity, we can cluster the similar 
suffixes using the following steps: 
Creating the initial clusters.  First, we create a 
suffix graph, in which we have (1) one node for 
each of the 30 suffixes, and (2) a directed edge 
from suffix x to suffix y if P(y | x) > 0.4. We then 
identify the strongly connected components of this 
graph using depth-first search. These strongly con-
nected components define our initial partitioning of 
the 30 suffixes. We denote the suffixes assigned to 
a cluster the primary keys of the cluster.   
Improving the initial clusters. Recall that we 
ultimately want to cluster the words by assigning 
each word w to the cluster in which w combines 
with all of its primary keys. Given this goal, it is 
conceivable that singleton clusters are not 
desirable. For instance, a cluster that has “s” as its 
only primary key is not useful, because although a 
lot of words combine with “s”, they do not 
necessarily have the same POS. As a result, we 
improve each initial cluster by adding more 
suffixes to the cluster, in hopes of improving the 
resulting clustering of the words by placing 
additional constraints on each cluster. More 
specifically, we add a suffix y to a cluster c if, for 
each primary key x of c, P(y | x) > 0.4. If this 
condition is satisfied, then y becomes a secondary 
key of c. For each initial cluster c’, we perform this 
check using each of the suffixes x’ not in c’ to see 
if x’ can be added to c’. If, after this expansion 
step, we still have a cluster c* defined by a single 
primary key x that also serves as a secondary key 
in other clusters, then x is probably ambiguous 
(i.e., x can probably attach to words belonging to 
different POSs); and consequently, we remove c*. 
We denote the resulting set of clusters by C. 
Populating the clusters with words. Next, for 
each word w in our vocabulary, we check whether 
w can be assigned to any of the clusters in C. Spe-
cifically, we assign w to a cluster c if w can com-
bine with each of its primary keys and at least half 
of its secondary keys.  
Labeling and merging the clusters. After popu-
lating each cluster with words, we manually label 

                                                 
5 For instance, we compute P(x | y) as the ratio of the number 
of distinct words that combines with both x and y to the num-
ber of distinct words that combine with y only. 
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each of them with a POS tag from the tagset. We 
found that all of the clusters are labeled as NN, 
VB, or JJ. The reason is that the clustered words 
are mostly root words. We then merge all the clus-
ters labeled with the same POS tag, yielding only 
three “big” clusters. Note that these “big” clusters 
are soft clusters, since a word can belong to more 
than one of them. For instance, “cool” can combine 
with “s” or “ing” to form a VB, and it can also 
combine with “er” or “est” to form a JJ. 
Generating sub-clusters. Recall that each “big” 
cluster contains a set of suffixes and also a set of 
words that combines with those suffixes. Now, for 
each “big” cluster c, we create one sub-cluster cx 
for each suffix x that appears in c. Then, for each 
word w in c, we use our unsupervised morphologi-
cal analyzer to generate w+x and add the surface 
form to the corresponding sub-cluster. 
Labeling the sub-clusters. Finally, we manually 
label each sub-cluster with a POS tag from our 
tagset. For example, all the words ending in “ing” 
will be labeled as VBG. As before, we merge two 
clusters if they are labeled with the same POS tag. 
The resulting clusters are our morphologically 
formed clusters. 

5 Purifying the Seed Set 

The clusters formed thus far cannot be expected to 
be perfectly accurate, since (1) our unsupervised 
morphological analyzer is not perfect, and (2) 
morphology alone is not always sufficient for de-
termining the POS of a word. In fact, we found that 
many adjectives are mislabeled as nouns for both 
languages. For instance, “historic” is labeled as a 
noun, since it combines with suffixes like “al” and 
“ally” that “accident” combines with. In addition, 
many words are labeled with the POS that does not 
correspond to their most common word sense. For 
instance, while words like “chair”, “crowd” and 
“cycle” are more commonly used as nouns than 
verbs, they are labeled as verbs by our clustering 
algorithm. The reason is that suffixes that typically 
attach to verbs (e.g., “s”, “ed”, “ing”) also attach to 
these words. Such labelings, though not incorrect, 
are undesirable, considering the fact that these 
words are to be used as seeds to bootstrap our mor-
phologically formed clusters in a distributional 
manner. For instance, since “chair” and “crowd” 
are distributionally similar to nouns, their presence 
in the verb clusters can potentially contaminate the 

clusters with nouns during the bootstrapping proc-
ess. Hence, for the purpose of effective bootstrap-
ping, we also consider these words “mislabeled”.  

