
Restricted Parallelism in Object-Oriented Lexical Parsing

Peter Neuhaus Udo Hahn
Freiburg University

~ } Computational Linguistics Lab
Europaplatz 1, D-79085 Freiburg, Germany

{neuhaus, hahn}@ coling, uni-freiburg, de

Abstract

We present an approach to parallel natural
language parsing which is based on a con-
current, object-oriented model of computa-
tion. A depth-first, yet incomplete pars-
ing algorithm for a dependency grammar is
specified and several restrictions on the de-
gree of its parallelization are discussed.

1 Introduction

There are several arguments why computational lin-
guists feel attracted by the appeal of parallelism for
natural language understanding (for a survey, cf. Hahn
& Adriaens (1994)): the ubiquitous requirement of en-
hanced efficiency of implementations, its inherent po-
tential for fault tolerance and robustness, and a flavor
of cognitive plausibility based on psycholinguistic ev-
idences from the architecture of the human language
processor. Among the drawbacks of parallel process-
ing one recognizes the danger of greedy resource de-
mands and communication overhead for processors
running in parallel as well as the immense complexity
of control flow making it hard for humans to properly
design and debug parallel programs.

In this paper, we will consider a framework for par-
allel natural language parsing which summarizes the
experiences we have made during the development of
a concurrent, object-oriented parser. We started out
with a rather liberal conception which allowed for al-
most unconstrained parallelism. As our work pro-
gressed, however, we felt the growing need for restrict-
ing its scope as a continuous "domestication process".
While still keeping the benefits of parallelism, we have
arrived at a point where we argue for a basically se-
rial model patched with several parallel phases rather
than a basically parallel model with few synchroniza-
tion checkpoints. Primarily, this change in perspec-
tive was due to large amounts of artificial ambiguities
that could be traced to "blind" parallel computations
with excessive resource allocation requirements. Con-
tinuously taming the parallel activities of the parser

and, furthermore, sacrificing highly esteemed theoret-
ical principles such as the completeness of the parser,
i.e., the guaranteed production of all analyses for a
given input, led us to determine those critical portions
of the parsing process which can reasonably be pur-
sued in a parallel manner and thus give real benefits in
terms of efficiency and effectiveness.

2 Design Requirements for the Parser

The application framework for the parsing device un-
der consideration is set up by the analysis of real-
world expository texts (viz. information technology
product reviews and medical findings reports). The
parser operates as the NLP component of a text knowl-
edge acquisition and knowledge base synthesis sys-
tem.

The analysis of texts (as opposed to sentences in
isolation) requires the consideration of discourse phe-
nomena. This includes the interaction of discourse en-
tities (organized in focus spaces and center lists) with
structural descriptions from the parser and conceptual
information from the domain knowledge base. Thus,
different knowledge sources have to be integrated in
the course of an incremental text understanding pro-
cess.

Within realistic NLP scenarios the parsing device
will encounter ungrammatical and extragrammatical
input. In any of these cases, the parser should guar-
antee a robust, graceful degradation performance, i.e.,
produce fragmentary parses and interpretations corre-
sponding to the degree of violation or lack of grammar
constraints. Depending on the severity of fragmenta-
tion, changes in the parsing strategies which drive the
text analysis might also be reasonable.

These requirements obviously put a massive bur-
den on the control mechanisms of a text understanding
system. In particular, entirely serial control schemata
seem inappropriate, since they would introduce arti-
ficial serialization constraints into basically parallel
processes (Waltz & Pollack, 1985).

502

3 Object-oriented Lexical Parsing

In this section, we introduce the PARSETALK system,
whose specification and implementation is based on
an object-oriented, inherently concurrent approach to
natural language analysis. We consider constraints
which introduce increasing restrictions on the paral-
lel execution of the parsing task. This leads us to a
parsing algorithm with restricted parallelism, whose
experimental evaluation is briefly summarized.

