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Abstract

This paper compares a deep and a shallow
processing approach to the problem of clas-
sifying a sentence as grammatically well-
formed or ill-formed. The deep processing
approach uses the XLE LFG parser and En-
glish grammar: two versions are presented,
one which uses the XLE directly to perform
the classification, and another one which
uses a decision tree trained on features con-
sisting of the XLE’s output statistics. The
shallow processing approach predicts gram-
maticality based on n-gram frequency statis-
tics: we present two versions, one which
uses frequency thresholds and one which
uses a decision tree trained on the frequen-
cies of the rarest n-grams in the input sen-
tence. We find that the use of a decision tree
improves on the basic approach only for the
deep parser-based approach. We also show
that combining both the shallow and deep
decision tree features is effective. Our eval-
uation is carried out using a large test set of
grammatical and ungrammatical sentences.
The ungrammatical test set is generated au-
tomatically by inserting grammatical errors
into well-formed BNC sentences.

1 Introduction

This paper is concerned with the task of predict-
ing whether a sentence contains a grammatical er-
ror. An accurate method for carrying out automatic

∗Also affiliated to IBM CAS, Dublin.

grammaticality judgements has uses in the areas of
computer-assisted language learning and grammar
checking. Comparative evaluation of existing error
detection approaches has been hampered by a lack
of large and commonly used evaluation error cor-
pora. We attempt to overcome this by automatically
creating a large error corpus, containing four dif-
ferent types of frequently occurring grammatical er-
rors. We use this corpus to evaluate the performance
of two approaches to the task of automatic error de-
tection. One approach uses low-level detection tech-
niques based on POS n-grams. The other approach
is a novel parser-based method which employs deep
linguistic processing to discriminate grammatical in-
put from ungrammatical. For both approaches, we
implement a basic solution, and then attempt to im-
prove upon this solution using a decision tree clas-
sifier. We show that combining both methods im-
proves upon the individual methods.

N-gram-based approaches to the problem of error
detection have been proposed and implemented in
various forms by Atwell(1987), Bigert and Knutsson
(2002), and Chodorow and Leacock (2000) amongst
others. Existing approaches are hard to compare
since they are evaluated on different test sets which
vary in size and error density. Furthermore, most of
these approaches concentrate on one type of gram-
matical error only, namely, context-sensitive or real-
word spelling errors. We implement a vanilla n-
gram-based approach which is tested on a very large
test set containing four different types of error.

The idea behind the parser-based approach to er-
ror detection is to use a broad-coverage hand-crafted
precision grammar to detect ungrammatical sen-
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tences. This approach exploits the fact that a pre-
cision grammar is designed, in the traditional gen-
erative grammar sense (Chomsky, 1957), to dis-
tinguish grammatical sentences from ungrammati-
cal sentences. This is in contrast to treebank-based
grammars which tend to massively overgenerate and
do not generally aim to discriminate between the
two. In order for our approach to work, the coverage
of the precision grammars must be broad enough to
parse a large corpus of grammatical sentences, and
for this reason, we choose the XLE (Maxwell and
Kaplan, 1996), an efficient and robust parsing sys-
tem for Lexical Functional Grammar (LFG) (Kaplan
and Bresnan, 1982) and the ParGram English gram-
mar (Butt et al., 2002) for our experiments. This sys-
tem employs robustness techniques, some borrowed
from Optimality Theory (OT) (Prince and Smolen-
sky, 1993), to parse extra-grammatical input (Frank
et al., 1998), but crucially still distinguishes between
optimal and suboptimal solutions.

The evaluation corpus is a subset of an un-
grammatical version of the British National Cor-
pus (BNC), a 100 million word balanced corpus of
British English (Burnard, 2000). This corpus is ob-
tained by automatically inserting grammatical errors
into the original BNC sentences based on an analysis
of a manually compiled “real” error corpus.

This paper makes the following contributions to
the task of automatic error detection:

1. A novel deep processing XLE-based approach

2. An effective and novel application of decision
tree machine learning to both shallow and deep
approaches

3. A novel combination of deep and shallow pro-
cessing

4. An evaluation of an n-gram-based approach on
a wider variety of errors than has previously
been carried out

5. A large evaluation error corpus

The paper is organised as follows: in Section 2,
we describe previous approaches to the problem of
error detection; in Section 3, a description of the
error corpus used in our evaluation experiments is
presented, and in Section 4, the two approaches to
error detection are presented, evaluated, combined

and compared. Section 5 provides a summary and
suggestions for future work.