To identify the words that are potentially misla-
beled, we rely on the following assumption: words 
that are morphologically similar should also be 
distributionally similar and vice versa. Based on 
this assumption, we propose a purification method 
that posits a word w as potentially mislabeled (and 
therefore should be removed or relabeled) if the 
POS of w as predicted using distributional infor-
mation differs from that as determined by mor-
phology. 

The question, then, is how to predict the POS 
tag of a word using distributional information? Our 
idea is to use “supervised” learning, where we train 
and test on the seed set. Conceptually, we (1) train 
a multi-class classifier on the morphologically la-
beled words, each of which is represented by its 
context vector, and (2) apply the classifier to rela-
bel the same set of words. If the new label of a 
word w differs from its original label, then mor-
phology and context disagree upon the POS of w; 
and as mentioned above, our method then deter-
mines that the word is potentially misclassified. 
Note, however, that (1) the training instances are 
not perfectly labeled and (2) it does not make sense 
to train a classifier on data that is seriously misla-
beled. Hence, we make the assumption that a large 
percentage (> 70%) of the training instances is cor-
rectly labeled6, and that our method would work 
with a training set labeled at this level of accuracy. 
In addition, since we are training a classifier based 
on distributional features, we train and test on only 
distributionally reliable words, which we define to 
be words that appear at least five times in our cor-
pus. Distributionally unreliable words will all be 
removed from the morphologically formed clus-
ters, since we cannot predict their POS using dis-
tributional information.  

In our implementation of this method, rather 
than train a multi-class classifier, we train a set of 
binary classifiers using SVMlight (Joachims, 1999) 
together with the distributional features for deter-
mining the POS tag of a given word.7 More spe-
cifically, we train one classifier for each pair of 

                                                 
6 An inspection of the morphologically formed clusters reveals 
that this assumption is satisfied for both languages. 
7 In this and all subsequent uses of SVMlight, we set all the 
training parameters to their default values. 
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POS tags. For instance, since we have ten POS 
tags for English, we will train 45 binary classifi-
ers.8 To determine the POS tag of a given English 
word w, we will use these 45 pairwise classifiers to 
independently assign a label to w. For instance, the 
NN-JJ classifier will assign either NN or JJ to w. 
We then count how many times w is tagged with 
each of the ten POS tags. If there is a POS tag t 
whose count is nine, it means that all the nine clas-
sifiers associated with t have classified w as t, and 
so our method will label w as t. Otherwise, we re-
move w from our seed set, since we cannot confi-
dently label it using our classifier ensemble. 

To create the training set for the NN-JJ classi-
fier, for instance, we can possibly use all of the 
words labeled with NN and JJ as positive and 
negative instances, respectively. However, to en-
sure that we do not have a skewed class distribu-
tion, we use the same number of instances from 
each class to train the classifier. More formally, let 
INN be the set of instances labeled with NN, and IJJ 
be the set of instances labeled with JJ. Without loss 
of generality, assume that |INN| < |IJJ|, where |X| de-
notes the size of the set X. To avoid class skew-
ness, we have to sample from IJJ, since it is the lar-
ger set. Our sampling method is motivated by bag-
ging (Breiman, 1996). More specifically, we create 
10 training sets from IJJ, each of which has size 
|INN| and is formed by sampling with replacement 
from IJJ. We then combine each of these 10 train-
ing sets separately with INN, and train 10 SVM 
classifiers from the 10 resulting training sets. 
Given a test instance i, we first apply the 10 classi-
fiers independently to i and obtain the signed con-
fidence values9 of the predictions provided by the 
classifiers. We then take the average of the 10 con-
fidence values, assigning i the positive class if the 
average is at least 0, and negative otherwise.   