3.1 The PARSETALK Model

The PARSETALK grammar we use (for a survey, cf.
BrOker et al. (1994)) is based on binary relations be-
tween words, e.g., dependency relations between a
head and its modifier, or textual relations between an
anaphor and its antecedent. Restrictions on possible
relations are attached to the words, e.g., expressed as
valencies in the case of dependency relations, yielding
a strictly lexicalized grammar in the sense of Schabes
et al. (1988). The individual behavior of words is gen-
eralized in terms of word classes which are primarily
motivated by governability or phrasal distribution; ad-
ditional criteria include inflection, anaphoric behavior,
and possible modifiers. A word class specifies mor-
phosyntactic features, valencies, and allowed order-
ings for its instances. Further abstraction is achieved
by organizing word classes at different levels of speci-
ticity in terms of inheritance hierarchies. The specifi-
cation of binary constraints already provides inherent
means for robust analysis, as grammatical functions
describe relations between words rather than well-
tormed constituents. Thus, ill-formed input does often
still have an (incomplete) analysis.

Tile PARSETALK parser (for a survey, cf. Neuhaus
& Hahn (1996)) generates dependency structures for
sentences and coherence relations at the text level of
analysis. In order to establish, e.g., a dependency re-
lation the syntactic and semantic constraints relating
to the head and its prospective modifier are checked
in tandem. Due to this close coupling of grammat-
ical and conceptual constraints syntactically possible
though otherwise disallowed structures are filtered out
as early as possible. Also, the provision of con-
ceptual entities which are incrementally generated by
the semantic interpretation process supplies the neces-
sary anchoring points for the continuous resolution of
textual anaphora and ellipses (Strube & Hahn, 1995;
Hahn et al., 1996).

The lexical distribution of grammatical knowledge
one finds in many lexiealized grammar formalisms
(e.g., LTAGS (Schabes et al., 1988) or HPSG (Pollard
& Sag, 1994)) is still constrained to declarative no-
tions. Given that the control flow of text understand-
ing is globally unpredictable and, also, needs to be
purposefully adapted to critical states of the analysis

(e.g., cases of severe extragrammaticality), we drive
lexicalization to its limits in that we also incorporate
procedural control knowledge at the lexical gr,'unmar
level. The specification of lexiealized communication
primitives "allows heterogeneous and local lorms of in-
teraction among (groups of) lexical items. We, never-
theless, take care not to mix up both levels and provide
a formally clean specification platform in terms of the
actor model of computation (Agha & Hewitt, 1987).
In this model each object (actor) constitutes a process
on its own. Actors communicate by sending messages,
usually, in an asynchronous mode. Upon reception of
a message, the receiving actor processes the associ-
ated method, a program composed of several gram-
matical predicates, e.g., SYNTAXCtIECK, which ac-
counts for morphosyntactic or word order constraints,
or CONCEPTCItECK, which refers to the terminolog-
ical knowledge representatiou layer and accounts for
type and further conceptual admissibility constraints
(number restrictions, etc.).

The grammatical description of single words is or-
ganized in a hierarchy of so-called word actors which
not only inherit the declarative portions of grammati-
eal knowledge, but are also supplied with lexicalized
procedural knowledge that specifies their parsing beo
havior in terms of a message protocol. A specialized
actor type, called phrase actor, comprises word actors
which are connected by dependency relations and en-
capsulates inh)rmation about that phrase.

3.2 Parallelism in Parsing

In the following, we discuss three stages of increas-
ing restrictions of parallelism at the word level, all of
which were considered for the design of the algorithm
provided in Section 3.3.

Unbounded Parallelism. Brute-force parsing mod-
els such as the primordial soup algorithm (Janssen
et al., 1992), at first sight, exhibit a vast potential for
parallel execution, since the central operation of build-
ing a structure from two independent parts (in our ap-
plication, e.g., the combination of a head and a sin-
gle modifier) apparently does not require any centr,'d-
ized control. In such an entirely unconstrained paral-
lel model, a word actor is instantiated from the input
string and sends search messages to all other word ac-
tors in order to establish a dependency relation, even-
tually generating a complete parse of the input.

