
A u t o m a t i c  Acquis i t ion of Hierarchical Transduct ion Models  
for Machine Translation 

H i y a n  A l s h a w i  S r i n i v a s  B a n g a l o r e  S h o n a  D o u g l a s  
X I ' & T  I~abs l lcsear(h 

l S(t Park  AveJme, P.O. Box 9711 
l"lorham l>a.rk, NJ 07932 [.;SA 

A b s t r a c t  

\Ve describe a method for the fully automatic 
learning of hierarchical Iinite state translation 
models. The input to lhe method is transcribed 
sl)eech utterances and th(>ir corre.~l)on(ling hu. 
man translations, and the output  is a set of 
head transducers, i.e. statistical le×ical head- 
outward transducers. A word-alignment func- 
tion and a head-ranking funcl, ion are [irst ob- 
tained, and then counts are generated for hy- 
pothesized stale transitions of head transduc- 
ers whose lexical translations and word order 
chauges are consislent with the alignment. The 
method has been applied to create au English- 
Spanish translation model for ~t speech tI'ans- 
lation application, with word accuracy of over 
75% a,s measured by a string-dislauce compari- 
son to three reference tra.nslations. 

1 I n t r o d u c t i o n  

The fully automatic constructiol, r.)f' translation 
lnodels  offers benelits in t e rn l s  of develol)ment 
effort and i)otentially in robustness over met}> 
ods requiring hand-coding of linguistic informa- 
tion. Itowevei', there art disadvantages to the 
automatic approaches proposed so far. The var- 
ious methods described by P, rown el. al (1990; 
1993) do not take into account tile natural strllc- 
turing of strings into phrases. Examph>based 
translation, exemplified hy tile work of Sumita 
and lida (1995), requires very large amounts 
o[ lraiiling luatcrial. The number o[' stales 
in a sinlple finite state model such as those 
used by Viler et el. (1996) becomes extremely 
large when faced with languages with large word 
order ditferences. The work reported in \'Vu 
(1997), which uses an inside-outside type of 
training algorithm to learn statistical context- 
free transduction, has a similar motivation to 
tilt, Clli'l'(?l]{ \Vol'k~ but the models \re describe 

here, being fully lexica.1, are more suitable for 
direct, statistical modelling. 

lu this paper, we show that both the net- 
work topology and parameters of a head trans- 
ducer translation model (Alshawi, t996b) can 
t)e Darned fully automatically from a bilingual 
corpus. It has already been S}lOWll (Alshawi eL 
el., i997) that  a. head transducer model with 
hand-coded structure, can be trained to give bet- 
ter accuracy than a comparable transfer-based 
system, with snmller model size, computational 
requirements, and development ef['ort. 

\Ve have applied the learning method to el'e- 
ate an English-Spanish translation model for a 
limited domain, with word a.ccuracy of over 75% 
measured by a string distance comparison (as 
used in speech recognition) to three reference 
translations. The resulting translation model 
has been used as a comI)Ol,ent  o[' an I';nglish- 
Spanish speech tra.nslation system. 

\'~)' first present the atet)s of tile 'brallbd/lc- 
t.io,, lraining method in Section 2. In Section 3 
we describe how we obtain an alignment func- 
tion froHl SOllree word subsequences to target 
word subsequences ['or each transcribed utter- 
a nce and its translation. The construction of 
states and transitions is specitied in Section 4; 
the method for selecting phrase head words is 
described in Section 5. The string comparison 
eva.htatiol~ metric we use. is described in Sec- 
lion 6, atl(l the results o[ testing the method in 
a limited domain of l';nglish-Spanish translation 
are reported in Section 7. 

2 O v e r v i e w  

2.1 Lexlcal  head t r a n s d u c e r s  

In our training method, we follow tile simple 
lexical head transduction model described by 
Alshawi (1996b) which can be regarded as a 
type of .~ta.tistical dependency gra.ntmar trans- 
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duction. This type of transduction model con- 
sists of a collection of head transducers; the pur- 
pose of a particular transducer is to translate 
a specific source word w into a target word v, 
and further to translate tile pair of sequences of 
dependent words to the left and right of w to 
sequences of dependents to the left and right of 
c. When applied recursively, a set of such trans- 
ducer> effects a hierarchical transduction of the 
source string into the target string. 

