
S T R U C T U R E S H A R I N G P R O B L E M A N D ITS S O L U T I O N
IN G R A P H U N I F I C A T I O N

K i y o s h i K O G U R E

N T T Bas i c R e s e a r c h L a b o r a t o r i e s

3-1 M o r i n o s a t o - W a k a r n i y a , A t s u g i - s h i , Kanagawa . , 243-01 J a p a n

k o g u r e ~ a t om. n t i s . j p

A B S T R A C T

The revised graph unification algorithms presented
here are more efficient because they reduce the
amount of copying that was necessary because of the
assumption that data-structure sharing in inputs oc-
curs only when feature-structure sharing occurs.

1 I N T R O D U C T I O N

Constraint-based linguistic frameworks use logical
systems called feature logics (Kasper & Rounds, 1986;
Shieber, 1989; Srnolka, 1988), which describe linguis-
tic objects by using logical formulas called feature de-
scriptions that have as their models feature structures
or typed feature structures. Shieber (1989) argued
that if the canonical models of finite formulas of a fea-
ture logic were themselves finite, we could use them to
compute over instead of theorem-proving over the for-
nmlas themselves. This would be advantageous if we
had efficient algorithms for manipulating the canoni-
cal models.

The most important operation on models- feature
structures or typed feature structures is combining
the information two models contain. This opera-
tion is traditionally called unification, although re-
cently it has come to be more suitably called infor-
mational union. This unification operation is signif-
icant not only theoretically but also practically be-
cause the efficiency of systems based on constraint-
based formalisms depends on the (typed) feature
structure unification and/or feature description uni-
fication algorithms they use. 1 This dependency is
especially crucial for monostratal formalisms - tha t
is, formalisms which use only (typed) feature struc-
tures such as HPSG (Pollard & Sag, 1987) and JPSG
(Gunji, 1987)?

The efficiency of (typed) feature structure unifica-
tion has been improved by developing algorithms that
take as their inputs two directed graphs representing
(typed) feature structures, copy all or part of them,
and give a directed graph representing the unification
result. These algorithms are thus called graph unifi-
cation. Previous researeh has identified graph copying
as a significant overhead and has at tempted to reduce
this overhead by lazy copying and structure sharing.

Unification algorithms developed so far, however,
including those allowing structure sharing seem to

1For example, the TASL1NK natural language system
uses 80% of the processing time for feature structure uni-
fication and other computations required by unification,
i.e., feature structure pre-copying (Godden, 1990).

2For example, a spoken-style .Japanese sentence analy-
sis system based on HPSG (Kogure, 1989) uses 90%-98%
of the processing time for feature structure unification.

syn |

Fig. 1: Matrix notation for a typed feature structure.

contradict structure sharing because they assmne the
two input graphs never share their parts with each
other. This "structure sharing" assumption prevents
the initial data structures fl'om sharing structures for
representing linguistic principles and lexical informa-
tion even though many lexical items share common
information and such initial data structure sharing
could significantly reduce the amount of data struc-
tures required, thus making natural language systems
much more efficient. Furthermore, even if the struc-
ture sharing assumption holds initially, unification al-
gorithms allowing structure sharing can yield situa-
tions that violate the assumption. The ways in which
such unification algorithms are used are therefore re-
stricted and this restriction reduces their efficiency.

This paper proposes a solution to this "structure
sharing problem" and provides three algorithms. Sec-
tion 2 briefly explains typed feature structures, Sec-
tion 3 defines the structure sharing problem, and Sec-
tion 4 presents key ideas used in solving this problem
and provides three graph unification algorithms that
increase the efficiency of feature structure unification
in constraint-based natural language processing.

2 T Y P E D F E A T U R E S T R U C T U R E S

The concept of typed feature structures attgments the
concept of feature structures. A typed feature struc-
ture consists of a set of feature-value pairs in which
each value is a typed feature structure. The set of type
symbols is partially ordered by subsumption ordering
_<7 and constitutes a lattice in which the greatest ele-
ment T corresponds to 'no information' and the least
element J_ corresponds to 'over-defined' or 'inconsis-
tency.' For any two type symbols a, b in this lattice,
their least npper bound and greatest lower bound are
respectively denoted a VT b and a AT- It).

