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Abstract

Approaches to plural reference generation
emphasise descriptive brevity, but often lack
empirical backing. This paper describes
a corpus-based study of plural descrip-
tions, and proposes a psycholinguistically-
motivated algorithm for plural reference
generation. The descriptive strategy is based
on partitioning and incorporates corpus-
derived heuristics. An exhaustive evaluation
shows that the output closely matches hu-
man data.

1 Introduction

Generation of Referring Expressions (GRE) is a
well-studied sub-task of microplanning in Natural
Language Generation. Most algorithms in this area
view GRE as a content determination problem, that
is, their emphasis is on the construction of a se-
mantic representation which is eventually mapped
to a linguistic realisation (i.e. a noun phrase). Con-
tent Determination for GRE starts from a Knowledge
Base (KB) consisting of a set of entities U and a set
of properties P represented as attribute-value pairs,
and searches for a description D ⊆ P which distin-
guishes a referent r ∈ U from its distractors. Under
this view, reference is mainly about identification of
an entitiy in a given context (represented by the KB),
a well-studied pragmatic function of definite noun
phrases in both the psycholinguistic and the compu-
tational literature (Olson, 1970).

For example, the KB in Table 1 represents 8 en-
tities in a 2D visual domain, each with 6 attributes,
including their location, represented as a combina-
tion of horizontal (X) and vertical (Y) numerical co-

TYPE COLOUR ORIENTATION SIZE X Y
e1 desk red back small 3 1
e2 sofa blue back small 5 2
e3 desk red back large 1 1
e4 desk red front large 2 3
e5 desk blue right large 2 4
e6 sofa red back large 4 1
e7 sofa red front large 3 3
e8 sofa blue back large 3 2

Table 1: A visual domain

ordinates. To refer to an entity an algorithm searches
through values of the different attributes.

GRE has been dominated by Dale and Reiter’s
(1995) Incremental Algorithm (IA), one version
of which, generalised to deal with non-disjunctive
plural references, is shown in Algorithm 1 (van
Deemter, 2002). A non-disjunctive reference to a
set R is possible just in case all the elements of R
can be distinguished using the same attribute-value
pairs. Such a description is equivalent to the logical
conjunction of the properties in question. This al-
gorithm, IAplur, initialises a description D and a set
of distractors C [1.1–1.2], and traverses an ordered
list of properties, called the preference order (PO)
[1.3], which reflects general or domain-specific pref-

Algorithm 1 IAplur(R,U,PO
1: D ← ∅
2: C ← U −R
3: for 〈A : v〉 ∈ PO do
4: if R ⊆ [[ 〈A : v〉 ]] ∧ [[ 〈A : v〉 ]]− C 6= ∅ then
5: D ← D ∪ {〈A : v〉}
6: C ← C ∩ [[ 〈A : v〉 ]]
7: if [[ D ]] = R then
8: return D
9: end if

10: end if
11: end for
12: return D
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erences for attributes. For instance, with the PO in
the top row of the Table, the algorithm first consid-
ers values of TYPE, then COLOUR, and so on, adding
a property to D if it is true of the intended referents
R, and has some contrastive value, that is, excludes
some distractors [1.4]. The description and the dis-
tractor set C are updated accordingly [1.5–1.6], and
the description returned if it is distinguishing [1.7].
Given R = {e1, e2}, this algorithm would return the
following description:

(1) 〈ORIENTATION : back〉 ∧ 〈SIZE : small〉

This description is overspecified, because ORI-
ENTATION is not strictly necessary to distinguish
the referents (〈SIZE : small〉 suffices). Moreover,
the description does not include TYPE, though it
has been argued that this is always required, as it
maps to the head noun of an NP (Dale and Re-
iter, 1995). We will adopt this assumption here, for
reasons explained below. Due to its hillclimbing
nature, the IA avoids combinatorial search, unlike
some predecessors which searched exhaustively for
the briefest possible description of a referent (Dale,
1989), based on a strict interpretation of the Gricean
Maxim of Quantity (Grice, 1975). Given that, un-
der the view proposed by Olson (1970) among oth-
ers, the function of a referential NP is to identify, a
strict Gricean interpretation holds that it should con-
tain no more information than necessary to achieve
this goal.