A distinguishing property of head transduc- 
ers, as compared to 's tandard '  finite state trans- 
ducers is that  they perform a transduction out- 
wards fi'om a 'head' word in the input string 
rather than by traversing the input string froln 
left to right. A head transducer for translating 
source word w to target word v consists of a set 
of states q0(w: v) .qt(w : v).q2(w : v) . . . .  and 
lransilions of the forln: 

( v i i i .  : , ,).  qj( l , ,  : ~,), .<~, <:, ,~,, 5 )  

where the transition is from state qi(w : v) to 
state qj(w : v), reading the next source depen- 
dent 'wd at position o. relat:ive to w and writing 
a target dependent t, d a l position /~ relative to 
v. Positions left of a head (in the source or tar- 
get) are indicated with negative integers, while 
those right of the head are indicated with posi- 
tive integers. 

The head transducers we use also include tile 
following probability parameters for start,  tran- 
sition, and stop events: 

P(start ,  q(w:  v)lw ) 
P ( q j ( . w  : v ) ,  wd,  vd, o,, /31qi( w : v)  ) 
t ' ( ,~tol ,  lq( ~. : v) ) 

In the present work, when a model is ap- 
plied to translate a source sentence, the cho- 
sen derivation of the target string is the deriva- 
tion that  maximizes tile product of tlle above 
transducer event probabilities. The transduc- 
tion search Mgorithm we use to apply the trans- 
lation model is a bot tom-up dynamic program- 
ruing algorithm similar to the analysis algorithm 
for relational head acceptors described by AI- 
sham (1996a). 

2.2 Training m e t h o d  
The training method is organized into two main 
stages, an alignment stage followed by a trans- 
ducer construction stage as shown in Figure 1. 

f ( w )  ... f ( w ~ )  ... [ ... f ( ~ )  ... 

Figure 2: Partitioning the source and target 
around a head w with respect to f 

The single input to the training process is a 
bitext corpus, constructed by taking each ut- 
terance in a corpus of transcribed speech and 
having it manually translated. We use the ternl 
bitcxt in what follows to refer to a pair consist- 
ing of the transcription of a single utterance and 
its translation. 

The steps in the training procedure are as fol- 
lows: 

1. For each bitext, compute an alignment func- 
tion f from source words to target words, using 
the method described in Section 3. 

2. Partition the source into a head word w and 
substrings to the left and right of w (as shown 
in Figure 2). The extents of the partitions pro- 
jected onto the target by f must not overlap. 
Any selection of tile head satisfying this con- 
straint is valid but the seleclion method used 
influences accuracy (Section 5). 

3. Continue partitioning the left and right sub- 
strings recursively around sub-heads wl and w,,. 

4. Trace hypothesized head-transducer transi- 
tions that  would output  the translations of the 
left and right dependents of w (i.e. wl and iv,,) 
at the appropriate positions in the target string, 
indicated by f .  This step is described in more 
detail below in Section 4. 

5. Apply step 4 recursively to partitions headed 
by wl aim w~, and then their dependents, until 
all left and right partitions have at most one 
word. 

6. Aggregate hypothesized transitions to form 
tile counts of a maximum likelihood head trans- 
duction model. 

The recursive partioning of the source and tar- 
get strings gives the hierarchical decomposition 
for head transduction, in step 2, tile constraint 
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Figure it: l-lead transducer training method 

on target partitions ellsures that  the transduc- 
tion hylmthesized ill training does not contain 
ClOSSl::g d e p e n d e n c y  s t r t l c t t l res  ill t h e  t a r g e t .  

3 A l i g n m e n t  

The first sta.ge in the training process is ob- 
taining, for each bitext, an alignment flmction 
f : W ~+ V mapping word subsequences W in 
the source to word subsequences V in the tar- 
get. In this process a.n alignment model is con- 
structed which specifies a cost for each pairing 
(!IV, V) of  sou rce  and  t a r g e t  subseq t lences ,  and  
an alignment search is carried out to minimize 
the sum of the costs of a set of pairings which 
completely maps the bitext source to its target. 

3.1 Al ignment  model  

The cost of a pairing is composed of a weighted 
combination of cost, functioIls. We currently use 
two. 