Consider, however, the case in which a Noun is pre-
ceded by a Determiner and an Adjective. In order to
form the noun phrase [Det Aclj [N]] two computation
sequences will occur in a primordial soup parser: at-
taching Det to the N first, then adding Adj , or vice
versa. Hence, the major drawback of unrestricted
parallel algorithms is their non-confluency and, sub-
sequently, either the large (exponential, in the worst

503

case) number of spuriously ambiguous analyses, or
the global operation of subsequent duplicate elimina-
tion. This led us to restrain from unbounded paral-
lelism and, rather, guarantee contluent behavior by the
design of the parsing algorithm.

Conflueney. In the first prototype, we enforced con-
fluency by an incremental structure-building condition
on the basis of a synchronization schema. Messages
were forwarded strictly from right to left wandering
through the preceding context rather than being broad-
casted. Partial structures were organized such that a
message which could be successfully processed at a
larger structure was not forwarded to any of its con-
stituent parts. But still, the number of ambiguities re-
mained prohibitively large, often due to unnecessary
partial structures with large discontinuities. For in-
stance, any determiner preceding a noun forms a new
structure, with the De t modifying the N. Usually, a
contiguity restriction would filter out those structures
given perfectly well-formed input. But such a restric-
tion is detrimental to requirements set up in a realis-
tic text parsing environment, in which the analysis of
(possibly large) fractions of un- as well as extragram-
matical input must be skipped. Furthermore, order-
ing restrictions on dependency analyses lor German
can be formulated more transparently, if discontinu-
ous structures are allowed.

Depth-First Approach. These experiences led to a
redesign of the first prototype. The parser's forward-
ing mechanism for search messages was further re-
stricted to circumvent the above mentioned problem
of erroneous discontinuous (over)analyses. In this ap-
proach, we let phrases that constituted alternative anal-
yses for the same part of the input text be encapsu-
lated in a container actor. Container actors play a
central role in controlling the parsing process, because
they encapsulate information about the preceding con-
tainers that hold the left context and the chronologi-
cally previous containers, i.e., a part of the parse his-
tory. Container actors comprising single-word phrases
are called lexical containers. All phrases in the ac-
tive container send a search message to the current
context container that forwards them to its encapsu-
lated phrases. The search messages are then asyn-
chronously distributed to words within each phrase. If
at least one attachment to one of these phrases is pos-
sible, no further forwarding to containers which cover
text positions preceding the current position will oc-
cur. Thus, the new container composed at this stage
will contain only those phrases that were encapsulated
in the context container and that could be enlarged by
attaching a phrase from the active container.

This procedure enforces a depth-first style of pro-
gression, leaving unconsidered many of the theoreti-

eally possible combinations of partial analyses. Still,
some information has to be retained in order to back-
track after failures or to employ alternative parsing
strategies. We encounter a trade-off between robust-
ness, efficiency, and completeness in parsing. If we
were to allow for unrestricted backtracking, we would
just trade in run-time complexity for space complex-
ity (for a more detailed discussion, cf. Neuhaus &
Hahn (1996)). Hence, we rather restrict backtrack-
ing to those containers in the parse history which hold
governing phrases, while the containers with modify-
ing phrases are immediately deleted after attachment 1 .

3.3 Restricted Parallel Parsing Algorithm

The parsing algorithm of the PARSETALK system is
centered around the head search process of the cur-
rently active word actor. If it fails, a modifier search
process is triggered; if it succeeds, a new dependency
structure is constructed combining the partial analy-
ses. In case both of these protocols are not successful,
containers may be skipped so that discontinuous anal-
yses may occur. If the skipping process encounters a
linguistically valid boundary (in the most trivial case,
the punctation mark of the previous sentence) it stops
and switches to a backtracking mode leading to a kind
of roll-back of the parser invalidating the currently
pursued analysis. In a companion paper (Neuhaus &
Hahn, 1996), we give an integrated description of the
various subprotocols needed for head/modifier search,
ambiguity handling, skipping, backtracking, preferen-
tial and predictive parsing.