The Incremental Algorithm constitutes a depar-
ture from this view given that it can overspecify
through its use of a PO. This has been justified
on psycholinguistic grounds. Speakers overspecify
their descriptions because they begin their formula-
tion of a reference without exhaustively scanning a
domain (Pechmann, 1989; Belke and Meyer, 2002).
They prioritise the basic-level category (TYPE) of an
object, and salient, absolute properties like COLOUR

(Pechmann, 1989; Eikmeyer and Ahlsèn, 1996), as
well as locative properties in the vertical dimen-
sion (Arts, 2004). Relative attributes like SIZE

are avoided unless absolutely required for identi-
fication (Belke and Meyer, 2002). This evidence
suggests that speakers conceptualise referents as
gestalts (Pechmann, 1989) whose core is their basic-
level TYPE (Murphy, 2002) and some other salient
attributes like COLOUR. For instance, according to

Schriefers and Pechmann (1988), an NP such as the
large black triangle reflects a conceptualisation of
the referent as a black triangle, of which the SIZE

property is predicated. Thus, the TYPE+COLOUR

combination is not mentally represented as two sep-
arable dimensions.
In what follows, we will sometimes refer to this prin-
ciple as the Conceptual Gestalts Principle. Note that
the IA does not fully mirror these human tendencies,
since it only includes preferred attributes in a de-
scription if they remove some distractors given the
current state of the algorithm, whereas psycholin-
guistic research suggests that people include them
irrespective of contrastiveness (but cf. van der Sluis
and Krahmer (2005)).

More recent research on plural GRE has de-
emphasised these issues, especially in case of dis-
junctive plural reference. Disjunction is required
whenever elements of a set of referents R do not
have identical distinguishing properties. For exam-
ple, {e1, e3} can be distinguished by the following
Conjunctive Normal Form (CNF) description1:

(2) 〈TYPE : desk〉∧
`
〈COLOUR : red〉∨ 〈COLOUR : blue〉

´
∧`

〈ORIENTATION : right〉 ∨ 〈ORIENTATION : back〉
´

Such a description would be returned by a gen-
eralised version of Algorithm 1 proposed by van
Deemter (2002). This generalisation, IAbool (so
called because it handles all Boolean operators, such
as negation and disjunction), first tries to find a non-
disjunctive description using Algorithm 1. Failing
this, it searches through disjunctions of properties
of increasing length, conjoining them to the descrip-
tion. This procedure has three consequences:

1. Efficiency: Searching through disjunctive
combinations results in a combinatorial explo-
sion (van Deemter, 2002).

2. Gestalts and content: The notion of a ‘pre-
ferred attribute’ is obscured, since it is dif-
ficult to apply the same reasoning that moti-
vated the PO in the IA to combinations like
(COLOUR ∨ SIZE).

1Note that logical disjunction is usually rendered as linguis-
tic coordination using and. Thus, the table and the desk is the
union of things which are desks or tables.
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3. Form: Descriptions can become logically very
complex (Gardent, 2002; Horacek, 2004).

Proposals to deal with (3) include Gardent’s
(2002) non-incremental, constraint-based algorithm
to generate the briefest available description of a
set, an approach extended in Gardent et al. (2004).
An alternative, by Horacek (2004), combines best-
first search with optimisation to reduce logical com-
plexity. Neither approach benefits from empiri-
cal grounding, and both leave open the question of
whether previous psycholinguistic research on sin-
gular reference is applicable to plurals.

This paper reports a corpus-based analysis of plu-
ral descriptions elicited in well-defined domains, of
which Table 1 is an example. This study falls within
a recent trend in which empirical issues in GRE have
begun to be tackled (Gupta and Stent, 2005; Jordan
and Walker, 2005; Viethen and Dale, 2006). We then
propose an efficient algorithm for the generation of
references to arbitrary sets, which combines corpus-
derived heuristics and a partitioning-based proce-
dure, comparing this to IAbool. Unlike van Deemter
(2002), we only focus on disjunction, leaving nega-
tion aside. Our starting point is the assumption that
plurals, like singulars, evince preferences for certain
attributes as predicted by the Conceptual Gestalts
Principle. Based on previous work in Gestalt per-
ception (Wertheimer, 1938; Rock, 1983), we pro-
pose an extension of this to sets, whereby plural de-
scriptions are preferred if (a) they maximise the sim-
ilarity of their referents, using the same attributes to
describe them as far as possible; (b) prioritise salient
(‘preferred’) attributes which are central to the con-
ceptual representation of an object. We address (3)
above by investigating the logical form of plurals in
the corpus. One determinant of logical form is the
basic-level category of objects. For example, to re-
fer to {e1, e2} in the Table, an author has at least the
following options:

(3) (a) the small desk and sofa
(b) the small red desk and the small blue sofa
(c) the small desk and the small blue sofa
(d) the small objects

These descriptions exemplify three possible sources
of variation:

Disjunctive/Non-disjunctive: The last description,

(3d), is non-disjunctive (i.e. it is logically a conjunc-
tion of properties). This, however, is only achiev-
able through the use of a non-basic level value for
the TYPE of the entities (objects). Using the basic-
level would require the disjunction (〈TYPE : desk〉∨
〈TYPE : sofa〉), which is the case in (3a–c). Given
that basic-level categories are preferred on indepen-
dent grounds (Rosch et al., 1976), we would expect
examples like (3d) to be relatively infrequent.