Typed feature strnctures are represented in matrix
notation as shown in Fig. 1, where syn, agr, sg, and
3rd are type symbols; agree, h u m , per , and s u b j are
feature symbols; and X is a tag symbol. A feature-
address that is, a finite (possibly empty) string of
feature symbols is used to specify a feature value of
an embedded structure. In Fig. 1, for example, the
structure at the feature-address agree . u u m , where
'. ' is the concatenation operator, is said to have sg
as its type symbol. The root feature-address is de-

886

l \ \ s u bj

agrec li ~ . s y n

a / a g r ~ fl re c

++ N
sg 3rd

Fig. 2: Graph representation of a typed feature struc-
l, ure.

noted by '(. ' To specify token-identity in matrix no-
tation, a tag symbol is used: feature-address values
with the same tag symbol arc token-identical, and
those featm'e-addresses with the token-identical value
are said to corefer. /n Fig. 1, the feature-addresses
agree and subj • agree corefer.

A typed feature, structure is also represented by a
rooted, connected, directed graph within which each
node corresponds to a typed feature structure and is
labeled with a type symbol (and, optionally, a tag
symbol) and each arc corresponds to a feature.-value
pair and is labeled with a ti'~ature symbol. Fig. 2 illus-
trates the graph representation of the typed feature
structure whose matrix notation is shown in Fig. 1.
In a graph representation, the values at corefcrent
Ihature-addresscs that is, token-identical values
are represented by the same node.

'['he set of typed featm:e structures is also partially
ordered by a subsumption ordering that is an exten--
siou of the subsnmptiol, ordering on the set of type
symbols. A typed feature structure tl is less than or
equal to tu (written as tl <, in) if and only if t t is
iuconsistent (that is, if it includes the type symbol]_)
or (i) t~ 's type symbol al is less than or equal to t~'s
type symbol a2 (a~ _<7 ap.); (ii) each h'.atur(~ f of 12
exists in ll and has a value 12, f such that its counter=
part t t j is less than or equal to t2,j'; m'/] (iii) each
coreference relation holding in 12 also holds in 11.

'.l'his subsumpl, ion ordering serves its the basis for
(Mining two lattice operations: generalization (the
least upper bound or join) and unitlcation (the great-
est lower bound or meet).

Typed feature structures have been formalized in
several ways, such as by using .I/%types (Mt-Kaci,
198~).

3 T H E S T R U C T U R E S H A R I N G
P R O I 1 L E M

3.1 G r a p h U n i f i c a t i o n A l g o r i t h m s

The destructive unitlcation algorithnl presenled by
Aitq(aci is the starting point in increasing the ef-
liciency of graph unification. It is a node-merging
process that uses the Unio>Find algorithm, which
wits originally devek)t)ed for testing tinite automata
equivalence (llopcroft & Karp, 1971), in a manner
w.'ry similar to that of the unification algorithm for
rational terms (llnet, 197(i). (',iveu two root nodes of
graphs representing (typed) feature structures, this
algorithm simultaneously traverses a pair of input
nodes with the same feature-address, putting them

node structure
tsymbol
a7c8

genera t ion

forward

copy

{a type symbol)
(a set of arc structures}
{an integer)
NIL I {a node st,'ucturc)
NIL I {~ node structure}

I (a copydcp structure)

arc s t ruc ture
label (~ feature symbol}
vahw {a node structure)

copydep structure
generation | {an integer}
deps [(a set of node and arc p~irs)

Fig. 3: I)ata structures for nondestructive unification
an<l LING unification.

