
CHINESE STRING SEARCHING USING TtIE K M P ALGORITHM

Robert W.P. Luk
Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong

E-mail: csrluk@comp.polyu.edu.hk

Abstract
This paper is about the modification of KMP

(Knuth, Morris and Pratt) algorithm for string
searching of Chinese text. The difficulty is searching
through a text string of single- and multi-byte
characters. We showed that proper decoding of the
input as sequences of characters instead of bytes is
necessary. The standard KMP algorithm can easily be
modified for Chinese string searching but at the
worst-case time-complexity of O(3n) in terms of the
number of comparisons. The finite-automaton
implementation can achieve worst-case time
complexity of O(2n) but constructing the transition
table depends on the size of the alphabet, Z, which is
large for Chinese (for Big-5, Z > 13,000). A mapping
technique reduces the size the alphabet to at most IPI
where P is the pattern string.

1. Introduction
The alphabet size of Chinese (to be more precise

Hanyu) is relatively large (e.g. about 55,000 in Hanyu
Da Cidian) compared with Indo-European languages.
Various internal codes (e.g. GB, Big5, and Unicode)
have been designed to represent a selected subset
(5000-16,000) which requires two or more bytes to
represent. For compatability with existing single-byte
text, the most significant bit of the first byte is used to
distinguish between multi-byte characters and single-
byte characters. For instance, Web browsers (e.g.
N etscape) cannot interpret the annotations represented
by their equivalent 2-byte characters. Thus, Chinese
string searching algorithms have to deal with a
mixture of single- and multi-byte characters.

This paper will focus in 2-byte characters because
their internal codes are widely used. Two modified
versions of the KMP algorithms are presented: the
classical one and the finite-automaton implemenation.
Finally, we discuss the practical situations in Chinese
string searching.

2. The Problem
Directly using existing fast string searching

algorithms (Knuth et al.,1977; Boyer and
Moore,1977) for on-line Chinese text can lead to
errors in identification as in using the find option of
Netscape in Chinese window. For example, the pattern
string, P = ~ (i.e. AA,AA in hexidecimal) can
successfully match with the second and third bytes of
the text string, T:¥°'7/ (i.e. A4,AA,AA,43 in
hexidecimal) which is incorrect. The error occurs

where the second byte of the character in 7' is
interpreted as the first-byte of the pattern character.
Thus, it is necessary to decode the input data as
characters.

Two well-known string searching algorithms were
discovered by Knuth, Morris and Pratt (1977) (KMP),
and Boyer and Moore (1977) (BM). The KMP
algorithm has better worst-case time complexity
where as the BM algorithm has better average-case
time complexity. Recently, there has been some
interest in improving (Hume arid Sunday, 1991;
Crochemore et al., 1994) the time complexity or
proving a smaller bound (Cole, 1994) of the time-
complexity of the BM algorithm, as well as in the
efficient construction (Baeza-Yates et al., 1994) of the
BM algorithm. These algorithms derived from BM
assumes that knowing the positional index, i, of the
text string, 7, can access and interpret the data, T[i], as
a character. However, with a text string of single- and
multi-byte characters, i can point to the first-byte or
the second-byte of a 2-byte character which the
computer cannot determine in the middle of the text
string. It has to scan left or right until a one-byte
character, the beginning of the text string or the end of
the text string is encountered. For example, the BM
algorithm moves to position i : 4 (= lIPID for
matching in Table 1. At this position, T[4] (= A4) does
not match with P[4]. Since the computer cannot
determine whether T[4] is the first or second byte of
the 2-byte character, it cannot use the delta tables to
determine the next matching states. Even worst, for
some internal code (e.g. Big-5), it is not possible to
directly convert the byte sequc~ce into the
corresponding character sequence in the backward
direction. Thus, as a first step, we focus on modifying
the KMP for Chinese string searching.

i I 12 3 14 5 [6 7 [8

Til l A4 A3 A4 A0 A4]A7 A4 I I)F
P < ~ >

P[i 1 3C A4 I A4 3E
'Fable I: Matching between the text string, T:L~£~aH§~f3
and the pattern string, p = < n a > . Here, 7'[] and P[[shows
the hexidecimal value of each byte in T and P.