In this paper, we concentrate instead on the basic
message passing patterns for the establishment of de-
pendency relations, viz. the s e a r c h H e a d protocol,
and its concurrency aspects. For illustration purposes
we here introduce the protocol in a diagrammatic form
(Figs. 1 to 3). The figures depict the main steps of
word actor initialization, head search, and phrasal at-
tachment. This format eases communication, while
formal specifications based on a temporal logic frame-
work are used when dealing with formal properties of
the parser (cf., e.g., Schacht (1995) for a partial termi-
nation proof of the receipt handler introduced below).

The parser is started by an a n a l y z e : message
directed to a P a r s e r A c t o r , which is responsible
for the global administration of the parsing process
(cf. Fig. 1). It instantiates a L e x k c a l C o n i z a i n e ~ : -
A c t o r that encapsulates the (potentially)ambiguous
readings of the first word of the text, as accessed from
the lexicon and corresponding word classes.

Upon receiving the analyzeWithContext:
message from the P a r s e r A c t o r (of. Fig. 2),

X Hence, the incompleteness property of our parser stems
firom the selective storage of analyses (i.e., an "incomplete
chart" in chart terms), partially compensated by reanalysis.

504

LexicalCont ainer Actor

/~;hraseActor Phra~Actor

""~..analyzoFirst ," ,' new ',', /,,new //
/ ~ . fllow ~ ;](,' anal~eWithContext:

ParserActor

~ 2 > Aeloring J ~ - ~ k aaynchronous message

(~) WordActor -" ~ -'~ synchronous message

Figure I: Protocol for Word Actor Initialization

a ReceiptHandler is instantiated by a syn-
chronous message, intended to detect the partial ter-
mination of the subsequently started search proto-
col. The p e r f o r m S e a r c h H e a d message triggers
(via p e r f o r m S e a r c h H e a d ' 2 o : messages) asyn-
chronous searchHeadFor: messages to be for-
warded by each receiving p h r a s e Ac t o r to its right--
most we r d A c t o r. From this origin, the search mes-
sage can be distributed to all word actors at the right
"rim" of the dependency Irec by simply forwarding
it to Ihe respective heads. After forwarding a, each
s e a r e h H e a d message evokes the check of syntactic
and semantic restrictions by the corresponding meth-
ods. These restrictions nmst be [net in order to estab-
lish a dependency relation between the receiving word
actor and the sender of the n|essage. Provided that
these constraints are fnltilled, an a t t a c h : message
is sent to the encapsulating P h r a s e A c t o r . Before
the new composite phrase can be built, the address of
the next container actor must be determined. Accord-
ingly, the g e t N e x t C o n t a i n e r message either re-
turns this address directly eL if it is not available yet, it
will create the next container actor first (the actual cre-
ation protocol is not shown). The n e w I n : message
subsequently creates a new P h r a s e A c t o r that will
encapsulate the word actors of the new phrase. No-
rice, that several a t t a c h : messages can be received
by a phrase, because the s e a r c h t t e a d messages are
evaluated in parallel by its word actors.

In order to actually build the new phrase a
e o p y A n d A t t a c h : message is sent 3. Fig. 3 depicts
the copying of the governing and modifying phrases

ZSince forwarded messages are sent asynchronously the
processing of the searchHoadFor: message takes place concur-
rently at the forwarding sender m~d the respective receivers.

3As an alternative to the immediate establishment of a
dependency relation, a hoadFound message can be returned
to enable the subsequent selection of preferred attachments
(cf. Neuhaus & Hahn (1996) for such a protocol extension).