into a new and larger coreference class, and then re-
turns the lnerged graph,

Since the destructive unification process modifies
its input graphs, they must first be copied if their
contents are to bc preserved. Nondeterminism in
parsing, for example, requires the preservation of
graph structures not only for initial graphs repre-
senting lcxical entries and phrase structure rules but
also for those representing well-formed intermediate
structures. Although the overhead for this copying
is significant, it is impossible to represent a resul.-
taut unitied graph without creating any new strut
tures. Unnecessary copying, though, must be identi-
fied and minimized. Wroblewski (1987) delined two
kinds of unnecessary copying- over-copying (copying
structures not needed to represent resultant graphs)
and early-copying (copying structures even though
unitication fails) -but this account is flawed because
the resultant graph is assumed to consist only of newly
created structures even if parts of the inputs that are
not changed during mtitication could be shared with
the resultant graph. A more eNcient unification al-
gorithm would avoid this redundant copying (copying
structures that can be shared by the input and re-
sultant graphs) (Kogure, 1990). To distinguish struc-
ture sharing at the implementation level fl'om that at
the logical lew'l (that is, coreference relations between
feature-addresses), the lbrmer is called data-structure
sharing and the latter is called feature-structure shar-
ing (Tomabechi, 1992).

'['he key approaches to reducing the amount of
structures copied are lazy copying and data-structure
sharing. For lazy copying, Karttnnen (1986) proposed
a reversible unification that saves the original con-
tents of the. inputs into prealloeated areas immedi-
ately before destructive modification, copies the resul-
tant graph if necessary, and then restores the original
contents by undoing all the changes made during mli-
tication. Wroblewski (1987), on the other hand, pro-
posed a uondestructiw~ unitication with incremental
copying. Given two graphs, Wroblewski's algorithm
simultaneously traverses each pair of input nodes with
the same feature-address and creates a (:ommon copy
of the input nodes. The nondestructive unification

887

algorithm for typed feature structures uses the data
structures shown in Fig. 3. a The algorithm connects
an input node and its copy node with a copy link
that is, it sets the copy node as the input 's copy
field value. The link is meaningflfl during only one
unification process and thus enables nondestructive
modification. 4 Using an idea similar to Karttunen's,
Tomabechi (1991) proposed a quasi-destructive unifi-
cation that uses node structures with fields for keep-
ing update information that survives only during the
unification process. 5

Unification algorithms allowing data-structure
sharing (DSS unification algorithms) are based on
two approaches: the Boyer and Moore approach,
which was originally developed for term unification
in theorem-proving (Boyer & Moore, 1972) and was
adopted by Pereira (1985); and the lazy copying
suggested by Karttnnen ~nd Kay (1985). Recent
lazy copying unification algorithms are based on
Wroblewski's or Tomabeehi's schema: Godden (1990)
proposed a unification algorithm that uses active
data structures, Kogure (1990) proposed a lazy in-
cremental copy graph (LING) unification that uses
dependency-directed eol)yiug, and Emeie (1991) pro-
posed a lazy-incremental copying (LIC) unification
that uses chronological dereference. These algorithms
are b0,sed on Wroblewski's algorithm, and Tomabechi
(1992) has proposed a data-structure-sharing version
of his quasi-destructive unification.

3.2 The Structure Sharing Problem

The graph unification algorithms mentioned so fa r - -
perhaps all those developed so far--assume that data-
structure sharing between two input structures occurs
only when feature-structure sharing occurs between
feature-addresses they represent. This "structure
sharing" assumption prevents data-structure sharing
between initial data structures for representing lin-
guistic principles and lexical information even though
many lexical items share common information. For
example, many lexical items in a traditional syntactic
categories such as noun, intransitive verb, transitive
verb, and so on share most of their syntactic informa-
tion and differ in their semantic aspects such as se-
mantic sortal restriction. Such initial data-structure
sharing could significantly reduce the amount of data
structures required and could therefore reduce page-
swapping and garbage-collection and make natural
language processing systems much more efficient.

Furthermore, even if the structure sharing assump-
tion holds initially, applying a DSS unification algo-
rithm in natural language processing such as parsing
and generation can give rise to situations that vio-
late the assumption. Consider, for example, JPSG-

aFor the nondestructive unification algorithm, the node
structure takes as its copy field value either NJ L or a node
structure only.

