
Dynamic compilation of weighted context-free grammars 

M e h r y a r  M o h r i  and F e r n a n d o  C.  N .  P e r e i r a  
A T & T  Labs - Research 

180 Park  Avenue  
Florhaln  Park,  NJ 07932, USA 

{mohr±, p e r e ± r a } ¢ r e s e a r c h ,  a r t .  com 

A b s t r a c t  

Weighted context-free grammars are a conve- 
nient formalism for representing grammatical 
constructions and their likelihoods in a variety 
of language-processing applications. In partic- 
ular, speech understanding applications require 
appropriate grammars  both to constrain speech 
recognition and to help extract the meaning 
of utterances. In many of those applications, 
the actual languages described are regular, but 
context-free representations are much more con- 
cise and easier to create. We describe an effi- 
cient algorithm for compiling into weighted fi- 
nite au tomata  an interesting class of weighted 
context-flee grammars  that  represent regular 
languages. The resulting au tomata  can then be 
combined with other speech recognition compo- 
nents. Our method allows the recognizer to dy- 
namically activate or deactivate grammar rules 
and substitute a new regular language for some 
terminal symbols, depending on previously rec- 
ognized inputs, all without recompilation. We 
also report experimental results showing the 
practicality of the approach. 

1. M o t i v a t i o n  

Context-free grammars  (CFGs) are widely used 
in language processing systems. In many appli- 
cations, in particular in speech recognition, in 
addition to recognizing grammaticM sequences 
it is necessary to provide some measure of the 
probability of those sequences. It is then natu- 
ral to use weighted CFGs, in which each rule is 
given a weight from an appropriate weight alge- 
bra (Salomaa and Soittola, 1978). Weights can 
encode probabilities, for instance by setting a 
rule's weight to the negative logarithm of the 
probability of the rule. Rule probabilities can 
be estimated in a variety of ways, which we will 
not discuss further in this paper. 

Since speech recognizers cannot be fully cer- 
tMn about the correct transcription of a spoken 
utterance, they instead generate a range of al- 
ternative hypotheses with associated probabil- 
ities. An essential function of the grammar is 
then to rank those hypotheses according to the 
probability that  they would be actually uttered. 
The grammar  is thus used together with other 
information sources - pronunciation dictionary, 
phonemic context-dependency model, acoustic 
model (Bahl et al., 1983; Rabiner and Juang, 
1993) - to generate an overall set of transcrip- 
tion hypotheses with corresponding probabili- 
ties. 

General CFGs are computationally too de- 
manding for reM-time speech recognition sys- 
tems, since the amount of work required to ex- 
pand a recognition hypothesis in the way just 
described would in general be unbounded for 
an unrestricted grammar.  Therefore, CFGs 
used in spoken-dialogue applications often rep- 
resent regular languages (Church, 1983; Brown 
and Buntschuh, 1994), either by construction or 
as a result of a finite-state approximation of/~ 
more general CFG (Pereira and Wright, 1997).t 
Assuming that  the grammar  can be efficiently 
converted into a finite automaton,  appropriate 
techniques can then be used to combine it with 
other finite-state recognition models for use in 
real-time recognition (Mohri et al., 1998b). 

There is no general algorithm that  would map 
an arbitrary CFG generating a regular language 
into a corresponding finite-state automaton (U1- 
lian; 1967). However, we will describe a use- 
ful class of grammars  that  can be so trans- 
formed, and a transformation algorithm that  
avoids some of the potential for combinatorial 

1Grammars representing regular languages have also 
been used successfully in other areas of computational 
linguistics (Karlsson et al., 1.995). 

891 



explosion in the process. 
Spoken dialogue systems require grammars 

or language models to change as the dialogue 
proceeds, because previous interactions set the 
context for interpreting new utterances. For in- 
stance, a previous request for a date might ac- 
tivate the date grammar  and lexicon and inac- 
tivate the location grammar  and lexicon in an 
automated reservations task. Without such dy- 
namic grammars, efficiency and accuracy would 
be compromised because many irrelevant words 
and constructions would be available when eval- 
uating recognition hypotheses. We consider two 
dynamic grammar  mechanisms: activation and 
deactivation of grammar  rules, and the substi- 
tution of a new regular language for a terminal 
symbol when recognizing the next utterance. 