Par~erActor Recur llamll~

ana~yzoW~hCtmtmx¢." ~ / ctl~ttBFor:

\ [~ ~.~l~dFt~: ~ (Icttve) {:oi~tllinerActor

(r~nlexl) 1] out Idne rAc/:or ~ , . < ~ ,,, >

Cant~nerAdor

Figure 2: Protocol for the Search for a Head

(active) ContalnerActor

F - - - °°""¢°'= " " : C - - -
< - " ° ~ ' ° " ~ - ~ : ~v/--/' ___ " r )

pdl~ dFeamr,= ' - Fei~ /

~ _ ~q, r ~ ~ ~ -
ContalnerActor

Figure 3: Protocol for Establishing a Dependencies

into the new PhraseActor by copyHeadFor:
and c o p y M o d F o r : messages , respectively - - cot)y-
ing enables alternative attachments in the concur-
rent system, i.e., no destructive operations are carried
out. Note that in contrast to the s e a r c h H e a d mes-
sage the P h r a s e A c t o r lbrwards the copy message
to its root actor from where it is distributed in the
tree. The dependency relation connecting the copied
phrases (indicated by the bold edge in the newly built
P h r a s e A e t o r) is created by the e s t a b l i s h :
message. Since word actors hold information (such
as features or coverage) locally, updates ,are necessary
to propagate the effects of the cre~ttion of the relation.
Alier updating inlormation at relevant word actors in
the resultant tree, successful termination of the scratch
message is signalled to the R e c e i p t H a n d l e r . If
none of the receipts signals success to the handler,
the search head protocol will be followed by moditier
search or backtracking 4 protocols not shown here (cf.

4Thus synchronization of protocols enables word-wise
scanning, backtracking, etc. This avoids severe problems
usually encountered in parsers with unrestricted parallelism.

5 0 5

Neuhaus & Hahn (1996)). In the scenario we have dis-
cussed, the Rece i p t H a n d l e r eventually will detect
the success and the termination of the search head pro-
tocol. Next, the new C o n t a i n e r A c t o r will be sent
an analyzeWithContext : message to continue
the parsing process.

3.4 Preliminary Experimental Evaluation

The efficiency gain that results from the parser design
introduced in the previous sections can empirically
be demonstrated by a comparison of the PARSETALK
system (abbreviated as "PT" below) with a standard
active chart parser 5 (abbreviated as "CP"). Since the
chart parser is implemented in Smalltalk, while the
PARSETALK system is implemented in Actalk (Briot,
1989) - - a language which simulates the parallel exe-
cution of actors - - , a direct comparison of run times is
not reasonable (though even at that level of consider-
ation the PARSETALK system outperforms the chart
parser). We therefore compare, at a more abstract
computation level, the number of method executions
given exactly the same dependency grammar 6. The
computationally most expensive methods we consider
are SYNTAXCHECK and CONCEPTCHECK (cf. Sec-
tion 3.1). Especially the latter consumes large compu-
tational resources, since for each interpretation vari-
ant a knowledge base context has to be built and con-
ceptual consistency must be checked. Therefore, it
is only considered when the syntactic criteria are ful-
filled. The number of calls to these methods for a sam-
ple of 13 randomly chosen, increasingly complex sen-
tences from the information technology domain test
library is given by Fig. 4 ("CP.syn" and "PT.syn") and
Fig. 5 ("CP.con" and "PT.con"). A reduction by a fac-
tor of four to five in the (unweighted) average case can
be observed applying the PARSETALK strategy.

Furthermore, the PARSETALK parser, by design, is
able to cope with discontinuities stemming from un-
or extragrammatical input. The performance of a re-
vised version of the chart parser which also handles
these cases is given as "CP.disc.syn/con" in the fig-
ures. The missing value for sentence 10 results from
the chart parser crashing on this input because of space
restrictions of the run-time system (the experiments
were conducted on a SPARCstation 10 with 64 MB
of main memory). The average reduction in compar-

5Winograd' s (1983) chartparser was adapted to parsing a
dependency grammar. No packing or structure-sharing tech-
niques could be used, since semantic interpretation occurs
online, thus requiring continuous referential instantiation of
structural linguistic items (cf. also Section 4).

6This can only serve as a rough estimate, since it does not
take into account the exploitation of PARSETALK'S concur-
rency. Furthermore, the chart parser performs an extremely
resource-intensive subsumption checking method unneces-
sary in the PARSETALK system.

to

to

E

6000

5000

4 ~ 0

3 ~ 0

2 ~ 0

1000

0

.. , , , , , , , , , , , ,

"CP.disc.syn" - * - - /
"CP.syn" ~ - / "
"PT.syn" ..- /

~

/ , , , / / _

.