2 Background

2.1 Precision Grammars

A precision grammar is a formal grammar designed
to distinguish ungrammatical from grammatical sen-
tences. This is in contrast to large treebank-induced
grammars which often accept ungrammatical input
(Charniak, 1996). While high coverage is required,
it is difficult to increase coverage without also in-
creasing the amount of ungrammatical sentences
that are accepted as grammatical by the grammar.
Most publications in grammar-based automatic error
detection focus on locating and categorising errors
and giving feedback. Existing grammars are re-used
(Vandeventer Faltin, 2003), or grammars of limited
size are developed from scratch (Reuer, 2003).

The ParGram English LFG is a hand-crafted
broad-coverage grammar developed over several
years with the XLE platform (Butt et al., 2002). The
XLE parser uses OT to resolve ambiguities (Prince
and Smolensky, 1993). Grammar constraints re-
sulting in rare constructions can be marked as “dis-
preferred” and constraints resulting in common un-
grammatical constructions can be marked as “un-
grammatical”. The use of constraint ordering and
marking increases the robustness of the grammar,
while maintaining the grammatical / ungrammati-
cal distinction (Frank et al., 1998). The English
Resource Grammar (ERG) is a precision Head-
Driven Phrase Structure Grammar (HPSG) of En-
glish (Copestake and Flickinger, 2000; Pollard and
Sag, 1994). Its coverage is not as broad as the XLE
English grammar. Baldwin et al. (2004) propose a
method to identify gaps in the grammar. Blunsom
and Baldwin (2006) report ongoing development.

There has been previous work using the ERG and
the XLE grammars in the area of computer-assisted
language learning. Bender et al. (2004) use a ver-
sion of the ERG containing mal-rules to parse ill-
formed sentences from the SST corpus of Japanese
learner English (Emi et al., 2004). They then use
the semantic representations of the ill-formed input
to generate well-formed corrections. Khader et al.
(2004) study whether the ParGram English LFG can
be used for computer-assisted language learning by
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adding additional OT marks for ungrammatical con-
structions observed in a learner corpus. However,
the evaluation is preliminary, on only 50 test items.

2.2 N-gram Methods

Most shallow approaches to grammar error detection
originate from the area of real-word spelling error
correction. A real-word spelling error is a spelling
or typing error which results in a token which is an-
other valid word of the language in question.

The (to our knowledge) oldest work in this area
is that of Atwell (1987) who uses a POS tagger to
flag POS bigrams that are unlikely according to a
reference corpus. While he speculates that the bi-
gram frequency should be compared to how often
the same POS bigram is involved in errors in an error
corpus, the proposed system uses the raw frequency
with an empirically established threshold to decide
whether a bigram indicates an error. In the same
paper, a completely different approach is presented
that uses the same POS tagger to consider spelling
variants that have a different POS. In the example
sentenceI am veryhit the POS of the spelling vari-
anthot/JJis added to the list NN-VB-VBD-VBN of
possible POS tags ofhit. If the POS tagger chooses
hit/JJ, the word is flagged and the correctionhot is
proposed to the user. Unlike most n-gram-based ap-
proaches, Atwell’s work aims to detect grammar er-
rors in general and not just real-word spelling errors.
However, a complete evaluation is missing.

The idea of disambiguating between the elements
of confusion sets is related to word sense disam-
biguation. Golding (1995) builds a classifier based
on a rich set of context features. Mays et al. (1991)
apply the noisy channel model to the disambiguation
problem. For each candidate correctionS′ of the
input S the probabilityP (S′)P (S|S′) is calculated
and the most likely correction selected. This method
is re-evaluated by Wilcox-O’Hearn et al. (2006) on
WSJ data with artificial real-word spelling errors.

Bigert and Knutsson (2002) extend upon a basic
n-gram approach by attempting to match n-grams of
low frequency with similar n-grams in order to re-
duce overflagging. Furthermore, n-grams crossing
clause boundaries are not flagged and the similarity
measure is adapted in the case of phrase boundaries
that usually result in low frequency n-grams.

Chodorow and Leacock (2000) use a mutual in-

formation measure in addition to raw frequency of n-
grams. Apart from this, their ALEK system employs
other extensions to the basic approach, for exam-
ple frequency counts from both generic and word-
specific corpora are used in the measures. It is not
reported how much each of these contribute to the
overall performance.