We describe a new algorithm for compil- 
ing weighted CFGs, based on representing the 
grammar as a weighted transducer. This 
representation provides opportunities for op- 
timization, including optimizations involving 
weights, which are not possible for general 
CFGs. The algorithm also supports dynamic 
grammar  changes without recompilation. Fur- 
thermore, the algorithm can be executed on de- 
mand: states and transitions of the automa- 
ton are expanded only as needed for the recog- 
nition of the actual input utterances. More- 
over, our lazy compilation algorithm is opti- 
mal in the sense that  the construction requires 
work linear in the size of the input grammar,  
which is the best one can expect given that  
any algorithm needs to inspect the whole in- 
put grammar.  It is however possible to speed- 
up grammar  compilation further by applying 
pre-compilation optimizations to the grammar,  
as we will see later. The class of grammars  
to which our algorithm applies includes right- 
linear grammars,  left-linear grammars and cer- 
tain combinations thereof. 

The algorithm has been fully implemented 
and evaluated experimentally, demonstrating 
its effectiveness. 

2. A l g o r i t h m  

We will s tart  by giving a precise definition of 
dynamic grammars.  We will then explain each 
stage of grammar  compilation. Grammar  com- 
pilation takes as input a weighted CFG repre- 
sented as a weighted transducer (Salomaa and 

Soittola, 1978), which may have been opti- 
mized prior to compilation (preoptimized). The 
weighted transducer is analyzed by the com- 
pilation algorithm, and the analysis, if suc- 
cessful, outputs a collection of weighted au- 
tomata  that  are combined at runtime according 
to the current dynamic grammar  configuration 
and the strings being recognized. Since not all 
CFGs can be compiled into weighted automata,  
tlle compilation algorithm may reject an input 
grammar.  The class of allowed grammars  will 
be defined later. 

2.1. D y n a m i c  g r a m m a r s  

The following notation will be used in the rest 
of the paper. A weighted CFG G =- (V,P) 
over the alphabet E, with real-number weights 
consists of a finite alphabet V of variables or 
nonterminals disjoint from E, and a finite set 
P C V × R × (VU E)* of productions or deriva- 
tion rules (Autebert  et al., 1997). Given strings 
u, v E (V U E)*, and real numbers c and c r, we 

write (u, c) -~ (v, c') when there is a derivation 
from u with weight c to v with weight d. We 
denote by L6(X) the weighted language gener- 
ated by a nonterminal X: 

LG(X) = {(w, c) e r*  × a :  (X, 0) (w, c)} 

We can now define the two grammar-changing 
operations that  we use. 

D y n a m i c  a c t i v a t i o n  o r  d e a c t i v a t i o n  o f  
ru les  2 We augment the grammar  with a set 
of active nonterminaIs, which are those avail- 
able as start  symbols for derivations. More pre- 
cisely, let A C V be the set of active nonter- 
minals. The language generated by G is then 
Lc = [JxEA LG(X). Note that  inactive nonter- 
minals, and the rules involving them, are avail- 
able for use in derivations; they are just not 
available as start  symbols. Dynamic rule acti- 
vation or deactivation is just the dynamic re- 
definition of the set A in successive uses of the 
grammar.  

D y n a m i c  s u b s t i t u t i o n  Let a be a weighted 
rational transduction of E* to A* × R, E C A, 
that  is a regular weighted substitution (Berstel, 
1979). a is a monoid morphism verifying: 

2This  is the  terminology used in this  area,  though  a 
more appropr ia te  expression would be dynamic  activa- 
t ion or deac t iva t ion  of nonterminal symbols. 
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Vx e r ,  c n c g ( a -  × R) 

where Rcg(A* x R) denotes the set of 
weighted regular languages over the alphabet 
A. Thus a simply substi tutes for each symbol 
a E E a weighted regular expression a(a). A 
dynamic substitution consists of the application 
of the substitution a to E, during the process 
of recognition of a word sequence. Thus, after 
substitution, the language generated by the new 
grammar G ~ is: 3 

La, = a(La) 

Our algorithm allows for both of those dy- 
namic grammar changes without recompiling 
the grammar. 