2 3 4 5 6 7 8 9 10 11 12 13
sentence

180

160

140

120

100

80

60

40

20

0

Figure 4: Calls to SYNTAXCHECK

. A
"CP.eon" ~ - / \
"PT.con" ..D / \

/ \

. . . . , , , , , , . . .

2 3 4 5 6 7 8 9 10 11 12 13
sentence

Figure 5: Calls to CONCEPTCIiECK

ison with the extended version of the chart parser is
about six to nine.

4 Related Work

Research on object-oriented natural language pars-
ing actually started with the work of Small & Rieger
(1982) on word experts. Based on a conceptual pars-
ing model, this approach took a radical position on
full lexic',dization and communication based on a strict
message protocol. Major drawbacks concerned an
overstatement of the role of lexical idiosyncrasies and
the lack of grammatical abstraction and formalization.
Preserving the strengths of this approach (lexicalized
control), but at the sane time reconciling it with cur-
rent standards of lexicalized grammar specification,
the PARSETALK system can be considered a unifying
approach which combines procedural and declarative
specifications at the grammar level in a formally disci-
plined way. This also distinguishes our approach from
another major stream of object-oriented natural lan-
guage parsing which is almost entirely concerned with
implementational aspects of object-oriented program-
ruing, e.g., Habert (1991), Lin (1993) or Yonezawa &
Ohsawa (1994).

The reasons why we diverge from conventional
parsing methodologies, e.g., chart parsing based on

506

Earley- or Tomita-style algorithms, are two-fold. First,
at the syntactic level, any kind of chart parsing
algorithm faces combinatorial problems with non-
contiguous grammar specifications (accounting for
discontinuous language structures) and, in particular,
extra- and ungrammatical language input (cf., e.g.,
Magerman & Weir (1992) for probabilistic and Lee
et al. (1995) for symbolic heuristics to cope with that
problem). Thus, under realistic conditions, these tech-
niques loose a lot of their theoretical appeal and com-
pete with other approaches merely on the basis of per-
formance measurements. Second, including seman-
tic considerations, even if we assume efficient syntac-
tic processing for the sake of argument, the question
arises how semantic interpretations can be processed
in an incremental, comparably efficient way. Though
experiments have been run with packing feature struc-
tures and interleaving syntactic and semantic analyses
(Dowding et al., 1994), or with the intentional under-
specification of logical forms (leaving scope ambigui-
ties of quantifiers and negations underdetermined; cf.,
e.g., Hobbs (1983) or Reyle (1995)), no conclusive ev-
idences have been generated so far in favor of a gen-
eral method for efficient, online semantic interpreta-
tion. As we are faced, however, with the problem to
work out text interpretations incrementally and within
reasonable resource bounds, we opt for a methodol-
ogy that constrains the amount of ambiguous struc-
tures right at the source. Hence, the incompleteness of
the algorithm trades theoretical purism for feasibility
of realistic NLP.

5 C o n c l u s i o n s

We have presented a restricted approach to paral-
lelism for object-oriented lexicalized parsing. Given
the complex control structure requirements of a real-
istic text understanding system (integrated, incremen-
tal, robust processing), we argued for a unifying ap-
proach in which declarative grammar constraints are
lexically encoded and procedural knowledge can be
specified by distinguished lexicalized communication
primitives (viz. a message passing protocol). This led
us to the description of a concurrent parsing algorithm
which is characterized by a depth-first, robust, yet in-
complete analysis of textual input. We also argued in
favor of incompleteness in order to break the text pars-
ing complexity barrier. As a consequence, we do not
only supply an efficient parsing procedure but also one
that is effective in the sense that it guarantees the gen-
eration of conceptual representations of the content of
the text under feasible resource demands.

Acknowledgments. P. Neuhaus is supported by a
grant from DFG within the Freiburg University Grad-
uate Program on "lluman and Artificial Intelligence".