Rather than trying to implement all of the pre-
vious n-gram approaches, we implement the basic
approach which uses rare n-grams to predict gram-
maticality. This property is shared by all previous
shallow approaches. We also test our approach on a
wider class of grammatical errors.

3 Ungrammatical Data

In this section, we discuss the notion of an artifi-
cial error corpus (Section 3.1), define the type of
ungrammatical language we are dealing with (Sec-
tion 3.2), and describe our procedure for creating a
large artificial error corpus derived from the BNC
(Section 3.3).

3.1 An Artificial Error Corpus

In order to meaningfully evaluate a shallow ver-
sus deep approach to automatic error detection, a
large test set of ungrammatical sentences is needed.
A corpus of ungrammatical sentences can take the
form of a learner corpus (Granger, 1993; Emi et al.,
2004), i. e. a corpus of sentences produced by lan-
guage learners, or it can take the form of a more gen-
eral error corpus comprising sentences which are not
necessarily produced in a language-learning context
and which contain competence and performance er-
rors produced by native and non-native speakers of
the language (Becker et al., 1999; Foster and Vogel,
2004; Foster, 2005). For both types of error corpus,
it is not enough to collect a large set of sentences
which are likely to contain an error - it is also neces-
sary to examine each sentence in order to determine
whether an error has actually occurred, and, if it has,
to note the nature of the error. Thus, like the cre-
ation of a treebank, the creation of a corpus of un-
grammatical sentences requires time and linguistic
knowledge, and is by no means a trivial task.

A corpus of ungrammatical sentences which is
large enough to be useful can be created auto-
matically by inserting, deleting or replacing words
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in grammatical sentences. These transformations
should be linguistically realistic and should, there-
fore, be based on an analysis of naturally produced
grammatical errors. Automatically generated error
corpora have been used before in natural language
processing. Bigert (2004) and Wilcox-O’Hearn et
al. (2006), for example, automatically introduce
spelling errors into texts. Here, we generate a large
error corpus by automatically inserting four different
kinds of grammatical errors into BNC sentences.

3.2 Commonly Produced Grammatical Errors

Following Foster (2005), we define a sentence to be
ungrammatical if all the words in the sentence are
well-formed words of the language in question, but
the sentence contains one or more error. This er-
ror can take the form of a performance slip which
can occur due to carelessness or tiredness, or a com-
petence error which occurs due to a lack of knowl-
edge of a particular construction. This definition in-
cludes real-word spelling errors and excludes non-
word spelling errors. It also excludes the abbrevi-
ated informal language used in electronic communi-
cation. Using the above definition as a guideline, a
20,000 word corpus of ungrammatical English sen-
tences was collected from a variety of written texts
including newspapers, academic papers, emails and
website forums (Foster and Vogel, 2004; Foster,
2005). The errors in the corpus were carefully anal-
ysed and classified in terms of how they might be
corrected using the three word-level correction op-
erators: insert, delete and substitute. The following
frequency ordering of the three word-level correc-
tion operators was found:
substitute(48%)> insert (24%)> delete(17%)>
combination(11%)
Stemberger (1982) reports the same ordering of the
substitution, deletion and insertion correction oper-
ators in a study of native speaker spoken language
slips. Among the grammatical errors which can be
corrected by substituting one word for another, the
most common errors are real-word spelling errors
and agreement errors. In fact, 72% of all errors fall
into one of the following four classes:

1. missing word errors:
Whatare the subjects?> What the subjects?

2. extra word errors:

Was that in the summer?> Was that in the sum-
merin?

3. real-word spelling errors:
She couldnot comprehend.> She couldno
comprehend.

4. agreement errors:
She steered Melissa round a corner.> She
steered Melissa round acorners.

A similar classification was adopted by Nicholls
(1999), having analysed the errors in a learner cor-
pus. Our research is currently limited to the four er-
ror types given above, i. e. missing word errors, ex-
tra word errors, real-word spelling errors and agree-
ments errors. However, it is possible for it to be ex-
tended to handle a wider class of errors.