3. Knuth-Morris-Pratt Algorithm.
3.1 Searching

Figure 1 is the listing of the modified version of
KMP algorithm (Knuth et aL, 1977) for searching

llll

Chinese string. Here, i is the positional index of the
text string but the position is specified in terms of
bytes. By comparison, j is the positional index of the
pattern string, P, and the position is in terms of
characters. Characters in P are stored in two arrays
PI[] and P2[]. Here, PI[] stores the first-byte and
P2[] stores the second byte of two-byte characters in
P. If there are single-byte characters in P, they are
stored in Pl[] and the data in corresponding positions
of P2[] are undefined. Here, we assumed that a NULL
character is patched at those positions. For example, if
P=<c~£<~£¥i>, then the values in PI[] and P2[] are
shown in Table 2.

1 ,function Chinese_KMP

{ in t i= l ; j=l ;

while CO" <= IPO ~ 0 <= li7]0) {
(lone-byte-character(Till)

/* decode single- or 2-byte characters */
7 { while (0"!:0) && (T[i]/=PI[j]))

/* 1-byte character matching */
8 j = next[j]; /*failure link */
9 i++; /* update iposition */
1o }
11 else { while ((j!=O) && ((F[iI!=PI[j]) II
(l'[i+ l]!=P2li]))) /* matching */
12 j = next[j]; /*failure link */
13 i+ = 2; /* update i position */
14 }
15 j + = 1; /* update j position */
16 } /* while-loop ends */
17 if (J > IPD then returnO-IIPll);

/* compute matehed position */
18 else return(O); /* no matchedposition */
19 }
Figure 1: A modified version of KMP for Chinese string
searching. The function, one-byte-character, determine
whether the current input is a single or 2-byte character, by
testing whether the converted integer value of T[i] is
positive or negative. If the converted value is negative, then
7".//.] is the first-byte of a 2-byte character. Here, J T I and l J 7]]
are the length of the text string, 7; in terms of characters and
bytes, respectively.

The program in Figure 1 determines (in line 6)
whether the current input character is a single- or
two-byte character. If it is a single-byte character, the
standard KMP algorithm operates for that single-byte
character, T[i], in line 7 to 10. Otherwise, i is pointing
at a two-byte character. This implies that: (a) matching
2-byte characters is carried out where the data in
T[i+ 1] is the second byte of the character (line 11);
and (b) i is incremented by 2 instead of 1, because it is
counting in terms of bytes (line 12). Sincej is counting
in terms of characters, the increment o f j One 15) is
one whether the characters in P are single or two bytes.
When the pattern string is found in T, the position of
the first matched character in T is returned. Since the
position is in terms of bytes, it is the last matched
position, i, minus the length of P in terms of bytes (i.e.
IIPII).

Character < ~£ < ~£ ¥i >
P[Jl
j 1 2 3 4 5 6

PI[j] 3C A4 3(2]' A4 A5 3E
P2[jJ N1JLL A 3 " N U L L t- A3 69 NUI,L

.

f (P [J l) < a < a b >
next[j] 0 1 0 1 3 O '

Table 2: The values of the patterns indexed byj. llere, P[] is
a conceptual array which can hold both single- and 2-byte
characters. This array is implemented as two arrays: PI[]
and P2[] which stores the first and second byte of the 2-byte
characters, respectively. The function, f(), maps two byte
characters into single-byte characters, simplifying the
generation of values in the array, next[], and the failure links
in fl[].

3.2 Generating nextll
The array, next[], contains the failure link values

which can be generated by existing algorithms
(Standish, 1980) for single-byte characters. The basic
idea is to map the 2-byte characters !:~ ~ to single-byte
characters and then use existing algorithms. The
mapping is implemented as an array, f[]. Each
character in P is scanned from left-ro-right. Whenever
an unseen character is found, it is assigned a character
value that is the negative of the amount of different
2-byte characters seen so far. For example, the third
unseen 2-byte character is mapped to a one-byte
character, the value of which is (char) -3.