References

Adriaens, G. & U. Hahn (Eds.) (1994). Parallel Natural
Language Processing. Norwood, N J: Ablex.

Agha, G. & C. Hewitt (1987). Actors: A conceptual founda-
tion for concurrent object-oriented progranmaing. In
B. Shriver & P. Wegner (Eds.), Research Directions
in Object-Oriented Programming, pp. 49-74. Cam-
bridge, MA: M1T Press.

Briot, J.-P. (1989). Actalk: A testbed for classifying and
designing actor languages in the Smalltalk-80 environ-
ment. In Proc. of ECOOP-89, pp. 109-129.

Br6ker, N., U. Hahn & S. Schacht (1994). Concurrent lexi-
calized dependency parsing: The PARSETALK model.
In Proc. of COLING-94, pp. 379-385.

Dowding, J., R. Moore, E Andry & D. Moran (1994). Inter-
leaving syntax and semantics in an efficient bottom-up
parser. In Proc. of ACL-94, pp. 110-116.

Habert, B. (1991). Using inheritance in object-oriented pro-
gramming to combine syntactic rules and lexical id-
iosyncrasies. In Proc. oflWPT-91, pp. 79-88.

Hahn, U. & G. Adriaens (1994). Parallel natural language
processing: Background and overview. In (Adriaens &
Hahn, 1994), pp. 1-134.

Hahn, U., M. Strube & K. Markert (1996). Bridging textual
ellipses. In this volume.

Hobbs, J. R. (1983). An improper treatment of quantification
in ordinary English. In Proc. of ACL-83, pp. 57-63.

Janssen, W., M. Poel, K. Sikkel & J. Zwiers (1992). The
primordial soup algorithm. In Proc. of COLING-92,
pp. 373-379.

Lee, K. J. et al. (1995). A robust parser based on syntactic
information. In Proc. of EACL-95, pp. 223-228.

Lin, D. (1993). Principle-based parsing without overgenera-
tion. In Proc. of ACL-93, pp. 112-120.

Magerman, D. M. & C. Weir (1992). Efficiency, robusmess
and accuracy in Picky chart parsing. In Proc. of ACL-
92, pp. 40-47.

Neuhaus, P. & U. Hahn (1996). Trading off completeness
for efficiency: The PARSETALK performance grammar
approach to real-world text parsing. In FLAIRS-96.

Pollard, C. & I. A. Sag (1994). Head-driven Phrase Struc-
ture Grammar. Chicago: University of Chicago Press.

Reyle, U. (1995). On reasoning with ambiguities. In Proc.
of EACL-95, pp. 1-8.

Schabes, Y., A. Abeille & A. K. Joshi (1988). Parsing
strategies with 'lexicalized' grammars: Application to
TAGs. In Proc. of COLING-88, pp. 578-583.

Schacht, S. (1995). Proving properties of actor programs us-
ing temporal logic. In G. Agha & F. De Cindio (Eds.),
Proc. of the Workshop on Object-Or&nted Program-
ming and Models of Concurrency. Torino, IT.

Small, S. & C. Rieger (1982). Parsing and comprehend-
hag with word experts (a theory and its realization). In
W. Lehnert & M. H. Ringle (Eds.), Strategies for Nat-
ural Language Processing, pp. 89-147. Hillsdale, NJ:
L. Erlbaum.

Strube, M. & U. Hahn (1995). PARSETALK about sentence-
and text-level anaphora. In EACL-95, pp. 237-244.

Waltz, D. L. & J. B. Pollack (1985). Massively parallel pars-
ing: A strongly interactive model of natural language
interpretation. Cognit&e Sc&nce, 9(1):51-74.

Winograd, T. (1983). Language as a Cognitive Process. Vol.
h Syntax. Reading, MA: Addison-Wesley.

Yonezawa, A. & I. Ohsawa (1994). Object-oriented paral-
lel parsing for context-free grammars. In (Adriaens &
Hahn, 1994), pp. 188-210.

507