4In this algorithm each unification process has an in-
teger as its process identifier and each node created in a
process has the identifier as its generation field vMue. A
copy link is meaningful only if its destination node has the
current process identifier. Such a node is called ~current.'

~The technique used to control the lifetime of update
data is the same as that of Wroblewski's algorithm.

based parsing. There are only a few phrase structure
rules in this fl'amework and the Complement-Head
Construction rule of the form 'M --+ C It' is applied
very frequently. For instance, consider constructing a
structure of the form [vP~ NP2 [vP, NP1 VII. When
the rule is applied, the typed feature structure for
the rule is unified with the structure resulting from
embedding the typed feature structure for NPl at
the feature-address for the complement daughter in
the rule (e.g., dtrs . cdtr), and the unification re-
sult is then unified with the structure resulting from
embedding the typed feature structure for V at the
feature-address for the head daughter. Because not
every substructure of the structure for the rule al-
ways changed during such a unification process, there
may be some substructures shared by the strneture
for the rule and the structure for VP1. Thus, when
constructing VP2 there may be unexpected and unde-
sired data-structure sharing between the structures.

Let me illustrate what happens in such eases by us-
ing a simple example. Suppose that we use the non-
destructive unification algorithm or one of its data-
structure sharing versions, the LING or I,IC algo-
rithm. The nondestructive and LING unification al-
gorithms use the data structures shown in Fig. 3,
and the LIC algorithm uses the same data struc-
tures except that its ~zode structure has no forward
field. Consider unification of the typed feature struc-
tures tl and t2 shown in Fig. 4(a). Suppose that t ,
and t2 are respectively represented by the directed
graphs in Fig. 4(b) whose root nodes are labeled by
tag symbols X0 and X4. That is, t j ' s substructure
at feature-address f2 and t2'S substructure at]'1 are
represented by the same data structure while feature-
structure sharing does not hold between them, and
t l ' s substructure at]3 and t2's substructure at; f4 are
represented by the same data structure while feature-
structure sharing does not hold between them. Each
of the algorithms simultaneously traverses a pair of
input nodes with the same feature-address both of
the inputs have Dora the root feature-address to leaf
feature-addresses, makes a common copy of them
to represent the unification result of that feature-
address, and connects the input and ontput nodes
with copy links. For any feature-address that only
one of the inputs has, the nondestructive unification
algorithm copies the subgraph whose root is the node
for that feature-address and adds the copied subgraph
to the output structure, whereas the LING and LIC
algorithms make the node shared by the input and
outpnt structures. In the case shown in Fig. 4(b) the
root nodes of the inputs nodes with the tag symbols
Xo and X4 are first treated by creating a common
copy of them (i.e., the output node with Yo), con-
necting the input and output nodes with copy links,
and setting bo = ao A:r a4 as the copy's lsymbol wdue.
Then the input nodes' arc structures are treated. Snt>
pose that the pair off1 arcs is treated first. After the
input nodes at feature-address fl are treated in the
same manner as the root nodes, the pair of fie arcs
is treated. In this case, t l ' s node at f2 (labeled X2)
already has a copy link because the node is also used
as t2's node at]'1 so that the destination node of the
link is used as this featnre-address's output node. Af-

888

I k *~*]
t t : a0 f2 II2 ,

Lfa aa

t2 : a4 la a~ ,

(a) Input typed feature structures.

input tl Int)ut t2

X0:a0 X v a ¢

:,/ " :..-:: :,/" ,\:,
x : , / ",

', /;()utl)ut la ",,, \\/,:
\, Yo:bo i ~'\

/] , i k, , , , \ s , / s,,, ,.

Yl:bl ~ c o p y lin k

(b) Snapshot of incremental graph ratification allow-
ing data-s t ructure sharing,

ta : t)o X a : a a '

LA:

t)a
II. At t2 : t)o aa

LA: aa
where,

])0 =: a 0 A ,] "14~

b l - - a l A 7 a 2 A v a~,

ID2 ~ a t A'I a:~,

|)3 = a2 A7 aE,.