As mentioned above, we use distributional fea-
tures to represent an instance created from a word 
w. The distributional features are created based on 
Schütze’s (1995) method. Specifically, the left 
context and the right context of w are each encoded 
using the most frequent 500 words from the vo-
cabulary. A feature in the left (right) context has 
                                                 
8 We could have trained just one 10-class classifier, but the 
fairly large number of classes leads us to speculate that this 
multi-class classifier will not achieve a high accuracy. 
9  Here, a large positive number indicates that the classifier 
confidently labels the instance as NN, and a large negative 
number represents confident prediction for JJ. 

the value 1 if the corresponding word appears to 
the left (right) of w in our corpus, and 0 otherwise. 
However, we found that using distributional fea-
tures alone would erroneously classify words like 
“car” and “cars” as having the same POS because 
the two words are distributionally similar. In gen-
eral, it is difficult to distinguish words in NN from 
those in NNS by distributional means. The same 
problem occurs for words in VB and VBD. To ad-
dress this problem, we augment the feature set with 
suffixal features. Specifically, we create one binary 
feature for each of the 30 most frequent suffixes 
that we employed in the previous section. The fea-
ture corresponding to suffix x has the value 1 if x is 
the suffix of w. Moreover, we create an additional 
suffixal feature whose value is 1 if none of the 30 
most frequent suffixes is the suffix of w.  

6 Augmenting the Seed Set 

After purification, we have a set of clusters filled 
with distributionally and morphologically reliable 
seed words that receive the same POS tag when 
predicted independently by morphological features 
and distributional features. Our goal in this section 
is to augment this seed set. Since we have a small 
seed set (5K words for English and 8K words for 
Bengali) and a large number of unlabeled words, 
we believe that it is most natural to apply a weakly 
supervised learning algorithm to bootstrap the clus-
ters. Specifically, we employ a version of self-
training together with SVM as the underlying 
learning algorithm. 10  Below we first present the 
high-level idea of our self-training algorithm and 
then discuss the implementation details. 

Conceptually, our self-training algorithm works 
as follows. We first train a multi-class SVM classi-
fier on the seed set for determining the POS tag of 
a word using the morphological and distributional 
features described in the previous section, and then 
apply it to label the unlabeled (i.e., unclustered) 
words. Words that are labeled with a confidence 
value that exceeds the current threshold (which is 
initially set to 1 and -1 for positively and nega-
tively labeled instances, respectively) will be 

                                                 
10 As a related note, Clark’s (2001) bootstrapping algorithm 
uses KL-divergence to measure the distributional similarity 
between an unlabeled word and a labeled word, adding to a 
cluster the words that are most similar to its current member. 
For us, SVM is a more appealing option because it automati-
cally combines the morphological and distributional features. 
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added to the seed set.  In the next iteration, we re-
train the classifier on the augmented labeled data, 
apply it to the unlabeled data, and add to the la-
beled data those instances whose predicted confi-
dence is above the current threshold. If none of the 
instances has a predicted confidence above the cur-
rent threshold, we reduce the threshold by 0.1. (For 
instance, if the original thresholds are 1 and -1, 
they will be changed to 0.9 and -0.9.) We then re-
peat the above procedure until the thresholds reach 
0.5 and -0.5. 11  Finally, we apply the resulting 
bootstrapped classifier to label all of the unlabeled 
words that have a corpus frequency of at least five, 
using a threshold of 0. 

In our implementation of the self-training algo-
rithm, rather than train a multi-class classifier in 
each bootstrapping iteration, we train pairwise 
classifiers (recall that for English, 45 classifiers are 
formed from 10 POS tags) using the morphological 
and distributional features described in the previ-
ous section. Again, since we employ distributional 
features, we apply the 45 pairwise classifiers only 
to the distributionally reliable words (i.e., words 
with corpus frequency at least 5). To classify an 
unlabeled word w, we apply the 45 pairwise classi-
fiers to independently assign a label to w.12  We 
then count how many times w is tagged with each 
of the ten POS tags. If there is a POS tag whose 
count is nine and all of these nine votes are associ-
ated with confidence that exceeds the current 
threshold, then we add w to the labeled data to-
gether with its assigned tag.  