The first cost function is tile 05 correlation 
ineasure  (cf the use of 0 2 h: Gale and Church 
(1991)) computed as follows: 

c) = (be  - a d )  

, / (a  + b)(c + d)(a + + ,l) 

w here 

(t ~ 7IV -- I/W,V 

b ~ '/l ~ v v 

c -- I V  - 'tz V - ~,!.I '  + 7tW, V 

d ~ -  ll, j v  - 'ii,,{.v, V 

N is tile total nunfl)er of bitexts, nv the number 
of bitexts in which V appears in the target, nw 
the number of bitexts in which FV appears ill 
the source, and ~twy the nulnber of bitexts ill 
which IU a p p e a r s  in the  sou rce  and  V a l )pears  
ill the target. 

We tried using the log probabilities of tar- 
get subsequences given source subsequences (cf 
Brown et al. (1990)) as a cost function instead 
of05 but 05 resulted in better performance of our 
translation models. 

The second cost. function used is a distance 
measure which penalizes pairings in which the 
source subsequence and target subsequence are 
in very different positions in their respective 
sentences, l)ifferent weightings of distance to 
correlation costs can be used to bias the model 
towards more or less parallel alignments for dif- 
ferent language pairs. 
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3.2 Al ignment  search 

The agenda-based alignment search makes use 
of dynamic programming to record the best cost 
seen for all partial alignments covering the same 
source and target subsequence; partial align- 
ments coming off the agenda that have a higher 
cost for the same coverage are discarded and 
take no further part in the search. An effort 
limit on the number of agenda items processed is 
used to ensure reasonable speed in the search re- 
gardless of sentence length. An iterative broad- 
ening strategy is used, so that  at breadth i only 
the i lowest cost pairings for each source subse- 
quence are allowed in the search, with ttle result 
that  most optimal alignments are found well be- 
fore tlle effort limit is reached. 

In the experiment reported in Section 7, 
source and target subsequences of lengths 0, 1 
and 2 were allowed in pairings. 

4 T r a n s d u c e r  c o n s t r u c t i o n  

Building a head transducer inw)lves creating ap- 
propriate head transducer states and tracing hy- 
pothesized head-transducer transitions between 
them that are consistent with tile occurrence 
of the pairings (W, f ( W ) )  in each aligned bi- 
text. When a source sequence W in an align- 
ment pairing consists of more than one word, 
the least frequent of these words in the train- 
ing corpus is takml to be the p~'imaw word of 
the subsequence. It is convenient to extend the 
domain of an alignment function f to include 
primary words w by setting f (w) = f ( W ) .  

The main transitions that are traced in our 
construction are those that  map heads, wt and 
w~, of the the right and left dependent phrases 
of w (see Figure 2) to their translations as indi- 
cated in tile alignment. The positions of these 
dependents in the target string are computed 
t) 3' comparing the positions of f(wl) and f(w,.) 
to the position of' V = f (w).  The actual states 
and transitions in the constrnction are specified 
below. 

Additional transitions are included for cases 
of compounding, i.e. those for which the source 
subsequence in an alignment function pairing 
consists of more than one word. Specifically, 
the source subsequence W may be a compound 
consisting of a primary word w together with 
a secor~.daT" 9 word w'. There are no additional 
transitions for cases in which the target subse- 

quence V = f (w)  of an alignment function pair- 
ing has more than one word. For the purposes of 
the head-transduction model constructed, such 
compound target subsequences are effectively 
treated as single words (containing space char- 
acters). That  is, we are constructing a tran- 
ducer for (w : V). 

We use the notation Q(w : V) for states of 
the constructed head transducer. IIere Q is an 
additional symbol e.g. "initial" for identifying 
a specific state of this transducer. A state such 
~s initial(w : V) mentioned in the construction 
is first looked up in a table of states created 
so far in the training procedure; and created if 
necessary. A bar above a substring denotes the 
number of words preceding the substring in the 
source or target string. 

We give tile construction for the case illus- 
trated in Figure 2, i.e. one left dependent wt, 
one right dependent w~, and a single secondary 
word w' to the left of w. Figure 3 shows the 
result as part of a finite state transition dia- 
gram. The other transition arrows shown in the 
diagram wilt arise from other bitext alignments 
containing (w : V) pairings. Other cases cov- 
ered by our algorithm (e.g. a single left, depen- 
dent but no right dependent) are simple vari- 
ants. 