2.2. P r e p r o c e s s i n g  

Our compilation algorithm operates on a 
weighted transducer T(G) encoding a factored 
representation of the weighted CFG G, which 
is generated fi'om G by a separate preproces- 
sor. This preprocessor is not strictly needed, 
since we could use a version of the main algo- 
rithm that  works directly on G. However, pre- 
processing can improve dramatically the time 
and space needed for the main compilation step, 
since the preprocessor uses determinization and 
minimization algorithms for weighted transduc- 
ers (Mohri, 1997) to increase the sharing - -  fac- 
t o r i n g -  among grammar rules that  s tar t  or end 
the same way. 

The preprocessing step builds a weighted 
transducer in which each path corresponds to a 
grammar rule. Rule Xo~ ~ Y1 . . .Yn has a cor- 
responding path that  maps X to the sequence 
Y1 . . .Y~ with weight a. For example, the small 
CFG in Figure 1 is preprocessed into the com- 
pacted transducer shown in Figure 2. 

2.3. C o m p i l a t i o n  

The compilation of weighted left-linear or right- 
linear grammars into weighted au tomata  is 
straightforward (Aho and Ullman, 1973). In 
the right-linear case, for instance, the states of 
the automaton are the grammar nonterminals 
together with a new final state F.  There is a 

3~ can be extended as usual to map E* x II~ to 
Reg(A" × R). 

Z .1 --+ X Y  

X .2 --+ aY 

Y . 3  --+ bX 

Y . 4 - - + c  

(1) 

Figure 1: Grammar  Gx. 

Figure 2: Weighted transducer T(G1). 

transition labeled with a C E and weight a C R 
from X E V to Y C V iff the grammar con- 
tains the rule Xo~ ~ aY. There is a transition 
from X to F labeled with a and weight a iff 
X a  -+ a is a rule of tile gramlnar. The initial 
states are the states corresponding to the active 
nonterminals. For example, Figure 3 shows the 
weighted automaton for grammar G2 consisting 
of the last three rules of G1 with start  symbol 
X.  

However, the standard methods for left- and 
right-linear grammars cannot be used for gram- 
mars such as G1 that  generate regular sets but  
have rules that  are neither left- nor right-linear. 
But  we can use the methods for left- and right- 
linear grammars as subroutines if the grammar 
can be decomposed into left-linear and right- 
linear components that  do not call each other 
recursively (Pereira and Wright, 1997). More 
precisely, define a dependency graph DG for 
G's  nonterminals and examine the set of its 
strongly-connected components (SCCs). 4 The 
nodes of DG are G's  nonterminals, and there 
is a directed edge from X to Y if Y appears 
in the right-hand side of a rule with left-hand 
side X,  that  is, if the definition of X depends 
on Y. Each SCC S of Da has a corresponding 
subgrammar of G consisting of those rules with 

4Recall that  the strongly connected components of a 
directed graph are the equivalence classes of graph nodes 
under the relation R defmed by: q R q~ if q' can be 
reached from q aud q h'om q~. 
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Figure 3: Compilation of G2. 

Figure 4: Dependency graph Dal for grammar 
G1. 

left-hand nonterminals in S, with nonterminals 
not in S treated as terminal symbols. If each of 
these subgrammars is either left-linear or right- 
linear, we shall see that compilation into a single 
finite automaton is possible. 

The dependency graph Da can be obtained 
easily from the transducer r(G). For exam- 
ple, Figure 4 shows the dependency graph for 
our example grammar G1, with SCCs {Z} and 
{X, Y}. It is clear that G1 satisfies our condi- 
tion, and Figure 5 shows the result of compiling 
G1 with A = {Z}. 

The SCCs of DG can be obtained in time lin- 
ear in the size of G (Aho et al., 1974). Be- 
fore starting the compilation, we check that 
each subgrammar is left-linear or right-linear 
(as noted above, nonterminals not in the SCC 
of a subgrammar are treated as terminals). For 
example, if {X1, X2} is an SCC, then the sub- 
grammar 

X1 ~ aYlbY2X1 
X1 ~ bY2aY1X2 
X2 --4 bbYlabX1 

(2) 

Figure 5: Compilation of G1 with start symbol 
Z. 