Aggregation: If a description is disjunctive, it may
be aggregated, with properties common to all ob-
jects realised as wide-scope modifiers. For instance,
in (3a), small modifies desk and sofa. By contrast,
(3b) is non-aggregated: small occurs twice (modi-
fying each coordinate in the NP). Non-aggregated,
disjunctive descriptions are logically equivalent to a
partition of a set. For instance, (3c) partitions the
set R = {e1, e2} into {{e1}, {e2}}, describing each
element separately. Descriptions like (3b) are more
overspecified than their aggregated counterparts due
to the repetition of information.

Paralellism/Similarity: Non-aggregated, disjunc-
tive descriptions (partitions) may exhibit semantic
parallelism: In (3b), elements of the partition are
described using exactly the same attributes (that is,
TYPE, COLOUR, and SIZE). This is not the case in
(3c), which does represent a partition but is non-
parallel. Parallel structures maximise the similarity
of elements of a partition, using the same attributes
to describe both. The likelihood of propagation of an
attribute across disjuncts is probably dependent on
its degree of salience or preference (e.g. COLOUR is
expected to be more likely to be found in a parallel
structure than SIZE).

2 The data

The data for our study is a subset of the TUNA Cor-
pus (Gatt et al., 2007), consisting of 900 references
to furniture and household items, collected via a
controlled experiment involving 45 participants. In
addition to their TYPE, objects in the domains have
COLOUR, ORIENTATION and SIZE (see Table 1). For
each subset of these three attributes, there was an
equal number of domains in which the minimally
distinguishing description (MD) consisted of values
of that subset. For example, Table 1 represents a do-
main in which the intended referents, {e1, e2}, can
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<DESCRIPTION num=‘pl’>
<DESCRIPTION num=‘sg’>
<ATTRIBUTE name=‘size’ value=‘small’>small</ATTRIBUTE>
<ATTRIBUTE name=‘colour’ value=‘red’>red</ATTRIBUTE>
<ATTRIBUTE name=‘type’ value=‘desk’>desk</ATTRIBUTE>
</DESCRIPTION>
and
<DESCRIPTION num=‘sg’>
<ATTRIBUTE name=‘size’ value=‘small’>small</ATTRIBUTE>
<ATTRIBUTE name=‘colour’ value=‘blue’>blue</ATTRIBUTE>
<ATTRIBUTE name=‘type’ value=‘sofa’>sofa</ATTRIBUTE>
</DESCRIPTION>
</DESCRIPTION>

(〈SIZE : small〉 ∧ 〈COLOUR : red〉 ∧ 〈TYPE : desk〉)
∨

(〈SIZE : small〉 ∧ 〈COLOUR : blue〉 ∧ 〈TYPE : sofa〉)

Figure 1: Corpus annotation examples

be minimally distinguished using only SIZE2. Thus,
overspecified usage of attributes can be identified
in authors’ descriptions. Domain objects were ran-
domly placed in a 3 (row) × 5 (column) grid, rep-
resented by X and Y in Table 1. These are relevant
for a subset of descriptions which contain locative
expressions.

Corpus descriptions are paired with an explicit
XML domain representation, and annotated with se-
mantic markup which makes clear which attributes
a description contains. This markup abstracts away
from differences in lexicalisation, making it an ideal
resource to evaluate content determination algo-
rithms, because it is semantically transparent, in
the sense of this term used by van Deemter et al.
(2006). This markup scheme also enables the com-
positional derivation of a logical form from a natural
language description. For example, the XML repre-
sentation of (3b) is shown in Figure 1, which also
displays the LF derived from it. Each constituent NP

in (3b) is annotated as a set of attributes enclosed by
a DESCRIPTION tag, which is marked up as singular
(sg). The two coordinates are further enclosed in
a plural DESCRIPTION; correspondingly, the LF is a
disjunction of (the LFs of) the two internal descrip-
tions.

Descriptions in the corpus were elicited in 7 do-
mains with one referent, and 13 domains with 2
referents. Plural domains represented levels of a
Value Similarity factor. In 7 Value-Similar (VS)
domains, referents were identifiable using identical
values of the minimally distinguishing attributes. In
the remaining 6 Value-Dissimilar (VDS) domains,
the minimally distinguishing values were different.
Table 1 represents a VS domain, where {e1, e2} can

2TYPE was not included in the calculation of MD.