"l/J l 

lOt :C 

f(wt) 

/ 

--I:0 

') left~,,(w 

-1 :/31 

') mid~ I (w 

wr f(w~) ]+1:/32 

v) 

v) 

v) 

v) 

Figure 3: States and transitions constructed for 
tile partition shown in Figure 2 

1. Mark initial(w : V) as an initial state for 
the transducer. 

2. Include a transition consuming the secondary 
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word ~ / w i t h o u t  any target output: 
(in.trial(w: V), left,~,,(w: V), w', ( , -1 ,0 ) ,  
where ~: is the empty string. 

3. Include a transition for mapping tile source 
dol)en(lent tL;l to the target dependent f(w/): 
(le ft,:,(w : V), mid+~(w : V), wl, f(wl), -1,9l)  
where/~z = f(wl) - V. 

4. Include a transition for real)ping the source 
deI)endent wr to tile target dependent f('w,.): 
(mid~,(,,+ : V), firz(d(w : V), w,., f(w,.), +1,/J,.) 

where/3,. = f(w,,) - V. 

5. Marl( fincd(w : V) as a tinal state tot" tile 
t r a n s d  u{;er. 

The inclusion of transitions, and the marking 
of states as initial or final, are treated as event 
observation counts for a statistical head trans- 
duction model. More specifically, they are used 
as counts for maxinmm likelihood estimation of 
the transducer start., transition, and stop prob- 
abilities specified in Section 2. 

,5 H e a d  s e l e c t i o n  

We have l>een using the following monolingual 
metrics which can t)e at)plied to either the 
s o u r c e  or  t a r g e t  Iangllage.  to  predict the likeli- 
hood of a word being the head word of a string. 

DistaT~ce: The distance between a dependent 
and its head. In general, the likelihood of a 
head:dependent relation decreases as distance 
increases (Collins, 1996). 

I'l/ord frequcncg: The frequency of occurrence 
of a word in the training corpus. 

IVor<t 'complexity': I'k}r languages with pho- 
netic orthography such as t~;nglish, 'complexity' 
of a word can be measured in terms of number 
of characters in that  word. 

Optionalit9: This metric is intended to iden- 
tify optional modifiers which are less likely to 
be heads. For each word we lind trigrams with 
the w<)r(t of interest as the middle word and 
compare tile distribution of these trigrams with 
the distribution of the bigrams formed from the 
outer pairs of words. If these two distributions 
are strongly correlated then tile word is highly 
optional. 

Each of the above metrics provides a score for 
the likelihood of a word being a head word. A 
weighted sum of these scores is used to produce 
a ranked list of head words given ast r ing for use 

in step 2 of the training algorithm in Section 2. 
If the metrics are applied to the target language 
instead of the source, the ranking of a source 
word is taken from tile ranking of the target 
word it is aligned with. 

In Section 7, we show the effectiveness of ap- 
propriate head selection in terms of the trans- 
lation performance and size of tile head trans- 
ducer model in tile context of an English- 
Spanish translation system. 

6 E v a l u a t i o n  m e t h o d  

There is no agreed-upon measure of machine. 
translation quality. For our current purposes 
we require a. measure that  is o[>.jective, reliable, 
and that  can be calculated automatically. 

We use. here the word accuracg measure of 
tile string distance between a reference string 
and a result string, a measure standardly used 
in the automatic speech recognition (ASR) corn: 
munity. While for ASR the reference is a human 
transcription of tile original speech and the re: 
sull tile output of the speech recognition process 
run on the. original sl)eech , we use. the measure 
to compare two different traIlslations of' a given 
source, tyl>ically a truman translation and a ma- 
chine translation. 