3.3 Automatic Error Creation

The error creation procedure takes as input a part-
of-speech-tagged corpus of sentences which are as-
sumed to be well-formed, and outputs a corpus of
ungrammatical sentences. The automatically intro-
duced errors take the form of the four most com-
mon error types found in the manually created cor-
pus, i. e. missing word errors, extra word errors, real-
word spelling errors and agreement errors. For each
sentence in the original tagged corpus, an attempt is
made to automatically produce four ungrammatical
sentences, one for each of the four error types. Thus,
the output of the error creation procedure is, in fact,
four error corpora.

3.3.1 Missing Word Errors

In the manually created error corpus of Foster
(2005), missing word errors are classified based on
the part-of-speech (POS) of the missing word. 98%
of the missing parts-of-speech come from the fol-
lowing list (the frequency distribution in the error
corpus is given in brackets):
det (28%)> verb (23%)> prep (21%)> pro (10%)
> noun (7%)> “to” (7%) > conj (2%)
We use this information when introducing missing
word errors into the BNC sentences. For each sen-
tence, all words with the above POS tags are noted.
One of these is selected and deleted. The above
frequency ordering is respected so that, for exam-
ple, missing determiner errors are produced more of-
ten than missing pronoun errors. No ungrammatical
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sentence is produced if the original sentence con-
tains just one word or if the sentence contains no
words with parts-of-speech in the above list.

3.3.2 Extra Word Errors

We introduce extra word errors in the following
three ways:

1. Random duplication of any token within a sen-
tence:That’s the waywe we learn here.

2. Random duplication of any POS within a sen-
tence:Thereit he was.

3. Random insertion of an arbitrary token into the
sentence:Joanna drewas a long breadth.

Apart from the case of duplicate tokens, the extra
words are selected from a list of tagged words com-
piled from a random subset of the BNC. Again, our
procedure for inserting extra words is based on the
analysis of extra word errors in the 20,000 word er-
ror corpus of Foster (2005).

3.3.3 Real-Word Spelling Errors

We classify an error as a real-word spelling er-
ror if it can be corrected by replacing the erroneous
word with another word with a Levenshtein distance
of one from the erroneous word, e.g.the and they.
Based on the analysis of the manually created er-
ror corpus (Foster, 2005), we compile a list of com-
mon English real-word spelling error word pairs.
For each BNC sentence, the error creation proce-
dure records all tokens in the sentence which appear
as one half of one of these word pairs. One token
is selected at random and replaced by the other half
of the pair. The list of common real-word spelling
error pairs contains such frequently occurring words
asis anda, and the procedure therefore produces an
ill-formed sentence for most input sentences.

3.3.4 Agreement Errors

We introduce subject-verb and determiner-noun
number agreement errors into the BNC sentences.
We consider both types of agreement error equally
likely and introduce the error by replacing a singular
determiner, noun or verb with its plural counterpart,
or vice versa. For English, subject-verb agreement
errors can only be introduced for present tense verbs,
and determiner-noun agreement errors can only be
introduced for determiners which are marked for

number, e.g. demonstratives and the indefinite ar-
ticle. The procedure would be more productive if
applied to a morphologically richer language.

3.3.5 Covert Errors

James (1998) uses the termcovert error to de-
scribe a genuine language error which results in a
sentence which is syntactically well-formed under
some interpretation different from the intended one.
The prominence of covert errors in our automati-
cally created error corpus is estimated by manually
inspecting 100 sentences of each error type. The per-
centage of grammatical structures that are inadver-
tently produced for each error type and an example
of each one are shown below:

• Agreement Errors, 7%
Mary’s staff include Jones,Smith and Murphy
> Mary’s staffincludes Jones,Smith and Mur-
phy

• Real-Word Spelling Errors, 10%
Andthen? > Andthem?

• Extra Word Errors, 5%
in defiance of the free rider prediction> in de-
fiance of the free ridernear prediction

• Missing Word Errors, 13%
She steeredMelissa round a corner> She
steered round a corner

The occurrence of thesecovert errorscan be re-
duced by fine-tuning the error creation procedure but
they can never be completely eliminated. Indeed,
they should not be eliminated from the test data,
because, ideally, an optimal error detection system
should be sophisticated enough to flag syntactically
well-formed sentences containing covert errors as
potentially ill-formed.1

4 Error Detection Evaluation

In this section we present the error detection eval-
uation experiments. The experimental setup is ex-
plained in Section 4.1, the results are presented in
Section 4.2 and they are analysed in Section 4.3.