Figure 6: Weighted automaton I(({X, Y)) cor- 
responding to the strongly connected compo- 
nent {X,Y} of G1. 

with X1,X2, Y1,Y2 C V and a,b C E is right- 
linear, since expressions such as aYlbY2 can be 
treated as elements of the terminal alphabet of 
the subgrammar. 

When the compilation condition holds, for 
each SCC S we can build a weighted automa- 
ton K(S) representing the language of S's sub- 
grammar using the standard methods. Since 
some nonterminals of G are treated as termi- 
nal symbols within a subgrammar, the transi- 
tions of an automaton K(S) may be labeled 
with nonterminals not in S. s The nontermi- 
nals not in S can then be replaced by their cor- 
responding automata. The replacement opera- 
tion is lazy, that is, the states and transitions of 
the replacing automata are only expanded when 
needed for a given input string. Another inter- 
esting characteristic of our algorithm is that the 
weighted automata K(S) can be made smaller 
by determinization and minimization, leading 
to improvements in runtime performance. 

The automaton M(X) that represents the 
language generated by nonterminal symbol X 
can be defined using K(S), where S is the 
strongly connected component containing X, 
X E S. For instance, when the subgrammar 
of S is right-linear, M(X) is the automaton 
that has the same states, transitions, and final 
states as K(S) and has the state correspond- 
ing to X as initial state. For example, Figure 
6 shows K({X, Y}) for 61. M(X) is then ob- 
tained from K({X, Y}) by taking X as initial 
state. The left-linear case can be treated in a 
similar way. Thus, M(X) can always be de- 
fined in constant time and space by editing the 
automaton K(S). We use a lazy implementa- 
tion of this editing operation for the definition 

5More precisely, they can only be part  of other  
strongly connected components  that  come before S in 
a reverse topological sort of the components.  This guar- 
antees the convergence of the replacement of the nonter- 
minals by the corresponding automata .  
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Figure 7: Automaton Mc with activated non- 
terminals: A = {X, Y, Z).  

of the automata M(X):  the states and transi- 
tions of M(X) are determined using K(S) only 
when necessary for the given input string. This 
allows us to save both space and time by avoid- 
ing a copy of K(S) for each X E S. 

Once the automaton representing the lan- 
guage generated by each nonterminal is cre- 
ated, we can define the language generated by G 
by building an automaton Mc with one initial 
state and one final state, and transitions labeled 
with active nonterminals from the initial to the 
final state. Figure 7 illustrates this in the case 
where A = {X, Y, Z}. 

Given this construction, the dynamic activa- 
tion or deactivation of nonterminals can be done 
by modifying the automaton M~. This opera- 
tion does not require any recompilation, since it 
does not affect the automaton M(X) built for 
each nonterminal X. 

All the steps in building the automata M(X) 
- -  construction of DG, finding the SCCs, and 
computing for K(S) for each SCC S - -  require 
linear time and space with respect to the size 
of G. In fact, since we first convert G into 
a compact weighted transducer r(G), the to- 
tal work required is linear in the size of r(G). 6 
This leads to significant gains as shown by our 
experiments. 

In summary, the compilation algorithm has 
the following steps: 

1. Build the dependency graph Da of the 
grammar G. 

2. Compute the SCCs of Do. 7 

3. For each SCC S, construct the automaton 
K(S). For each X e S, build M(X) from 

6Applying the algorithm to a compacted weighted 
transducer r(G) involves various subtleties that we omit 
for simplicity. 

VWe order the SCCs in reverse topological order, but 
this is not necessary for the correctness of the algorithm. 

4. Create a simple automaton Mc accepting 
exactly the set of active nonterminals A. 

5. The automaton is then expanded on-the-fly 
for each input string using lazy replacement 
and editing. 

The dynamic substitution of a terminal sym- 
bol a by a weighted automaton 9 aa is done by 
replacin9 the symbol a by the automaton a~, us- 
ing the replacement operation discussed earlier. 
]'his replacement is also done on demand, with 
only the necessary part of aa being expanded for 
a given input string. In practice, the automaton 
a~ can be large, a list of city or person names for 
example. Thus a lazy implementation is crucial 
for dynamic substitutions. 