The mapping scheme is practical. First, the number
of different characters that can be represened with a
negative value is 127 and usually IP] < 128 characters.
Second, the t ime-complexity of mapping, O(] IP[D, can
be done in linear time with respect to IPj and in
constant time with respect to 17]. This is important
because it is added to the total t ime-complexity of
searching. To achieve O(1 tPI D, the function, found(),
uses an array, f[], of size 1El (where I2 is the alphabet)
to store the equivalent single-byte characters. A
perfect hash function (section 4), hO, converts the 2-
byte characters into an index off[]. After searching, it
is necessary to clear]'[]. This can be (tone in O(]IPLD
by assigning NULL characters to the locations in f[]
corresponding to 2-byte characters in P.

4. Finite automaton implementation.
Since [I 711 is large, reducing its multiplicative factor

in the time complexity would be mtractive. In Knuth et
al., (1977), this was done using a finite automaton
which searches in O(]IT]D instead of 0(21171L).
Standish (1980) provided an accessible algorithm to
build the automaton, M. First, failure link values are
computed (similar to computing values in next[.]) as in
Algorithm 7.4 (Standish, 1980) and then the state
transitions are added as in Algorithm 7.5 (Standish
1980). A direct approach is to compute the conceptual
automaton, Me, which regards the 2-byte characters as

1112

one-byte and then convert the automaton for multi-
byte processing. Since the space-time complexity in
constructing the automaton depends on the size of the
alphabet (i.e. o(]ElxlQcD where Qc is the set of states
o f Me) which is large, this approach is not attractive.
For instance, if IQcl - / 0 and I~1 ~ I0,000, then about
100,000 milts of storage (integers) are needed! I,'urther
processing is needed to convert the automaton for 2-
byte processing!

4.1 Automaton lmplemeutation.
Another approach uses the different characters in P

as the reduced alphabet, Er, which is much smaller
than 121. We use a mapping function as discussed in
section 3.2 to build a mapping of 2-byte characters to
one-byte. These one-byte characters and the standard
one-byte characters (e.g. ASC[1) fbrm Er. The NULl,
character, Z, represents all the characters in)..; but not
in Zr = {X} (= Z * 02r ~ {)@'). Given that the multi-
byte string, P, is translbrmed into a single-byte string,
l", existing algorithms can be used to construct the
automaton.

For each pattern string, 1', string searching will
execute the tbllowing steps:

(a) convert 2-byte characters to one-byte in P to lbrm
t" (i.e. lbrm £r) using mapping as in section 3.2;

(b)compute the failure link values of 1" using
/

Algorithm 7.4 in (Standish, 1980);
(c) compute the success transitions and store them in

80 as in (Standish, 1980);
(d)compute the failure transitions using the failure

link values using Algorithm 7.5 in (Standish, 1980)
and store the transitions in 80;

(e) use the atttomaton, M, with state transition fimction
80, to search for t " in T;

(1) output the matched position, if any;
(g) clear that mapping lhnction that forms Zr using P.

4.2 Constructing the automaton.
For step (c) and (d), the operation of Algorithm 7.5

was illustrated with an example o f a binary alphabet in
(Standish, 1980). Here, we illustrate the use of a larger
alphabet, Zr, and £ e Er. Suppose the pattern string, 1',
is as shown in Table 2 which also contains the
corresponding P ' and failure link values, fl[]. The
success transitions are added to 80 as 80'-I, P'[j]+- j
(e.g. 8(0,<)4- l and 8(I,a)<-- 2). The failure transitions
are computed from 0 to I/"1 becausefl[j] <j . For state
O, 8(0,00+- 0 ifo~ ~ P'[1] andcz c Er (i.e. 8(O,a) 4-- O,
8(0,b)4- O, 6(0,>)4- O, 8(O,X) 4- 0 but 8(0,o 0 ~- I).
For other states, 8(j, c04- 8(fl[/],c 0 ifc~ ¢ P'[j] and ¢x

Zr (e.g. 8(1,a)4- 807[lJ, a)-8(O,a)=O and 8(I ,<)4-
8(fl[1],<)~8(0,<)=1). Effectively, the states in
8(/l[/],.) are copied across to the corresponding entries
in 8(j,.) except for the successfid transition from j.