VS VDS
+Disj −Disj +Disj −Disj

+aggr 20.2 15.5 2.4 3.7
−aggr 64.3 – 93.9 –
% overall 84.5 15.5 96.3 3.7

Table 2: % disjunctive and non-disjunctive plurals

be minimally distinguished using the same value of
SIZE (small).

In terms of our introductory discussion, referents
in Value-Similar conditions could be minimally dis-
tinguished using a conjunction of properties, while
Value-Dissimilar referents required a disjunction
since, if two referents could be minimally distin-
guished by different values v and v′ of an attribute
A, then MD had the form 〈A : v〉 ∨ 〈A : v’〉. How-
ever, even in the VS condition, referents had differ-
ent basic-level types. Thus, an author faced with a
domain like Table 1 had at least the descriptive op-
tions in (3a–d). If they chose to refer to entities using
basic-level values of TYPE, their description would
be disjunctive (e.g. 3a). A non-disjunctive descrip-
tion would require the use of a superordinate value,
as in (3d).

Our analysis will focus on a stratified random
sample of 180 plural descriptions, referred to as PL1,
generated by taking 4 descriptions from each author
(2 each from VS and VDS conditions). We also use
the singular data (SG; N = 315). The remaining
plural descriptions (PL2; N = 405) are used for
evaluation.

3 The logical form of plurals

Descriptions in PL1 were first classified according to
whether they were non-disjunctive (cf. 3d) or dis-
junctive (3a–c). The latter were further classified
into aggregated (3a) and non-aggregated (3b). Ta-
ble 2 displays the percentage of descriptions in each
of the four categories, within each level of Value
Similarity. Disjunctive descriptions were a major-
ity in either condition, and most of these were non-
aggregated. As noted in §1, these descriptions cor-
respond to partitions of the set of referents.

Since referents in VS had identical properties ex-
cept for TYPE values, the most likely reason for the
majority of disjunctives in VS is that people’s de-
scriptions represented a partition of a set of refer-
ents induced by the basic-level category of the ob-
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Non-Parallel Parallel χ2 (p ≤ .001)
overspec. 24.6 75.4 92.467

underspec. 5.3 94.7 42.217
well-spec. 11 89 26

Table 3: Parallelism: % per description type

jects. This is strengthened by the finding that the
likelihood of a description being disjunctive or non-
disjunctive did not differ as a function of Value Sim-
ilarity (χ2 = 2.56, p > .1). A χ2 test on overall fre-
quencies of aggregated versus non-aggregated dis-
junctives showed that the non-aggregated descrip-
tions (‘true’ partitions) were a significant major-
ity (χ2 = 83.63, p < .001). However, the
greater frequency of aggregation in VS compared
to VDS turned out to be significant (χ2 = 15.498,
p < .001). Note that the predominance of non-
aggregated descriptions in VS implies that proper-
ties are repeated in two disjuncts (resp. coordinate
NPs), suggesting that authors are likely to redun-
dantly propagate properties across disjuncts. This
evidence goes against some recent proposals for plu-
ral reference generation which emphasise brevity
(Gardent, 2002).

3.1 Conceptual gestalts and similarity
Allowing for the independent motivation for set par-
titioning based on TYPE values, we suggested in §1
that parallel descriptions such as (3b) may be more
likely than non-parallel ones (3c), since the latter
does not use the same properties to describe the two
referents. Similarity, however, should also interact
with attribute preferences.

For this part of the analysis, we focus exclusively
on the disjunctive descriptions in PL1 (N = 150) in
both VS and VDS. The descriptions were categorised
according to whether they had parallel or non-
parallel semantic structure. Evidence for Similarity
interacting with attribute preferences is strongest if
it is found in those cases where an attribute is over-
specified (i.e. used when not required for a distin-
guishing description). In those cases where corpus
descriptions do not contain locative expressions (the
X and/or Y attributes), such an overspecified usage
is straightforwardly identified based on the MD of
a domain. This is less straightforward in the case of
locatives, since the position of objects was randomly
determined in each domain. Therefore, we divided

Actual Predicted
p(A, SG) p(A, PPS) p(A, PPS)

COLOUR .680 .835 .61
SIZE .290 .359 .28

ORIENTATION .280 .269 .26
X-DIMENSION .440 .517 .52
Y-DIMENSION .630 .647 .65

Table 4: Actual and predicted usage probabilities

descriptions into three classes, whereby a descrip-
tion is considered to be:

1. underspecified if it does not include a locative
expression and omits some MD attributes;

2. overspecified if either (a) it does not omit any
MD attributes, but includes locatives and/or
non-required visual attributes; or (b) it omits
some MD attributes, but includes both a locative
expression and other, non-required attributes;

3. well-specified otherwise.