3. O p t i m i z a t i o n s ,  E x p e r i m e n t s  a n d  
R e s u l t s  

We have a full implementation of the compila- 
tion algorithm presented in the previous section, 
including the lazy representations that are cru- 
cial in reducing the space requirements of speech 
recognition applications. Our implementation 
of the compilation algorithm is part of a gen- 
eral set of grammar tools, the GRM Library 
(Mohri, 1998b), currently used in speech pro- 
cessing projects at AT&T Labs. The GRM Li- 
brary also includes an efficient compilation tool 
for weighted context-dependent rewrite rules 
(Mohri and Sproat, 1996) that is used in text- 
to-speech projects at Lucent Bell Laboratories. 
Since the GRM library is compatible with the 
FSM general-purpose finite-state machine li~ 
brary (Mohri et al., 1998a), we were able to use 
the tools provided in FSM library to optimize 
the input weighted transducers T(G) and the 
weighted automata in the compilation output. 

We did several experiments that show the ef- 
ficiency of our compilation method. A key fea- 
ture of our grammar compilation method is the 
representation of the grammar by a weighted 
transducer that can then be preoptimized using 
weighted transducer determinization and mini- 
mization (Mohri, 1997; Mohri, 1998a). To show 

SFor any X, this is a constant time operation. For 
instance, if t((S) is right-linear, we just need to pick out 
the state associated to X in I((X). 

9In fact, our implementation allows more generally 
dynamic substitutions by weighted transducers. 
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Figure 8: Advantage of transducer representation combined with preoptimization: time and space. 

the benefits of this representation, we compared 
the compilation time and the size of the re- 
sulting lazy automata with and without preop- 
timization. The advantage of preoptimization 
would be even greater if the compilation output 
were fully expanded rather than on-demand. 

We did experiments with full bigram models 
with various vocabulary sizes, and with two un- 
weighted grammars derived by feature instanti- 
ation from hand-built feature-based grammars 
(Pereira and Wright, 1997). Figure 8 shows 
the compilation times of full bigram models 
with and without preoptimization, demonstrat- 
ing the importance of the optimization allowed 
by using a transducer representation of the 
grammar. For a 250-word vocabulary model, 
the compilation time is about 50 times faster 
with the preoptimized representation, l° Figure 
8 also shows the sizes of the resulting lazy au- 
tomata in the two cases. While in the preop- 
timized case time and s_~ace grow linearly with 
vocabulary size (O(v/[GI)), they grow quadrat- 
ically in the unoptimized case (O(IGI)). 

The bigram examples also show the advan- 
tages of lazy replacement and editing over the 
full expansion used in previous work (Pereira 
and Wright, 1997). Indeed, the size of the 
fully-expanded automaton for the preoptimized 

X°For convenience, the compilation time for the unop- 
timized case in Figure 8 was divided by 10, and the size 
of the result by 25. 

Table 1: Feature-based grammars. 

I IGI ]optim. time expanded I expanded 
(s) states transitions 

~431 [ no .04 9675 I 11,470 
431 yes .02 1535 2002 

12657 I no 9:76 ' 274614 I 321615 
12657 yes 2.02 112795  144083 

case grows quadratically with the vocabulary 
size (O(lat)), while it grows with the cube of 
the vocabulary size in the unoptimized case 
(O(IGI3/2)). For example, compilation is about 
700 times faster in the optimized case for a fully 
expanded automaton even for a 40-word vo- 
cabulary model, and the result about 39 times 
smaller. 

Our experiments with a small and a medium- 
sized CFG obtained from feature-based gram- 
mars confirm these observations (Table 1). 

If dynamic grammars and lazy expansion are 
not needed, we can expand the result fully and 
then apply weighted determinization and min- 
imization algorithms. Additional experiments 
show that this can yield dramatic reductions in 
automata size. 

4. C o n c l u s i o n  

A new weighted CFG compilation algorithm has 
been presented. It can be used to compile effi- 
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ciently an interesting class of grammars repre- 
senting weighted regular languages and allows 
for dynamic modifications that are crucial in 
many speech recognition applications. 

While we focused here on CFGs with real 
number weights, which are especially relevant in 
speech recognition, weighted CFGs can be de- 
fined more generally over an arbitrary semiring 
(Salomaa and Soittola, 1978). Our compilation 
algorithm applies to general semirings without 
change. Both the grammar compilation algo- 
rithms (GRM library) and our automata opti- 
mization tools (FSM library) work in the most 
general case. 
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