(c) Wrong graph unili(:ation outl)ut (ta) and the cot--
rect unifi(-ation of the inputs (t~ A t Zp,,).

l"ig. 4: An examph; of incorrect graph unitication.

ter the common label arcs are treated, unique label
arcs are treated. The nondestructive, unitication a l g o -
r i thm copies t l ' s Ca and t~'s f4 arcs and adds them go
the ou tpu t root node, whercas the LING and t I C a.1-
gori thms make the input and output s t ructures share
their dest inat ion nodes, t:'inally, the I,ING and MC
algorithms obtain gr~l)h t: n represented in matr ix no-
tation ill Fig. 4(('i)just over the correct result.

The nondestruct ive unification algorithni obtains
the same typed feature structure. The reversible and
the quasi-destructiw', unification algoril, hms are also
,mable to obtain the correct result for this example
becatlS(; these Mgorithms cmmot represent two up-
date nodes by using a single node. Thus, none of tile
ctiicient unification algorithms developed re, ce, ntly ob-
tains the correct results R)r such a case. Avoiding such
wrong unification results requires undesirable copy-

ing. We can, for example, avoid get t ing the wrong
result by interleaving tile application of any non-DSS
unilication algori thm between N)plications o f a I)SS
unitication algorithm, but such bypassing requires two
unilication programs and reduces the efficiency gain
o f I)SS unification. This prechlsion of useful data-
s t ructure sharing is referred to here as the 'structur~
sharing" problem.

It has been shown tha t all t h e /) S S mfiticat.ion nlgo
ri thins lncntioned above are subject to tMs problem
even if the s t ructure sharing assumption holds ini-
tially. Non-I)SS unification Mgorithms are also sub-
ject to the problem because their inputs are created
1)y applying not only the unitication operat ion but
also operations such as embedding and extraction, in
most implelnentat ions of which data-s t ructure shar.
hag occurs t)etween their input and ou tpu t structures.
1!3ven non-l)SS unification algorithms must there, fore
take such inputs into act(mat, and this requires un-
desirable copying.

4 A S O L U T I O N '1'O T H E S T R U C T U R E

S H A R I N G P R O B L E M

4 . 1 K e y I d e a s

The example ill Section 3 suggests tha t the structlu'e
sharing l)roblem has two sources, which concern not
only the increnmntal Col)ying al)proach but also other
al)proaches. The tirst source is the way of rec, ording
ul)date inibrmation. In the incremental Col)ying at)-
proach, this corresponds to the way of copying struc-
tures. Tha t is, while calculating t l A t t , 2 the incr(:men
tal copying process does not (lisl, inguish between the
copies cremated tuq tim sul>strucl;ures of the left input
l t and the copies created as tile subst ructures of the
right input t2. As a result, a copy node oft1 's node at
f~ature-address p can be used as a copy node of t~'s
nod(', at a feature-address, and vice versa. In Fig. 4(10,
fbr example, tile copy of t2's node al; f2 is wrongly
used as the copy of t l ' s node at fl. This causes
unexpected and wrong data-s t ructure sharing in the
r(~sultant graph and this in turn catlses unexpect(~d
and wrong feature-structure sharing in the resultant
(typed) fc~t, ure s'[,rllcttlro. Ill other apl)roachcs , such
as the quasi-destructiw~ apl/roach , the source of the
s tructure sharing prol)lem is tha t each node s t ructure
has tMds for keeping information on only two typed
feature s t ructures one for the original and one R)r
tilt: result wheretm fields for keeping information on
three typed feature s tructures are needed one for t l>
original and one for each of the two results,

One way to solve this problem is therel'ore to nlake
each node keep information on thre, c typed fe, ttturc
structures: in the increnrental COl)ying apl)roach ca(;h
nod(: must have two c o p y tields, and in the quasi-
do, s t r u c t i v e ; t [) t) roach e a c h l l o d e l) lUSt have two sets
of llelds for updates.