Figure 2 illustrates how a:ro~ of entries in 6(/l[/],.) arc
copied across to compute 80,.).

I i

Z
3

4

5

6

Figure

a

0

_2

0

4

0/

b X

0

0

° ° t 5 0 .

fl[1] j Kay:

0 " ~ copy state trarlsiliolTs from
0 one location to the other

o
' \ failure link points back

J ~ to previous state transitions
1 / for copying

2

2: An il lustration o f c¢mstructing the lhilure
transitions ofM. I lere,j :: 4 and the failure link oi)' (i.e.Jl[4/
:- 2) is used to determine which of the previous row of the
state transition ruble, 60, is used for updating the values of
the current row in 80. The underlined entries are the success
transistions.

Figure 3 shows the program that computes the state
transitions using the faihtre links. The program
computes for state 0, the last states and the other states
separately. The last state is distinguished because it
has no success transitions where as the other has one
['or each state. The program for generating failure links
is not given because:

(1) it is similar to computing next[];
(2) a version is available (Algorithm 7.4 in Standish,

1980) which does not need any modification.

I void buildtransitions 0
2
3 {
4 int i=O, j=O, k=O;
5
6 .)rot. (i=-[)]2[;i<=]~.l[;i F ~) /* build lransistions at] = 0 */

7 if((chaO i =-Pll]) 60,i)=1;
8 else ~(0,0=0;
9 j b r (j = l j <]l'l;j+ 19 [/* build other transitions which has
success (ranistions */

to k =f ib l ;
I t ./o; (i=-IE2l; i<=lZl l ; i+-t)
12 if((cha,') i = = l'iJ'+l]) 8(j,i)~j+l, '
13 else ~(j,i)-= 8(k,O; }
14 k :Cfl[]l'[];/* fldlure U'ansitions f o r j - [PI */

15 ./'or O=-]Z2[,'i<=[Ell;i+-I) /* there is no success
transi(ion in (his case */
16 8(j,i) = 8(k,i);
17)

Figure 3: I~uilding the state mmsi t ions g iven ttmt the thiha'e
links are known. Note that the a lgor i thm assumed that Zr :
ZIuE2 where ZI and Z2 arc the one-byte (e.g. ASCII)
clmracter alphabet and the transtbrmed l-byte character
alphabet representing the different two-byte characters in P,
respectively. Futhermore, since [Y,2[< 128 and Z2 c Z. A
multiplicative fimtor of the space-tim,," complexity can be
reduced if mapping is also carried out for single-byte as well
as 2-byte characters in 1'. The correctness of the above
program can be shown by mapping all the characters not in
:'2r to E because they have idenitical state mmsition wdues
(i.e. dividing the alphabet into equivalent classes of identical
transition vahms).
4.3 Searching.

1113

Searching is implemented as state transitions of M
(Figure 4). Initially, the state of the automaton, M, is
set to 0. The next state is determined by the current
character read from the text string, T, at position i and
the current state. If the current state is equal to IP'I,
then P is in Tat position i - [[Pl].

1 in tFAKMP 0
2 {
3 int i=l; state=O;
4 while ((state/= IPO && (i <= IITID) {
5 ifone-byte-character(7[i]) /* decoding front-end */
6 input character = (inO Till;
7 else { input_character =found(T[i], T[i+l]);
8 i++}; /* update for 2-byte character */
9 state = 8(state, inputcharacter);
10 i++;
11 }
12 if(state == IPD return (i- IlPlL~,
13 else return(O);
14 }
Figure 4: String searching of multi-byte characters using the
finite automaton.