1An example of this is given in the XLE User Documen-
tation (http://www2.parc.com/isl/groups/nltt/
xle/doc/). The authors remark that an ungrammatical read-
ing of the sentenceLets go to the storein whichLetsis missing
an apostrophe, is preferable to the grammatical yet implausible
analysis in whichLetsis a plural noun.

116



4.1 Experimental Setup

4.1.1 Test Data and Evaluation Procedure

The following steps are carried out to produce
training and test data for this experiment:

1. Speech material, poems, captions and list items
are removed from the BNC. 4.2 million sen-
tences remain. The order of sentences is ran-
domised.

2. For the purpose of cross-validation, the corpus
is split into 10 parts.

3. Each part is passed to the 4 automatic error in-
sertion modules described in Section 3.3, re-
sulting in 40 additional sets of varying size.

4. The first 60,000 sentences of each of the 50
sets, i. e. 3 million sentences, are parsed with
XLE.2

5. N-gram frequency information is extracted for
the first 60,000 sentences of each set. An addi-
tional 20,000 is extracted as held-out data.

6. 10 sets with mixed error types are produced by
joining a quarter of each respective error set.

7. For each error type (including mixed errors)
and cross-validation set, the 60,000 grammat-
ical and 60,000 ungrammatical sentences are
joined.

8. Each cross-validation run uses one set out of
the 10 as test data (120,000 sentences) and the
remaining 9 sets for training (1,080,000 sen-
tences).

The experiment is a standard binary classification
task. The methods classify the sentences of the test
sets as grammatical or ungrammatical. We use the
standard measures of precision, recall, f-score and
accuracy (Figure 1). True positives are understood
to be ungrammatical sentences that are identified as
such. The baseline precision and accuracy is 50%
as half of the test data is ungrammatical. If 100%
of the test data is classified as ungrammatical, re-
call will be 100% and f-score2/3. Recall shows
the accuracy we would get if the grammatical half
of the test data was removed. Parametrised methods

2We use the XLE commandparse-testfilewith parse-
literally set to 1,max xle scratch storageset to 1,000 MB,time-
out to 60 seconds, and the XLE English LFG. Skimming is not
switched on and fragments are.

Measure Formula
precision tp/(tp + fp)
recall tp/(tp + fn)
f-score 2pr ∗ re/(pr + re)
accuracy (tp + tn)/(tp + tn + fp + fn)

Figure 1: Evaluation measures: tp = true positives,
fp = false positives, tn = true negatives, fn = false
negatives, pr = precision, re = recall

are first optimised for accuracy and then the other
measures are taken. Therefore, f-scores below the
artificial 2/3 baseline are meaningful.

4.1.2 Method 1: Precision Grammar

According to the XLE documentation, a sentence
is marked with a star (*) if its optimal solution uses
a constraint marked as ungrammatical. We use this
star feature, parser exceptions and zero number of
parses to classify a sentence as ungrammatical.

4.1.3 Method 2: POS N-grams

In each cross-validation run, the full data of the
remaining 9 sets of step 2 of the data generation
(see Section 4.1.1) is used as a reference corpus of
0.9×4, 200, 000 = 3, 800, 000 assumedly grammat-
ical sentences. The reference corpora and data sets
are POS tagged with the IMS TreeTagger (Schmidt,
1994). Frequencies of POS n-grams (n = 2, . . . , 7)
are counted in the reference corpora. A test sentence
is flagged as ungrammatical if it contains an n-gram
below a fixed frequency threshold. Method 2 has
two parameters:n and the frequency threshold.

4.1.4 Method 3: Decision Trees on XLE Output

The XLE parser outputs additional statistics for
each sentence that we encode in six features:

• An integer indicating starredness (0 or 1) and
various parser exceptions (-1 for time out, -2
for exceeded memory, etc.)

• The number of optimal parses3

• The number of unoptimal parses
• The duration of parsing
• The number of subtrees
• The number of words
3The use of preferred versus dispreferred constraints are

used to distinguish optimal parses from unoptimal ones.
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Training data for the decision tree learner is com-
posed of9×60, 000 = 540, 000 feature vectors from
grammatical sentences and9 × 15, 000 = 135, 000
feature vectors from ungrammatical sentences of
each error type, resulting in equal amounts of gram-
matical and ungrammatical training data.

We choose the weka implementation of machine
learning algorithms for the experiments (Witten and
Frank, 2000). We use a J48 decision tree learner
with the default model.