'Fhe second source of the s t ructure sharing prob
lem is the method of data-stru(:ture sharing between
input and output structures. Unexpected and wrong
data-s t ructure sh~ring may result if a node shared by
the leg and right inputs is used as part of the left in-
put, intended to be shared between the left input and
output , at the same t ime it is used as part of the right
input, intended to be shared between the right input

889

node structure
tsymbol (a type symbol}
arcs (a set of arc structures)
generation {an integer)
forward NIL [(a ,,ode structure)
lcopy NIL [(a node structure)
rcopy NIL[{a node structure)

Fig. 5: The node s t ruc ture lbr the revised nondestruc-
tive unitication.

and output . In Fig. 4(b), for example, t l ' s node at
feature-address f~ is shared as t3's node at the same
feature-address, and the same node as t2's node at f4
is shared as ta 's node at the same feature-address.

This problem can be solved easily by keeping infor-
mation on data-s t ructure sharing status; tha t is, by
adding to the node s t ructure a new field for this pur-
pose and using it thus: when a unification algori thm
makes a node shared (for example, between the left
inpnt and output) , it records this information on the
node; later when t i l t a lgori thm a t tempts to make the
node shared, it does this only if this data-s t ructure
sharing is between the left input and output .

4.2 A lgor i thms
This section first describes a non-DSS unification al-
gor i thm tha t discards the s t ructure sharing assump-
tion and thus permits initial data-s t ructure sharing,
and then it describes two DSS unification algorithms.

Revised N o n d e s t r u c t i v e Unifi(:ation
This Mgorithm uses, instead of the node s t ructure
shown in Fig. 3, the node structure in Fig. 5. Tha t is,
the algorithm uses two kinds of copy links: Icopy for
the left input and rcopy for the right input.

Ti l t revised nondestruct ive unification procedure
for typed feature s tructures is shown in Figs. 6 and 7.
Given two root nodes of directed graphs, the top-level
procedure Unify assigns a new unification process
identifier, generation, and invokes Unify_Aux. This
procedure first dereferences both input nodes. This
dereference process differs from the original one in
tha t it follows up for tvard and lcopy links for the left
input node and f o rward and rcopy links for the right
input node. This revised dereference process elimi-
nates the first source of the s t ructure-sharing prob-
lena. Then Unify_A*tx calculates the meet of the type
symbol. If the meet is ±, which means inconsistency,
it finishes by returning _L Otherwise Unify_Auz ob-
tains t i l t ou tput node and sets the meet as its t symbol
value. The output node is created only when neither
input nod t is current; otherwise the output node is a
current input node. Then Un*fy_Aux t reats arcs. This
procedure assmnes the existence of two procedures:
Share&Arc_Pair,s and Complement_Arcs . The former
gives two lists of arcs each of which contains ares
whose labels exist in bo th input nodes with the same
are label order; the lat ter gives one list of arcs whose
labels are unique to the first input node. For each arc
pair obtained by Shared_A re_Pairs, Unify_A ux applies
itself recursively to the value pair. And for each arc
obtained by Complement_Ares , it copies its value.

Let us compare the newly introduced cost and the

P R O C E D U R E Unify(nodcl, node2)
generation *-- generation + 1 ;
return(Un@_A ux(node l , node2))

E N D P R O C E D U R E

P R O C E D U R E I/n(fy_Aux(nodel, node2)
node1 +-- Dereference_L(nodel);
node2 +-- Dereference_R(node2) ;
IF node1 = node2 A N D Currcnt_p(nodel) T H E N

return(node l)
E N D I F
newtsymbol ~- nodel. tsymbol A7 node2.tsymbol;
IF newtsymbol = ± T H E N

return(±)
ENDIF;
newnode ~-- Get_Out_Node(node1, node2, newtaymbol);
(sares l , , , ' c s2} ~ ,~'hared_A rc_Pai,'s(node l , node2);
caresl ~ Complement_Arcs(nodel, node2);
cares2 *- Complement_Arcs(node2, node1);
F O R (sarel ,sarc2) IN (sares l , sarcs2} DO

newvaluc ~- Unifg_Aux(sarcl, value, sarc2,value);
IF n c w v a l u e - k T H E N

return(±)
ELSE

new~)al~te
*-- Add_Arc(newnode, sarcl.label, newvalue);