7 Evaluation 

7.1 Experimental Setup 

Corpora. Recall that our bootstrapping algorithm 
assumes as input an unannotated corpus from 
which we (1) extract our vocabulary (i.e., the set of 
words to be labeled) and (2) collect the statistics 
needed in morphological and distributional cluster-
                                                 
11 We decided to stop the bootstrapping procedure at thresh-
olds of 0.5 and -0.5, because the more bootstrapping iterations 
we use, the lower are the quality of the bootstrapped data as 
well as the accuracy of the bootstrapped classifier.  
12 As in purification, each pairwise classifier is implemented 
as a set of 10 classifiers, each of which is trained on an equal 
number of instances from both classes. Testing also proceeds 
as before: the label of an instance is derived from the average 
of the confidence values returned by the 10 classifiers, and the 
confidence value associated with the label is just the average 
of the 10 confidence values. 

ing. We use as our English corpus the Wall Street 
Journal (WSJ) portion of the Penn Treebank (Mar-
cus et al., 1993). Our Bengali corpus is composed 
of five years of articles taken from the Bengali 
newspaper Prothom Alo.  
Vocabulary creation. To extract our English vo-
cabulary, we pre-processed each document in the 
WSJ corpus by first tokenizing them and then re-
moving the most frequent 500 words (as they are 
mostly closed class words), capitalized words, 
punctuations, numbers, and unwanted character 
sequences (e.g., “***”). The resulting English vo-
cabulary consists of approximately 35K words. We 
applied similar pre-processing steps to the Prothom 
Alo articles to generate our Bengali vocabulary, 
which consists of 80K words. 
Test set preparation. Our English test set is com-
posed of the 25K words in the vocabulary that ap-
pear at least five times in the WSJ corpus.  The 
gold-standard POS tags for each word w are de-
rived automatically from the parse trees in which w 
appears. To create the Bengali test set, we ran-
domly chose 5K words from the vocabulary that 
appear at least five times in Prothom Alo. Each 
word in the test set was then labeled with its POS 
tags by two of our linguists. 
Evaluation metric. Following Schütze (1995), we 
report performance in terms of recall, precision, 
and F1. Recall is the percentage of POS tags cor-
rectly proposed, precision is the percentage of POS 
tags proposed that are correct, and F1 is simply the 
harmonic mean of recall and precision. To exem-
plify, suppose the correct tagset for “crowd” is 
{NN, VB}; if our system outputs {VB, JJ, RB}, 
then recall is 50%, precision is 33%, and F1 is 
40%.  Importantly, all of our results will be re-
ported on word types. This prevents the frequently 
occurring words from having a higher influence on 
the results than their infrequent counterparts. 

7.2 Results and Discussion 

The baseline system. We use as our baseline sys-
tem one of the best existing unsupervised POS in-
duction algorithms (Clark, 2003). More specifi-
cally, we downloaded from Clark’s website13 the 
code that implements a set of POS induction algo-
rithms he proposed. Among these implementa-
tions, we chose cluster_neyessenmorph, which 
combines morphological and distributional infor-
                                                 
13 http://www.cs.rhul.ac.uk/home/alexc/ 
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mation and achieves the best performance in his 
paper. When running his program, we use WSJ and 
Prothom Alo as the input corpora. In addition, we 
set the number of clusters produced to be 128, 
since this setting yields the best result in his paper. 
Results of the baseline system for the English and 
Bengali test sets are shown under the “After Boot-
strapping” column in row 1 of Tables 3 and 4. As 
we can see, the baseline achieves F1-scores of 59% 
and 45% for English and Bengali, respectively. 
The other results in row 1 will be discussed below. 
Our induction system. Recall that our unsuper-
vised POS induction algorithm operates in three 
steps. To better understand the performance con-
tribution of each of these steps, we show in row 2 
of Tables 3 and 4 the results of our system after we 
(1) morphologically cluster the words, (2) purify 
the seed set, and (3) augment the seed set. Impor-
tantly, the numbers shown for each step are com-
puted over the set of words in the test set that are 
labeled at the end of that step. For instance, the 
morphological clustering algorithm labeled 11K 
English words and 25K Bengali words, and so re-
call, precision and F1-score are computed over the 
subset of these labeled words that appear in the test 
set. Similarly, after bootstrapping, all the words 
that appear at least five times in our corpus are la-
beled; since our labeled data is now a superset of 
our test data, the numbers in the last column are 
the results of our algorithm for the entire test set.  

