
Efficient Integrated Tagging of Word Constructs 
Andrew Bredenkamp 

Frederik Fouvry 
Dept. Language and Linguistics 

University of Essex 
Wivenhoe Park 

Colchester 
Essex CO4 3SQ 
United Kingdom 

Thierry Declerck 
IMS 

University of Stuttgart 
D-70174 Stuttgart 

Germany 
thierry@ims, uni-stuttgart, de 

{ a n d r e w b , f o u v r y } ~ e s s e x . a c . u k  

Bradley Music 
Center for Sprogteknologi 

Njalsgade 80 
DK-2300 Copenhagen S 

Denmark 
music~cst, ku. dk 

Abstract 

We describe a robust text-handling com- 
ponent, which can deal with free text in 
a wide range of formats and can suc- 
cessfully identify a wide range of phe- 
nomena, including chemical formulae, 
dates, numbers and proper nouns. The 
set of regular expressions used to cap- 
ture numbers in written form ("sech- 
sundzwanzig") in German is given as 
an example. Proper noun "candidates" 
are identified by means of regular ex- 
pressions, these being then rejected or 
accepted on the basis of run-time in- 
teraction with the user. This tagging 
component is integrated in a large-scale 
grammar development environment, and 
provides direct input to the grammat- 
ical analysis component of the system 
by means of "lift" rules which convert 
tagged text into partial linguistic struc- 
tures. 

1 Motivation 

1.1 T h e  p r o b l e m  : m e s s y  d e t a i l s  

Messy details are text constructs which do not 
lend themselves well to treatment by traditional 
techniques for linguistic analysis, whence their 
'messiness'. Typical examples are numbers, codes 
or other (sequences of) word-forms which can oc- 
cur in many variations (often infinite), making im- 
possible a comprehensive treatment by traditional 
means. 

There are various types of phenomena classi- 
fied as messy details which can be subclassified 
according to at what level of generality as regards 
text structure they occur, viz. general format 
level, sentence level and word level phenomena. 
General .format level phenomena occur over sen- 
tence boundaries, example being headers, meta- 
comments and tables. Phenomena classified as 

sentence level occur within a single sentence, but 
cannot be considered word constructs of a fixed 
nature. These are more 'linguistic' than the usual 
messy details, but are considered messy details 
since they lend themselves to partial analysis via a 
similar type of pre-processing. Examples of these 
are the use of parentheses and commas which can 
be used within practical implementations as a ba- 
sis for segmentation during pre-processing. 

Word level phenomena are usually the most fre- 
quently occurring messy details, including such 
things as dates, document references of various 
sorts, codes, numbers and proper nouns. For any 
realistic application these types of construct must 
be processed efficiently, the alternative being cod- 
ing them individually in some lexicon and/or im- 
plementing sets of grammar rules for parsing them 
syntactically. 

This problem area was given priority in the EU- 
sponsored LSGRAM project (LRE 61-029) which 
aimed to integrate an approach to messy details 
into a large-scale grammar implementation. The 
coverage of the grammars developed was based on 
corpus analyses within each language group of the 
project, these revealing a large number of messy 
details of the types mentioned. What was called 
for then was an efficient means of identifying word- 
level messy details (or word constructs) such that 
they could be processed in a general way, avoid- 
ing additional grammar rules and the need for an 
infinite number of lexical entries. 

2 The basic approach 
2.1 Ident i f icat ion using regular  

e x p r e s s i o n s  

The types of word construct of interest here lend 
themselves well to identification by matching reg- 
ular expressions over each input sentence (con- 
sidered as a record), tagging them as specific in- 
stances of general phenomena (e.g. dates, num- 
bers, etc.). 

awk is a programming language specifically de- 
signed for in this type of string manipulation 

1028 



(matching, replacement, splitting). It has special 
provisions for treating text in the form of records. 
auk reads input record by record, matching user- 
defined regular expressions and executing corre- 
sponding actions according to whether a match 
has been retold. 

The regular expressions can be stored in vari- 
ables and reused to build more complex expres- 
sions. This is important,  as some of the phenom- 
ena we were at tempting to match were complex 
(see below) and occurred in a vm'iety of formats. 

The auk-implemented tagger developed for this 
project, t a g [ t ,  can be used as a stand-alone tag- 
ger for SGML texts. It has been integrated within 
the text handling procedures of the ALEP system 
after sentence recognition and before word recog- 
nition. When a pat tern matches against the in- 
put, the matched string is replaced with a general 
tag of the relevant type (e.g. DATE, NUMBER). Sub- 
sequent tagging and morphological parsing then 
skip these tags, and further processing (i.e. syn- 
tactic analysis) is based on the tag value, not the 
original input string. 