5. Practical considerations.
The KMP algorithm (Knuth et al., 1977) was

considered to perform better when the pattern string
has recurrence patterns. Otherwise, it is about the same
as the brate-force implementation with quadratic
time-complexity. For Chinese string searching, it is
not uncommon to search for reduplicating words (e.g.
~3"'S~.3 and §O§(31AOIAO) (Chen et al., 1992) which has
recurrence patterns. Such repetition to form words is
used in making emphasis as well as an essential part of
yes-no questions. Otherwise, recurrence patterns in P
occur only incidentally (e.g. nn~j~n~WA~3Aq"t
translated as the Department of Chinese, Chinese
University of Hong Kong).

Apart from recurrence, if there are a lot of backing
up operations, the KMP algorithm would perform
better than the brute-force implementation. Such cases
occur where a proper prefix of the pattern string has
high occurrence frequency in the text string (e.g.
function words). In Chinese string searching, this will
happen for technical terms that have a high frequency
prefix constituent. For instance, Chinese law articles
have many terms beginning with the word ~ ° ~ (i.e.
China). A search through the Chinese law text for
P : ~ % ~ H will require many backing up (or
committing a false start) in the brute-force
implementation when words or phrases like ~D%"k<ffS,
c~%"°>)fi~g, cm°OkDAv and c~c~%',D~k are encountered.

Sometimes, patterns which are words can match
with text where the matched string of the text is not
functioning as a word. For example, nj.[(which means
conference) can be regarded as a word but in the
phrase, 2"~j.l¶}~@¶i.s"°~Abe, the first character
(underlined) of the matched string (in italics) is part of
a name and the second character (in italics) function as

a verb, Thus, Chinese text is often pre-segmented and
string searching has to patch delimiters to the
beginning and end of the pattern, P. However, the
searching accuracy depends on the segmentation
algorithm which is usually implemented as a
dictionary look-up procedure. If a dictionary has poor
coverage, the text tends to be over-segmented (Luk,
1994) and the recall performance of searching will
drop drastically. Such cases occur if a general
dictionary is used in segmenting technical articles (e.g.
in law, medicine, computing, etc).

REFERENCES
BAEZA-YATES, R.A., C. CIIOFFROT, ¢9. G.H. GONNET (1994)
"On Boyer-Moore automata", Algorithmica, 21, pp. 268-
292.

BOYER, R. & S. MOORE (1977) "A fast string searching
algorithm", Communications o f ACM, 20, pp. 72-772.

CItF, N, F-Y., R-P. J. MO, C-R. HUANG, K-J. CtaEN (1992)
"Reduplication in Mandarin Chinese: their formation rules,
syntactic behavior and ICG representation", Proc. ofR. O. C.
Computational Linguistics Conference V, Taipei, Taiwan,
pp. 217-233.

COLE, R. (1994) "Tight bounds on the complexity of the
Boyer-Moore string matching algorithm", SIAM Journal of
Computing, 23:5, pp. 1075-1091.

COLUSSI, L. (1994) "Fastest pattern matching in strings",
Journal of Algorithms, 16, pp. 163-189.

CROCHEMORE, M. A. CZUMAJ, L. GASIENIEC, S. JAROMINEK,
T. LECROQ, W. PLANDOWSK'{, & W. RYTrER (1994)
"Speeding up two string-matching algorithms",
AIgorithmica, 12, pp. 247-267.

11UME, A. AND D .M. SUNDAY (1991) "Fast string searching",
Software - Practice and Experience, 21:11, pp. 1221-1248.

KNUTH, D.E., J. MORRIS & V. PRATt (1977) "Fast pattern
matching in strings", SIAM Journal of Computing, 6, pp.
323-350.

LUK, R.W.P. (1994) Chinese word segmentation using
maximal matching and bigram techniques, Proc. of R.O.C
Computational Linguistic Conference VII, Hsinchu,
Taiwan, pp. 273-282.

STANDISH, T.A. (1980) Data Structure Techniques,
Addison-Wesley: Reading, Mass.

1114