As we can see, after morphological clustering, 
our system achieves F1-scores of 79% and 78% for 
English and Bengali, respectively. When measured 
on exactly the same set of words, the baseline only 
achieves F-scores of 59% and 56%. In fact, com-
paring rows 1 and 2, we outperform the baseline in 
each of the three steps of our algorithm. In particu-
lar, our system yields F1-scores of 73% and 77% 
for the entire English and Bengali test sets, thus 
outperforming the baseline by 14% and 18% for 
English and Bengali, respectively.  

Two additional points deserve mentioning. First, 
for both languages, the highest F1-score is 
achieved after the purification step. A closer analy-
sis of the labeled words reveals the reason. For 
English, many of the nouns incorrectly labeled as 
verbs by the morphological clustering algorithm 
were subsequently removed during the purification 
step when distributional similarity was used on top 
of morphological similarity. For Bengali, many 
proper nouns were assigned by the morphological 

clustering algorithm to the clusters dominated by 
common nouns (because the two types of Bengali 
nouns are morphologically similar), and many of 
these mislabeled proper nouns were subsequently 
removed during purification. Second, as expected, 
precision drops after the seed augmentation step, 
since the quality of the labeled data deteriorates as 
bootstrapping progresses. Nevertheless, with a lot 
more words labeled in the bootstrapping step, we 
still achieve F1-scores of 73% for English and 76% 
for Bengali.  

The remaining rows of the Tables 3 and 4 show 
the performance of our algorithm for each tag in 
our two POS tagsets. Different observations can be 
made for the two languages. For English, the poor 
results for VBZ and NNS can be attributed to the 
fact that it is not easy to distinguish between these 
two tags: “s” is a typical suffix for words that are 
NNS and words that are the third person singular 
of a verb. In addition, results for verbs are better 
than those for nouns, since verbs are easier to iden-
tify using only morphological knowledge. 

For Bengali, results for adjectives are not good, 
since (1) adjectives and nouns have very similar 
distributional property in Bengali and (2) there are 
not enough suffixes to induce the adjectives mor-
phologically. Moreover, we achieve high precision 
but low recall for proper nouns. This implies that 
most of the words that our algorithm labels as 
proper nouns are indeed correct, but there are also 
many proper nouns that are mislabeled. A closer 
examination of the clusters reveals that many of 
these proper nouns are mislabeled as common 
nouns, presumably because these two types of 
Bengali nouns are morphologically and distribu-
tionally similar and therefore it is difficult to sepa-
rate them. We will leave the identification of Ben-
gali proper nouns as a topic for future research.   

7.3 Additional Experiments 

Labeling rare words with morphological infor-
mation. Although our discussion thus far has fo-
cused on words whose corpus frequency is at least 
five, it would be informative to examine how well 
our algorithm performs on rare, distributionally 
unreliable words (i.e., words with corpus fre-
quency less than five). Recall that our morphologi-
cal clustering algorithm also clusters rare words. In 
fact, these rare words comprise 15% of the English 
words and 18% of the Bengali words in our mor-
phological formed clusters. Perhaps more impor-
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After Morphological Clustering After Purification After Bootstrapping  
P R F1 P R F1 P R F1 

Baseline 84.1 45.3 58.9 84.9 51.4 64.1 75.6 48.0 59.0 
Ours 85.9 74.0 79.4 89.3 74.4 81.7 80.4 66.8 73.1 
JJ 88.7 49.1 63.2 91.4 51.9 66.1 57.7 62.9 60.2 
JJR 91.1 86.2 88.6 92.1 92.0 92.0 62.1 83.1 71.0 
JJS 100 98.3 99.1 100 100 100 81.3 86.9 83.9 
NN 91.6 43.7 59.2 94.8 42.8 58.8 95.2 47.1 62.8 
NNS 90.6 39.2 53.5 93.5 41.3 57.2 96.6 44.7 60.9 
RB 100 76.1 86.4 100 82.2 90.6 98.8 63.5 77.3 
VB 74.0 97.7 84.1 79.8 96.0 87.1 65.7 92.8 76.9 
VBD 96.6 98.9 97.7 97.6 100 98.8 96.7 91.9 93.3 
VBG 89.9 100 94.7 91.1 100 95.7 90.8 93.5 92.1 
VBZ 60.9 99.9 74.7 65.1 96.8 77.7 52.8 92.6 67.3 