2.2 S a m p l e  case  : c u r r e n c y  p a t t e r n s  in 
G e r m a n  

t a g i t  has been integrated into the German LS- 
GRAM grmnmar for the identification of word 
constructs occurring in the mini-corpus taken as 
the departure point for the work of the German 
group, consisting of an article on economics (taken 
from the weekly newspaper "Die Zeit"). As usual 
when using 'real-world' texts, mm~y messy details 
were found, including dates and numbers used 
within t)ercentages and, as would be expected 
from the text type, within amounts of currency. 
These occur both with and without numerals, e.g. 
"16,7 Millionen Dollar", "Sechsundzwanzig Mil- 
lim'den D-Mark". The text examples are espe- 
cially problematic given the German method of 
expressing the ones-digit before the tens-digit, e.g. 
"Sechsundzwmmig" is literally "six-and-twenty". 

In order to deal with this phenomenon, reg- 
ular expression patterns describing the currency 
mnounts were defned in awk. First, patterns for 
cardinals were specified, e.g} 

~Umlauted characters and "if' are matched by the 
system, though they are not shown here. 

Note that regular expressions are specified as strings 
and must be quoted using pairs of double quotes. Vari- 
ables are not evaluated when they occur in quotes, so 
quoting is ended, and then restarted after the vari- 
able name, whence the proliferation of double quotes 
within the complex patterns. 

Some auk syntax : "=" is the assignment operator, 
parentheses are used for grouping, "1" is the disjunc- 
tion operator, "?" indicates optionality of the preced- 
ing expression, "+" means one or more instances of the 

two_ to_n lne  : "(  [Zz] . e i  I [Dd] r e i  I [Vv] i e r  I " \  
[Ff] unf I [Ss] echs I [Ss] ieben I [Aa] cht i [Nn] eun)" 

one_to_nine = "( lee] in ["two_to_nine")" 
card = "("one to_nine")" 
number = "[0-9]+(, [0-9]+)?" 
range = "("number" i "card")" 

The actual pattern used in the implementation 
is more complex and goes up to 999, but the ex- 
ample shows the principle. Given this set of vari- 
ables, the pattern assigned to card can matd, 
the text version of all cardinal numbers from ] to 
999, e.g. "Drei", "Neunzehn", "Zweiundzwanzig", 
"Achthundert Ffinflmdvierzig", etc. The value 
assigned to r ange  can match number, optionally 
with a comma as decimal point, e.g. "99,09". The 
following patterns are also needed : 

amount = "(MillionenlMilliarden)" 
currency = "(Mark ID-Mark I Dollar)" 
carmeasure  = " ( ( " amoun t "  ( " c u r r e n c y " )  ?) I " \  

"("currency") )" 
measure = I, ("range" "curmeasure")" 

The last two patterns described define m e a s u r e  

being the succession of a cardinal number (as a 
digit or a string) followed by curmeasure ,  be- 
ing the concatenation of amount and cu r r ency .  
But both of them, amount and cu r rency ,  are de- 
fined as being optional. So that  inputs like "30,6 
Mill[arden Dollar", "Zweiundzwanzig Dollar" or 
"Dreiundvierzig Mill[arden Dollar" are automati- 
cally recognized. But the definition of 'measure '  
disallows the tagging of "Zweiundzwanzig" as a 
'measure '  expression. The tag provided for this 
string will be the same as for any other cardinals. 

t a g i t  applies these patterns to each record 
within the input, assigning the appropriate tag 
information in case a match is found. Further pro- 
cessing is described below. 

3 E x t e n s i o n  f o r  p r o p e r  n o u n s  : 

i n t e r a c t i v e  t a g g i n g  

Proper nouns present another problem that  falls 
under messy details. A small extract  from the cor- 
pus used for tim English grammar showed a wide 
range of possible proper noun configurations : 
"James Sledz", "Racketeer Influenced and Cor- 
rupt  Organizations", "Sam A. Call", "Mr. Ya- 
suda", "Mr. Genji Yasuda", . . .  

Regular expressions can catch several of those 
cases, but  it is difficult to get certainty, e.g. "Then 
Yasuda . . . "  vs "Genii Yasuda" : one can never 
be sure that an English word is not a name in 
another language. Since this is a pre-processing 
treatment,  there is no disambiguating information 
present, and fully automatic tagging cannot be 

preceding expression, square brackets surround alter- 
native characters (possible specified as a range, e.g. 
"[0-9] "). 