4.1.5 Method 4: Decision Trees on N-grams

Method 4 follows the setup of Method 3. How-
ever, the features are the frequencies of the rarest
n-grams (n = 2, . . . , 7) in the sentence. Therefore,
the feature vector of one sentence contains 6 num-
bers.

4.1.6 Method 5: Decision Trees on Combined
Feature Sets

This method combines the features of Methods 3
and 4 for training a decision tree.

4.2 Results

Table 1 shows the results for Method 1, which uses
XLE starredness, parser exceptions4 and zero parses
to classify grammaticality. Table 2 shows the re-
sults for Method 2, the basic n-gram approach. Ta-
ble 3 shows the results for Method 3, which classi-
fies based on a decision tree of XLE features. The
results for Method 4, the n-gram-based decision tree
approach, are shown in Table 4. Finally, Table 5
shows the results for Method 5 which combines n-
gram and XLE features in decision trees.

In the case of Method 2, we first have to find opti-
mal parameters. As only very limited integer values
for n and the threshold are reasonable, an exhaustive
search is feasible. We consideredn = 2, . . . , 7 and
frequency thresholds below 20,000. Separate held-
out data (400,000 sentences) is used in order to avoid
overfitting. Best accuracy is achieved with 5-grams
and a threshold of 4. Table 2 reports results with
these parameters.

4XLE parsing (see footnote 2 for configuration) runs out
of time for 0.7 % and out of memory for 2.5 % of sentences,
measured on training data of the first cross-validation run, i. e.
540,000 grammatical sentence and 135,000 of each error type.
14 sentences of 3 million caused the parser to terminate abnor-
mally.

Error type Pr. Re. F-Sc. Acc.
Agreement 66.2 64.6 65.4 65.8
Real-word 63.5 57.3 60.3 62.2
Extra word 64.4 59.7 62.0 63.4
Missing word 59.2 47.8 52.9 57.4
Mixed errors 63.5 57.3 60.3 62.2

Table 1: Classification results with XLE starredness,
parser exceptions and zero parses (Method 1)

Error type Pr. Re. F-Sc. Acc.
Agreement 58.6 51.7 55.0 57.6
Real-word 64.0 64.9 64.5 64.2
Extra word 64.8 67.3 66.0 65.4
Missing word 57.2 48.8 52.7 56.1
Mixed errors 61.5 58.2 59.8 60.8

Table 2: Classification results with 5-gram and fre-
quency threshold 4 (Method 2)

The standard deviation of results across cross-
validation runs is below 0.006 on all measures, ex-
cept for Method 4. Therefore we only report average
percentages. The highest observed standard devia-
tion is 0.0257 for recall of Method 4 on agreement
errors.

For Methods 3, 4 and 5, the decision tree learner
optimises accuracy and, in doing so, chooses a trade-
off between precision and recall.

4.3 Analysis

Both Method 1 (Table 1) and Method 2 (Table 2)
achieve above baseline accuracy for all error types.
However, Method 1, which uses the XLE starred
feature, parser exceptions and zero parses to de-
termine whether or not a sentence is grammatical,
slightly outperforms Method 2, which uses the fre-

Error type Pr. Re. F-Sc. Acc.
Agreement 67.0 79.3 72.6 70.1
Real-word 63.4 67.6 65.4 64.3
Extra word 63.0 66.4 64.7 63.7
Missing word 59.7 57.8 58.7 59.4
Mixed errors 63.4 67.8 65.6 64.4

Table 3: Classification results with decision tree on
XLE output (Method 3)
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Error type Pr. Re. F-Sc. Acc.
Agreement 61.2 53.8 57.3 59.9
Real-word 65.3 64.3 64.8 65.1
Extra word 66.4 67.4 66.9 66.7
Missing word 59.1 49.2 53.7 57.5
Mixed errors 63.3 58.7 60.9 62.3

Table 4: Classification results with decision tree on
vectors of frequency of rarest n-grams (Method 4)

Error type Pr. Re. F-Sc. Acc.
Agreement 67.1 75.2 70.9 69.2
Real-word 65.8 70.7 68.1 67.0
Extra word 65.9 71.2 68.5 67.2
Missing word 61.2 58.0 59.5 60.6
Mixed errors 65.2 68.8 66.9 66.0