The string distance metric is computed by 
first finding a transformation of one string into 
another that  minimizes the total weight, of sub- 
stitutions, insertions and deletions. (We use 
the same weights for these operations as in the 
NIST ASR evaluation software (NIS, 1997).) If 
we write ,5' for the resulting number of substi- 
tions, I for insertions, 1) for deletions, and ]g 
for number of words in the reference translation 
string, we can express the metric as follows: 

D + s + i ) 
word accuracy = ([ /~ 

This measure has tile ,nerit of being coin- 
pletely automatic and non-subjective. How- 
ever, taking any single translation as reference 
is unrealistically nnfavourable, since there is a 
range of acceptable translations. To increase 
the reliability of the measure, therefore, we give 
each system translation tile best score it receives 
against any of a nuInber of independent human 
translations of the same source. 
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m a x  s o u r c e  l ength  
5 10 15 20 >20 

w f w  45.8 46.5 4512 44.5 44.0 
sys 79.4 78.3 77.3 75.2 74.1 

Table 1: Word accuracy (percent) against the 
single held-out human translation 

7 E n g l i s h - S p a n i s h  e x p e r i m e n t  

Tile training and test da ta  for the experiments 
reported here were taken from a set of tran- 
scribed utterances from the air travel infor- 
mation system (ATIS) corpus together with a 
translation of each utterance to Spanish. An 
utterance is typically a single sentence but is 
sometimes more than one sentence spoken in se- 
quence. There were 14418 training utterances, 
a total of 140788 source words, corresponding to 
167865 target words. This training set was used 
as input to alignment model construction; align- 
ment search was carried out only on sentences 
up to length 15, a total of 11542 bitexts. Trans- 
duction training (including head ranking) was 
carried out on the 11327 alignments obtained. 

The test set used in the evaluations reported 
here consisted of 336 held-out English sentences. 
We obtained three separate human translations 
of this test set: 

t r l  was translated by tile same translation 
bureau as the training data; 

t r2  was translated by a different translation 
bureau; 

e r l  was a correction of tile output  of the 
trained system by a professional translator. 

The models evaluated are 
sys: the automatically trained head trans- 

duction model; 
wfw: a baseline word-for-word model in 

which each English word is translated by the 
Spanish word most highly correlated with it in 
the corpus. 

Table 1 shows the word accuracy percent- 
ages (see Section 6) for the trained system sys 
and the word-for-word baseline w f w  against t r l  
(the original held-out translations) at various 
source sentence lengths. The trained system 
has word accuracy of 74.1% on sentences of all 
lengths; on sentences up to length 15 (the length 
on which the transduction model was trained) 
the score was 77.3%. 

m a x  s o u r c e  l ength  
5 10 15 20 >20 

~--fw 46.2 47.5 46.6 45.8 4 5 ~  
sys 80.1 81.6 81.0 79.3 78.5 

Table 2: Word accuracy (percent) against the 
closest of three human translations 

Head selector 

Baseline 
(Random Heads) 

Word 
accuracy 

64.7% 

Nuinber of 
parameters 

108K 

In Source 71.4% 67K 
In Target (sys) 74.1% 66f( 

Table a: Translation performance with different 
head selection methods 

Table 2 shows the word accuracy percentages 
for the trained system sys and the word-fbr- 
word baseline w f w  against any of the three ref- 
erence translations t r l ,  e r l ,  and t r2 .  That  is, 
for each output  string the huinan translation 
closest to it is taken as the reference transla- 
tion. With this more accurate measure, the sys- 
tem's word accuracy is 78.5% on sentences of all 
lengths. 

Table 3 compares the performance of the 
translation system when head words are se- 
lected (a) at random (baseline), (b) with head 
selection in the source language, and (c) with 
head selection in the target language, i.e., select- 
ing source heads that  are aligned with the high- 
est ranking target head words. The reference for 
word accuracy here is the single reference trans- 
lation t r l .  Note that  the 'ln Target '  head selec- 
tion method is the one used in training trans- 
lation model sys .  The use of head selection 
metrics improves on random head selection in 
terms of translation accuracy and number of pa- 
rameters. An interesting twist, however, is that 
applying the metrics to target strings performs 
better than applying the metrics to the source 
words directly. 

8 C o n c l u d i n g  r e m a r k s  

We have described a method for learning a head 
transduction model automatically from trans- 
lation examples. Despite the simplicity of the 
current version of this method, the experiment 
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we reported in this paper demonstrates that 
the method leads to reasonable performance 
for English-Spanish translation in a limited do- 
main. We plan to increase the accuracy of the 
model using the kind of statistical modeling 
techniques that have contributed to improve- 
ments in automatic learning of speech recogni- 
tion models in recent years. We have started 
to experiment, with learning models for more 
challenging language pairs such as I;2nglish to 
Japanese that exhibit more variation in word 
order and complex lexical transformations. 
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