Proportions of Parallel and Non-Parallel descrip-
tions for each of the three classes are are shown
in Table 3. In all three description types, there is
an overwhelming majority of Parallel descriptions,
confirmed by a χ2 analysis. The difference in pro-
portions of description types did not differ between
VS and VDS (χ2 < 1, p > .8), suggesting that the
tendency to redundantly repeat attributes, avoiding
aggregation, is independent of whether elements of
a set can be minimally distinguished using identical
values.

Our second prediction was that the likelihood
with which an attribute is used in a parallel structure
is a function of its overall ‘preference’. Thus, we
expect attributes such as COLOUR to feature more
than once (perhaps redundantly) in a parallel de-
scription to a greater extent than SIZE. To test this,
we used the SG sample, estimating the overall prob-
ability of occurrence of a given attribute in a singu-
lar description (denoted p(A, SG)), and using this in
a non-linear regression model to predict the likeli-
hood of usage of an attribute in a plural partitioned
description with parallel semantic structure (denoted
p(A, PPS)). The data was fitted to a regression equa-
tion of the form p(A, PPS) = k× p(A, SG)S . The re-
sulting equation, shown in (4), had a near-perfect fit
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to the data (R2 = .910)3. This is confirmed by com-
paring actual probability of occurrence in the second
column of Table 4, to the predicted probabilities in
the third column, which are estimated from singular
probabilities using (4).

p(A, PPS) = .713 p(A, SG).912 (4)

Note that the probabilities in the Table con-
firm previous psycholinguistic findings. To the ex-
tent that probability of occurrence reflects salience
and/or conceptual importance, an order over the
three attributes COLOUR, SIZE and ORIENTATION

can be deduced (C>>O>>S), which is compatible
with the findings of Pechmann (1989), Belke and
Meyer (2002) and others. The locative attributes
are also ordered (Y>>X), confirming the findings
of Arts (2004) that vertical location is preferred. Or-
derings deducible from the SG data in turn are ex-
cellent predictors of the likelihood of ‘propagating’
an attribute across disjuncts in a plural description,
something which is likely even if an attribute is re-
dundant, modulo the centrality or salience of the at-
tribute in the mental gestalt corresponding to the set.
Together with the earlier findings on logical form,
the data evinces a dual strategy whereby (a) sets
are partitioned based on basic-level conceptual cat-
egory; (b) elements of the partitions are described
using the same attributes if they are easily perceived
and conceptualised. Thus, of the descriptions in (3)
above, it is (3b) that is the norm among authors.

4 Content determination by partitioning

In this section we describe IApart, a partitioning-
based content determination algorithm. Though pre-
sented as a version of the IA, the basic strategy is
generalisable beyond it. For our purposes, the as-
sumption of a preference order will be maintained.
IApart is distinguished from the original IA and
IAbool (cf. §1) in two respects. First, it induces par-
titions opportunistically based on KB information,
and this is is reflected in the way descriptions are
represented. Second,, the criteria whereby a prop-
erty is added to a description include a consideration
of the overall salience or preference of an attribute,
and its contribution to the conceptual cohesiveness

3A similar analysis using linear regression gave essentially
the same results.

of the description. Throughout the following discus-
sion, we maintain a running example from Table 1,
in which R = {e1, e2, e5}.

4.1 Partitioned descriptions
IApart generates a partitioned description (Dpart) of
a set R, corresponding to a formula in Disjunctive
Normal Form. Dpart is a set of Description Frag-
ments (DFs). A DF is a triple 〈RDF, TDF,MDF〉, where
RDF ⊆ R, TDF is a value of TYPE, and MDF is a pos-
sibly empty set of other properties. DFs refer to dis-
joint subsets of R. As the representation suggests,
TYPE is given a special status. IApart starts by se-
lecting the basic-level values of TYPE, partitioning
R and creating a DF for each element of the partition
on this basis. In our example, the selection of TYPE

results in two DFs, with MDF initialised to empty:

(5) DF1

˙
{e1, e5}, 〈TYPE : desk〉, ∅

¸
DF2

˙
{e2}, 〈TYPE : sofa〉, ∅

¸
Although neither DF is distinguishing, RDF indicates
which referents a fragment is intended to identify.
In this way, the algorithm incorporates a ‘divide-
and-conquer’ strategy, splitting up the referential in-
tention into ‘sub-intentions’ to refer to elements of
a partition. Following the initial step of selecting
TYPE, the algorithm considers other properties in
PO. Suppose 〈COLOUR : blue〉 is considered first.
This property is true of e2 and e5. Since DF2 refers to
e2, the new property can be added to MDF2 . Since e5

is not the sole referent of DF1, the property induces
a further partitioning of this fragment, resulting in a
new DF. This is identical to DF1 except that it refers
only to e5 and contains 〈COLOUR : blue〉. DF1 it-
self now refers only to e1. Once 〈COLOUR : red〉 is
considered, it is added to the latter, yielding (6).