Table 3: POS induction results for English based on word type 
 

After Morphological Clustering After Purification After Bootstrapping  
P R F1 P R F1 P R F1 

Baseline 82.1 42.3 55.5 83.1 45.3 58.3 78.1 43.3 49.3 
Ours 74.1 81.3 77.5 83.4 78.0 80.7 74.1 79.2 76.6 
JJ 50.0 51.8 50.9 56.1 55.0 55.5 57.5 51.4 54.3 
NN 63.0 96.8 76.4 67.0 96.0 78.9 62.2 92.2 74.3 
NN2 96.3 100 98.1 99.0 100 99.5 99.0 99.0 99.0 
NN6 95.5 89.2 92.2 97.2 90.0 93.9 97.1 91.0 93.9 
NN7 88.4 94.1 89.7 92.1 99.2 93.1 90.1 78.7 84.1 
NNP 87.2 37.3 52.3 92.8 43.8 59.4 92.7 51.5 66.1 
NNS 62.7 93.1 75.0 66.8 93.5 77.9 65.2 94.1 77.1 
NNSH 91.0 100 95.6 91.0 100 95.7 91.0 100 95.7 
VB 68.9 93.0 79.2 77.0 94.6 84.9 73.9 91.8 81.9 
VBN 84.3 49.1 62.1 82.4 50.1 62.9 56.1 46.7 50.1 

Table 4: POS induction results for Bengali based on word type
 
tantly, when measuring performance on just these 
morphologically clustered rare words, our algo-
rithm achieves F1-scores of 81% and 79% for Eng-
lish and Bengali, respectively. These results pro-
vide empirical support for the claim that morpho-
logical information can be usefully employed to 
label rare words (Clark, 2003). 
Soft clustering. Many words have more than one 
POS tag. For instance, “received” can be labeled as 
VBD and JJ. Although our morphological cluster-
ing algorithm can predict some of these ambigui-
ties, those are at the “big” cluster level. At the sub-
cluster level, the algorithm imposes a hard cluster-
ing on the words. In other words, no word appears 
in more than one sub-cluster. 

Ideally, a POS induction algorithm should pro-
duce soft clusters due to lexical ambiguity. In fact, 
Jardino and Adda (1994), Schütze (1997) and 
Clark (2000) have attempted to address the ambi-
guity problem to a certain extent. We have also 
experimented with a very simple method for han-
dling ambiguity in our bootstrapping algorithm: 
when augmenting the seed set, instead of labeling a  

 
word with a tag that receives 9 votes from the 45 
pairwise classifiers, we label a word with any tag 
that receives at least 8 votes, effectively allowing 
the assignment of more than one label to a word. 
However, our experimental results (not shown due 
to space limitations) indicate that the incorporation 
of this method does not yield better overall per-
formance, since many of the additional labels are 
erroneous and hence their presence deteriorates the 
quality of the bootstrapped data.  

8 Conclusions 

We have proposed a new bootstrapping algorithm 
for unsupervised POS induction. In contrast to ex-
isting algorithms developed for this problem, our 
algorithm is designed to (1) operate under a re-
source-scarce setting in which no language-
specific tools or resources are available and (2) 
more tightly integrate morphological information 
with the distributional POS induction framework. 
In particular, our algorithm (1) improves the qual-
ity of the seed clusters by employing seed words 
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that are distributionally and morphologically reli-
able and (2) uses support vector learning to com-
bine morphological and distributional information. 
Our results show that it outperforms Clark’s algo-
rithm for English and Bengali, suggesting that it is 
applicable to both morphologically impoverished 
and highly inflectional languages.  
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