Table 5: Classification results with decision tree on
joined feature set (Method 5)

quency of POS 5-grams to detect an error. The
XLE deep-processing approach is better than the n-
gram-based approach for agreement errors (f-score
+10.4). Examining the various types of agree-
ment errors, we can see that this is especially the
case for singular subjects followed by plural cop-
ula verbs (recall +37.7) and determiner-noun num-
ber mismatches (recall +23.6 for singular nouns and
+18.0 for plural nouns), but not for plural subjects
followed by singular verbs (recall -24.0). The rela-
tively poor performance of Method 2 on agreement
errors involving determiners could be due to the lack
of agreement marking on the Penn Treebank deter-
miner tag used by TreeTagger.

Method 1 is outperformed by Method 2 for real-
word spelling and extra word errors (f-score -4.2,
-4.0). Unsurprisingly, Method 2 has an advantage
on those real-word spelling errors that change the
POS (recall -8.8 for Method 1). Both methods per-
form poorly on missing word errors. For both meth-
ods there are only very small differences in perfor-
mance between the various missing word error sub-
types (identified by the POS of the deleted word).

Method 3, which uses machine learning to exploit
all the information returned by the XLE parser, im-
proves performance from Method 1, the basic XLE

method, for all error types.5 The general improve-
ment comes from an improvement in recall, mean-
ing that more ungrammatical sentences are actu-
ally flagged as such without compromising preci-
sion. The improvement is highest for agreement
errors (f-score +7.2). Singular subject with plural
copula errors (e. g.The man are) peak at a recall of
91.0. The Method 3 results indicate that information
on the number of solutions (optimal and unoptimal),
the number of subtrees, the time taken to parse the
sentence and the number of words can be used to
predict grammaticality. It would be interesting to
investigate this approach with other parsers.

Method 4, which uses a decision tree with n-
gram-based features, confirms the results of Method
2. The decision trees’ root nodes are similar or even
identical (depending on cross-validation run) to the
decision rule of Method 2 (5-gram frequency below
4). However, the 10 decision trees have between
1,111 and 1,905 nodes and draw from all features,
even bigrams and 7-grams that perform poorly on
their own. The improvements are very small though
and they are not significant according the criterion of
non-overlapping cross-validation results. The main
reason for the evaluation of Method 4 is to provide
another reference point for comparison of the final
method.

The overall best results are those for Method 5,
the combined XLE, n-gram and machine-learning-
based method, which outperforms the next best
method, Method 3, on all error types apart from
agreement errors (f-score -1.7, +2.7, +3.8, +0.8).
For agreement errors, it seems that the relatively
poor results for n-grams have a negative effect on the
relatively good results for the XLE. Figure 2 shows
that the performance is almost constant on ungram-
matical data in the important sentence length range
from 5 to 40. However, there is a negative correla-
tion of accuracy and sentence length for grammati-
cal sentences. Very long sentences of any kind tend
to be classified as ungrammatical, except for missing
word errors which remain close to the 50% baseline
of coin-flipping.

For all methods, missing word errors are the
worst-performing, particularly in recall (i. e. the ac-

5The +0.3 increase in average accuracy for extra word errors
is not clearly significant as the results of cross-validation runs
overlap.
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Figure 2: Accuracy by sentence length for Method 5
measured on separate grammatical and ungrammat-
ical data: Gr = Grammatical, AG = Agreement, RW
= Real-Word, EW = Extra Word, MW = Missing
Word

curacy on ungrammatical data alone). This means
that the omission of a word is less likely to result in
the sentence being flagged as erroneous. In contrast,
extra word errors perform consistently and relatively
well for all methods.

5 Conclusion and Future Work

We evaluated a deep processing approach and a POS
n-gram-based approach to the automatic detection of
common grammatical errors in a BNC-derived arti-
ficial error corpus. The results are broken down by
error type. Together with the deep approach, a deci-
sion tree machine learning algorithm can be used ef-
fectively. However, extending the shallow approach
with the same learning algorithm gives only small
improvements. Combining the deep and shallow ap-
proaches gives an additional improvement on all but
one error type.

Our plan is to investigate why all methods per-
form poorly on missing word errors, to extend the
error creation procedure so that it includes a wider
range of errors, to try the deep approach with other
parsers, to integrate additional features from state-
of-the-art shallow techniques and to repeat the ex-
periments for languages other than English.
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