(6) DF1

˙
{e1}, 〈TYPE : desk〉, {〈COLOUR : red〉}

¸
DF2

˙
{e2}, 〈TYPE : sofa〉, {〈COLOUR : blue〉}

¸
DF3

˙
{e5}, 〈TYPE : desk〉, {〈COLOUR : blue〉}

¸
The procedure updateDescription, which cre-

ates and updates DFs, is formalised in Algorithm 2.
When some property 〈A : v〉 is found to be ‘use-
ful’ in relation to R (in a sense to be made precise),
this function is called with two arguments: 〈A : v〉
itself, and R′ = [[ 〈A : v〉 ]] ∩ R, the referents of
which 〈A : v〉 is true. The procedure iterates through
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Algorithm 2 updateDescription(〈A : v〉, R′)

1: for 〈RDF, TDF, MDF〉 ∈ Dpart do
2: if R′ = ∅ then
3: return
4: else if RDF ⊆ R′ then
5: MDF ←MDF ∪

˘
〈A : v〉

¯
6: R′ ← R′ −RDF

7: else if RDF ∩R′ 6= ∅ then
8: Rnew ← RDF ∩R′

9: DFnew ←
˙
Rnew, TDF, MDF ∪ {〈A : v〉}

¸
10: Dpart ← Dpart ∪

˘
DFnew

¯
11: RDF ← RDF −Rnew

12: R′ ← R′ −Rnew

13: end if
14: end for
15: if A = TYPE then
16: Dpart ← Dpart ∪

˘˙
R′, 〈A : v〉, ∅

¸¯
17: else
18: Dpart ← Dpart ∪

˘
〈R′,⊥, {〈A : v〉}〉

¯
19: end if

the DFs in Dpart, adding the property to any DF such
that RDF∩R′ 6= ∅, until R′ is empty and all referents
in it have been accounted for [2.2]. As indicated in
the informal discussion, there are two cases to con-
sider for each DF:

1. RDF ⊆ R′ [2.4]. This corresponds to our exam-
ple involving 〈COLOUR : blue〉 and DF2. The
property is simply added to MDF [2.5] and R′

is updated by removing the elements thus ac-
counted for [2.6].

2. Suppose RDF 6⊆ R′. If RDF ∩ R′ is empty, then
〈A : v〉 is not useful. Suppose on the other hand
that RDF ∩ R′ 6= ∅ [2.7]. This occurred with
〈COLOUR : red〉 in relation to DF1. The proce-
dure initialises Rnew, a set holding those refer-
ents in RDF which are also in R′ [2.8]. A new
DF (DFnew) is created, which is a copy of the
old DF, except that (a) it contains the new prop-
erty; and (b) its intended referents are Rnew

[2.9]. The new DF is included in the description
[2.10], while the old DF is altered by removing
Rnew from RDF [2.11]. This ensures that DFs
denote disjoint subsets of R.

Two special cases arise when Dpart is empty, or
there are some elements of R′ for which no DF ex-
ists. Both cases result in the construction of a new
DF. An example of the former case is the initial state
of the algorithm, when TYPE is added. As in exam-
ple (5), the TYPE results in a new DF [2.16]. If a
property is not a TYPE, the new DF has T set to null

(⊥) and the property is included in M [2.18]4. Note
that this procedure easily generalises to the singular
case, where Dpart would only contain one DF.

4.2 Property selection criteria
IApart’s content determination strategy maximises
the similarity of a set by generating semantically
parallel structures. Though contrastiveness plays a
role in property selection, the ‘preference’ or con-
ceptual salience of an attribute is also considered in
the decision to propagate it across DFs.