1029 



done, unless the program can have access to either 
some lookup facility and/or  can iater~ct with a 
human user. 

3.1 P a t t e r n s  for  p r o p e r  n o u n s  

For financial texts, the domain of our reference 
corpus, the proper nouns are company or institu- 
tion names and person names. Product  and com- 
pany names can be very unconventional. There- 
fore the regular expressions need to be rather gen- 
erous. The interaction with the user and the dic- 
tionaries will provide a way to tune the effect of 
these expressions. 

We defined the proper noun regular expression 
to be nearly anything, preceded by a capital. Per- 
son names can contain initials, and they might be 
modified by titles ("Mr", . . . )  or functions, busi- 
ness names can be modified by some standard ter- 
minology (like "Ltd.").  Lower case words are al- 
lowed if they are not longer than three chm'acters 
(for nmnes containing "and" etc.). 

3.2 I n t e r a c t i n g  w i t h  t h e  u se r  

Tagging proper nouns presents a special prob- 
lem, since, unlike the case of numbers and dates, 
there is a great deal of uncertainty involved 
as to whether something is a proper noun or 
not. Therefore a natural extension to t a g i t  was 
the implementation of an interactive capability 
for confirming certain tag types such as proper 
nouns. 2 

If a proper noun is found, then the tagger first 
does some lookup to limit the number of interac- 
tions during the tagging. We used the two follow- 
ing heuristics : 

1. Has it already been tagged as a proper noun ? 
If so, do it again. 

2. Has it already been offered as a proper noun, 
but  was it rejected ? If so, and if it occurs at 
the beginning of a sentence, reject it again. 

Those two checks are kept exclusively disjunc- 
tive. If a word occurs both as a proper noun and 
as a "non-proper noun", the user will be asked if 
he or she wants it to be tagged. This allows one to 
use different name dictionaries for different texts. 

If the program itself is certain that  a proper 
noun is found, then it tags it and goes on to a 
next match. Otherwise it asks the user what to 
do with the match that  was found. There are two 
possible answers to this question : 

1. The user a c c e p t s  the match as a proper 
noun. The program tags it, stores it for fu- 
ture use, and proceeds. 

2The graphical interface to the interactive tool has 
been implemented in Tel/Tk. 

When the match is not entirely a proper 
noun, the matching string can be edited. This 
consists of removing the words before and /or  
after the first proper noun in the match. 3 The 
remaining substring of the match is tagged as 
a proper noun and stored. The words before 
the first word are skipped (and also stored); 
everything that  comes after the tagged proper 
noun is resubmitted. 

2. The user r e j e c t s  the match that  is offered. 
The program stores it (as a "non-proper 
noun") and proceeds. 

4 Integration with linguistic 
analysis 

The ALEP platform (Alshawi et al., 1991) pro- 
vides the user with a Text Handling (TH) com- 
ponent which allows a "pre-processing" of input. 
An ASCII text will first go through a processing 
chain consisting in a SGML-based tagging of the 
elements of the input. The default setup of the 
system defines the following processing chain : the 
text  is first converted to an EDIF (Eurotra Doc- 
ument Interchange Format) format. Then three 
recognition processes are provided : paragraph 
recognition, sentence recognition and word recog- 
nition. The output  from those processes consist of 
the input decorated with tags for the recognized 
elements : 'p'  for paragraphs, 'S' for sentences, 'W' 
for words (in case of morphological analysis, the 
tag '/4' is provided for morphemes) and 'PT' for 
punctuation signs. Some specialized features are 
also provided for the tagged words, allowing to 
characterize them more precisely, so for exmnple 
'ACR0' for acronyms and so on. 

So the single input "John sees Mary." after be- 
ing processed by the TH component will take the 
f o r m  : 

<P> <S> <W>John</W> 
<W>sees</W> 
<W>Mary</W> 
<PT>. </PT> 

<IS> 
<IP> 

<P> and </P> mark the beginning and the re- 
spective ending of the recognized paragraph struc- 
ture. The other tags must be interpreted analo- 
gously. 

In the default case, it this this kind of infor- 
mation which is the input to the TH-LS compo- 
nent (Text-Handling to Linguistic Structure) of 
the system. Within this component, one specifies 
so-called 'tsAs' (text structure to linguistic struc- 
ture) rules, which transfornl the TH output  into 

3To extend the matches, the user would need to 
change the regular expressions. 

1030 



partial linguistic structure (in ALEP terminology, 
this conversion is called lifting). The syntax of 
these lift rules is the following : 

ts_is_rule( <id>, <tag_name>, 
[<features>f, <tag content> ) 

where : <ld> is a Linguistic Description (LD); 
<tag_name> is the name of an SGML tag (e.g. 'S', 
'W'); <features> is a list of feature-value descrip-- 
tions of the tag's features; <tag content> is tile 
atomic content of tile string within the tag (op- 
tional in the lift rule). 