Candidate properties for addition need only be
true of at least one element of R. Because of the
partitioning strategy, properties are not equally con-
strastive for all referents. For instance, in (5), e2

needs to be distinguished from the other sofas in Ta-
ble 1, while {e1, e5} need to be distinguished from
the desks. Therefore, distractors are held in an as-
sociative array C, such that for all r ∈ R, C[r] is
the set of distractors for that referent at a given stage
in the procedure. Contrastiveness is defined via the
following Boolean function:

contrastive(〈A : v〉, R) ↔
∃r ∈ R : C[r]− [[ 〈A : v〉 ]] 6= ∅ (7)

We turn next to salience and similarity. Let
A(Dpart) be the set of attributes included in Dpart.
A property is salient with respect to Dpart if it satis-
fies the following:

salient(〈A : v〉, Dpart) ↔
A ∈ A(Dpart) ∧ (.713 p(A, SG).912 > 0.5) (8)

that is, the attribute is already included in the de-
scription, and the predicted probability of its be-
ing propagated in more than one fragment of a de-
scription is greater than chance. A potential prob-
lem arises here. Consider the description in (5)
once more. At this stage, IApart begins to consider
COLOUR. The value red is true of e1, but non-
contrastive (all the desks which are not in R are red).
If this is the first value of COLOUR considered, (8)
returns false because the attribute has not been
used in any part of the description. On later con-
sidering 〈COLOUR : blue〉, the algorithm adds it to

4This only occurs if the KB is incomplete, that is, there some
entities have no TYPE, so that R is not fully covered by the
intended referents of the DFs when TYPE is initially added.
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Dpart, since it is contrastive for {e2, e5}, but will
have failed to propagate COLOUR across fragments.
As a result, IApart considers values of an attribute in
order of discriminatory power (Dale, 1989), defined
in the present context as follows:

|[[ 〈A : v〉 ]] ∩R| + |[[ 〈A : v〉 ]]− (U −R)|
|[[ 〈A : v〉 ]]|

(9)

Discriminatory power depends on the number of ref-
erents a property includes in its extension, and the
number of distractors (U−R) it removes. By priori-
tising discriminatory values, the algorithm first con-
siders and adds 〈COLOUR : blue〉, and subsequently
will include red because (8) returns true.

To continue with the example, at the stage repre-
sented by (6), only e5 has been distinguished. ORI-
ENTATION, the next attribute considered, is not con-
trastive for any referent. On considering SIZE, small
is found to be contrastive for e1 and e2, and added to
DF1 and DF2. However, SIZE is not added to DF3, in
spite of being present in two other fragments. This
is because the probability function p(SIZE, PPS) re-
turns a value below 0.5 (see Table 4, reflecting the
relatively low conceptual salience of this attribute.
The final description is the blue desk, the small red
desk and the small blue sofa. This example illus-
trates the limits set on semantic parallelism and sim-
ilarity: only attributes which are salient enough are
redundantly propagated across DFs.

4.3 Complexity
An estimate of the complexity of IApart must ac-
count for the way properties are selected (§4.2) and
the way descriptions are updated (Algorithm 2).

Property selection involves checking properties
for contrastive value and salience, and updating the
ordering of values of each attribute based on dis-
criminatory power (9). Clearly, the number of times
this is carried out is bounded by the number of prop-
erties in the KB, which we denote np. Every time a
property is selected, the discriminatory power of val-
ues changes (since the number of remaining distrac-
tors changes). Now, in the worst case, all np proper-
ties are selected by the algorithm 5. Each time, the
algorithm must compare the remaining properties

5Only unique properties need to be considered, as each prop-
erty is selected at most once, though it can be included in more
than one DF.

Mean Mode PRP

IAbool
+ LOC 7.716 7 .7
− LOC 8.335 7 3.5

IApart
+ LOC 4.345 4 6.8
− LOC 1.93 0 44.7

Table 5: Edit distance scores

pairwise for discriminatory power, a quadratic op-
eration with complexity O(n2

p). With respect to the
procedure updateDescription, we need to consider
the number of iterations in the for loop starting at
line [2.1]. This is bounded by nr = |R| (there can be
no more DFs than there are referents). Once again,
if at most np properties are selected, then the algo-
rithm makes at most nr iterations np times, yield-
ing complexity O(npnr). Overall, then, IApart has a
worst-case runtime complexity O(n3

pnr).

5 Evaluation

IApart was compared to van Deemter’s IAbool (§1)
against human output in the evaluation sub-corpus
PL2 (N = 405). This was considered an ade-
quate comparison, since IAbool shares with the cur-
rent framework a genetic relationship with the IA.
Other approaches, such as Gardent’s (2002) brevity-
oriented algorithm, would perform poorly on our
data. As shown in §3, overspecification is extremely
common in plural descriptions, suggesting that such
a strategy is on the wrong track (but see §6).

IApart and IAbool were each run over the domain
representation paired with each corpus description.
The output logical form was compared to the LF

compiled from the XML representation of an au-
thor’s description (cf. Figure 1). LFs were repre-
sented as and-or trees, and compared using the tree
edit distance algorithm of Shasha and Zhang (1990).
On this measure, a value of 0 indicates identity.

Because only a subset of descriptions con-
tain locative expressions, PL2 was divided into
a +LOC dataset (N = 148) and a −LOC

dataset (N = 257). The preference orders for
both algorithms were (C>>O>>S) for −LOC and
(Y>>C>>X>>S>>O) for +LOC. These are sug-
gested by the attribute probabilities in Table 4. Ta-
ble 5 displays the mean Edit score obtained by
each algorithm on the two datasets, the modal (most
frequent) value, and the perfect recall percentage
(PRP), the proportion of Edit scores of 0, indicating
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perfect agreement with an author.
As the means and modes indicate, IApart outper-

formed IAbool on both datasets, with a consistently
higher PRP (this coincides with the modal score in
the case of −LOC). Pairwise t−tests showed that
the trends were significant in both +LOC (t(147) =
9.28, p < .001) and −LOC (t(256) = 10.039,
p < .001).

IAbool has a higher (worse) mean on −LOC, but a
better PRP than on +LOC. This apparent discrepancy
is partly due to variance in the edit distance scores.
For instance, because the Y attribute was highest in
the preference order for +LOC, there were occasions
when both referents could be identified using the
same value of Y, which was therefore included by
IAbool at first pass, before considering disjunctions.
Since Y was highly preferred by authors (see Table
4), there was higher agreement on these cases, com-
pared to those where the values of Y were different
for the two referents. In the latter case, Y was only
when disjunctions were considered, if at all. The
worse performance of IApart on +LOC is due to a
larger choice of attributes, also resulting in greater
variance, and occasionally incurring higher Edit cost
when the algorithm overspecified more than a hu-
man author. This is a potential shortcoming of the
partitioning strategy outlined here, when it is applied
to more complex domains.

Some example outputs are given below, in a do-
main where COLOUR sufficed to distinguish the ref-
erents, which had different values of this attribute
(i.e. an instance of the VDS condition). The formula
returned by IApart (10a) is identical to the (LF of)
the human-authored description (with Edit score of
0). The output of IAbool is shown in (10b).

(10) (a)
`
fan ∧ green

´
∨

`
sofa ∧ blue

´
‘the green fan and the big sofa’

(b)
`
sofa ∨ fan

´
∧ small ∧ front ∧

`
blue ∨ green

´
‘the small, blue and green sofa and fan’

As a result of IAbool’s requiring a property or dis-
junction to be true of the the entire set of refer-
ents, COLOUR is not included until disjunctions are
considered, while values of SIZE and ORIENTATION

are included at first pass. By contrast, IApart in-
cludes COLOUR before any other attribute apart from
TYPE. Though overspecification is common in our
data, IAbool overspecifies with the ‘wrong’ attributes

(those which are relatively dispreferred). The ratio-
nale in IApart is to overspecify only if a property
will enhance referent similarity, and is sufficiently
salient. As for logical form, the Conjunctive Nor-
mal Form output of IAbool increases the Edit score,
given the larger number of logical operators in (10b)
compared to (10a).

6 Summary and conclusions

This paper presented a study of plural reference,
showing that people (a) partition sets based on the
basic level TYPE or category of their elements and
(b) redundantly propagate attributes across disjuncts
in a description, modulo their salience. Our algo-
rithm partitions a set opportunistically, and incor-
porates a corpus-derived heuristic to estimate the
salience of a property. Evaluation results showed
that these principles are on the right track, with sig-
nificantly better performance over a previous model
(van Deemter, 2002). The partitioning strategy is
related to a proposal by van Deemter and Krah-
mer (2007), which performs exhaustive search for
a partition of a set whose elements can be described
non-disjunctively. Unlike the present approach, this
algorithm is non-incremental and computationally
costly.

IApart initially performs partitioning based on the
basic-level TYPE of objects, in line with the evi-
dence. However, later partitions can be induced by
other properties, possible yielding partitions even
with same-TYPE referents (e.g. the blue chair and
the red chair). Aggregation (the blue and red chairs)
may be desirable in such cases, but limits on syntac-
tic complexity of NPs are bound to play a role (Ho-
racek, 2004). Another possible limitation of IApart

is that, despite strong evidence for overspecifica-
tion, complex domains could yield very lengthy out-
puts. Strategies to avoid them include the utilisation
of other boolean operators like negation (the desks
which are not red) (Horacek, 2004). These issues
are open to future empirical research.
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