This kind of mapping rule allows a flow of in- 
formation between text structures and linguistic 
structures. So if the input is one already having 
PoS information (as the result of a corpus tag- 
ging), tim TH-LS is the appropriate place to as- 
sure the flow of information. This allows a consid- 
erable improvement of parse time, since some in- 
formation is already instantiated before the parse 
starts. 

The TIt component of the ALEP platform also 
foresees the integration of user-defined tags. The 
tag <USR> is used if the text is tagged by a user- 
defined tagger, as is done when processing messy 
details. 

When t a g i t  matches a pattern against tim in- 
put, the matched string is replaced with an appro- 
priate USR tag. Thus "l)reiundvierzig Milliarden 
l)ollm'" is matched by the pattern m e a s u r e  (see 
above), and is replaced by the SGML markup <USR 
VAL="Dreiundvierzig Milliarden Dollar" LEVEL=M 

TYPE=MEhSURE>Dreiundvierzig Mil liarden_Dol lar 

</USR> 
Note that tile matched sequence is copied into 

the attribute VAL and that in the data con- 
tent spaces are replaced by underscores. For 
some pattern types, a generalized representation 
of the matched sequence is computed and stored 
in an attribute CONY. For instance, when the 
pattern for dates matches the input "March 15, 
1995", CONV is assigned a standardized version, 
i.e. CONV="95/03/15". 

This version with USR tags inserted is then pro- 
cessed by the set of lift rules. The [bllowing gen- 
eral lift rule does the conversion for all USR tags : 

ts_is rule( 
Id:{ sign => sign:{ 

string => STRING, 
synsem => synsem:{ 

syn => syn:{ 
constype => morphol:{ 

lemma => VALvaluo, 
lu => TYPEvalue } } } } }, 

'USR ' , [ 'TYPE' =>TYPEvalue, ' VAL' =>VALvalue] , 
STRING ) .  

Here we (:an see tile mapping of inforlnation 
between the user-defined tlS/t tag (the attributes 
of which are listed in tim last line of this rule) 

and the linguistic description ('ld'--'linguistic de- 
scription', a structured type within tile Typed 
Feature System), using the rule-internal variable 
TYPEvalue: the value of the attribute TYPE is as- 
signed to the lexical unit ('lu') value of the lin- 
guistic description. After applying this rule to the 
result of matching "Dreiundvierzig Dollar", the ld 
is the following : 

id:{ sign => sign:{ 
string => 'Dreiundvierzig_Dollar', 
synsem => synsem:{ 

syn => syn:{ 
constype => morphol :{ 

lemma => 'Dreiundvierzig Dollar' 
lu => 'M~ASURE' } } } } } 

Although the original input sequence is avail- 
able as the value of the feature l emma,  further pro- 
cessing is based solely on the lu value ' MEASURE', 
thus making it possible to have a single lexical 
entry for handling all sequences matched by the 
pattern m e a s u r e  shown above. The definition of 
such generic entries in the lexicon keeps the lexi- 
con smaller by dealing with what otherwise couhl 
only be coded with an infinite number of entries. 
In addition, treating such word constrncts as a sire 
gle unit gives a significant improvement in parsing 
runtirne, since only the string 'MEASURE' is used 
as a basis for further processing, instead of the 
original sequence of three words. Finally, runtinm 
is also improved and development eased by the 
fact that no grammar rules need be defined for 
parsing such sequences. 

5 Conclusion 

The implementation described here handles a va- 
riety of word-level messy details efficiently, speed- 
ing up overall processing time and simplifying the 
grammars and lexica. General format level and 
sentence level phenomena can be handled in a sim- 
ilar way. Within our project, reimplementation 
using a more powerful tool per1 is taking place, 
allowing filrther extensions to the flmctionality. 

We maintain that user-interaction combined 
with some table lookup is the only viable approach 
to the robust tagging of free texts. The fact that 
an interactive tagging tool can be so easily inte~ 
grated in to the linguistic processing system is of 
obvious and considerable benefit. 

R e f e r e n c e s  

Alshawi H., Arnold ]). J., Backofen R.., Carter 
1). M., Lindop J., Netter K., Pulrnar~ S., Tsuji 
,I., Uszkoreit 11. 1991. l']urotra ET6/h  Rule 
~brmalism and Virtual Machine Design Study 
(final report). CEC 

1031, 