IF newvalue = ± T H E N
return(A_)

E N D I F
E N D I F

E N D F O R ;
IF newnode # node l T H E N

F O R care IN carcst DO
newvalue *- Copy_Node_L(carc.vah~e);
newnode

~- Add_Arc(ncwnodc, care.label, newvaluc)
E N D F O R

ELSE IF ncwnode ¢ node2 T H E N
F O R carc IN carcs2 DO

newvahte +-- Copy_Nodc_l~(care.value);
newnode

Add_Arc(newnode, care.label, newvalue)
E N D F O R

ENDIF;
rcturn(ncwnodc)

E N D P R O C E D U R E

P R O C E D U R E Dereference_L(node)
IF Node_p(node.forward) T H E N

return(1)ereference_L(node.forward))
ELSE IF Curret_Nade_p(node.lcopv) "/['HEN

return(Dereferenec_L(node.lcopy))
ELSE

return(node)
E N D I F

E N D P R O C E D U R E

Fig. 6: The revised nondestruct ive unification proce-
dure (1).

effect of this revision. This revised version differs from
the original in thai, it uses two dereference procedures
tha t are tile same as tim original dereference proce-
dure except tha t they use different fields. Thus, on
the one hand, the overhead introduced to this revi-
sion is only the use of one additional field of the node
structure. On the other hand, al though this revised
version does not introduce new data-s t ructure shar-
ing, it can safely' t reat data-s t ructure sharing in ini-

890

P R O C E D U R E (;ct_Out_Node(node l , node& tsymbol)
IF Current_p(nodel) A N D Current_p(node2) T H E N

nodc2.forward +-- nodel;
nodel.tsyrnbol ~- tsymbol;
return(nodc [)

E L S E IF Current_p(nodel) T H E N
node2.rcopy ~ nodeI ;
node l, tsymbol ~- tsymbol;
return(node l)

E L S E IF Current_p(node2) T H E N
nodel.h:opy ~- nodc2;
node2.tsymbol ~-- tsymbol;
return(node2)

E L S E
newnode ~- Creutc_NodeO;
nodel. lcopy ~- newnode;
nodel.rcopy ~ newnnde;
newnode.tsymbol ~- tsgmbol;
return(newnode)

E N D I F
E N D P R O C E D U R . E

Fig. 7: The revised nondestruct iw' , unification proce-
dure (2),

tial da t a s t ruc tures . This can significantly reduce the
amount of initial d a t a s t ruc tu res required for linguis-
tic descript ions, especiMly for lexical descr ipt ions, and
thus reduce garbage-col lect ion and page-sw~q)ping.

R e v i s e d L I N G U n i f i c a t i o n
L[N(I uniliet~tion is based on nondes t ruc t ive unifica-
tion and uses copy-dependency informat ion to imple-
men t da t a - s t ruc tu r e shar ing. For a unique label arc,
ins tead of its vMue being copied, the value itself is
used as the ou tpu t vMuc and copy-dependency rela-
t ions are recorded to provide R)r later modif icat ion
of shared s t ructures . This a lgor i thm uses a revised
Copy~Node procedure tha t takes as its input two node
s t ruc tu res (n o d e l and node2) and one arc s t ruc ture ,
arc 1 where node.l is the node to be COl)ied. The s t ruc-
ture arel is an arc to node J, and node t is an an-
cestor node of node.l - t ha t is, the node fi'om which
arel depar t s and the revised p rocedure is as fol-
lows: (i) if n o d e l ' (the dereference result of node.t)
is current , then Copy_Node re tu rns n o d e l ' to indi-
cate tha t l, he ances tor node2 mus t be copied imme-.
diately; otherwise, (ii) Copy_Arcs is appl ied to node l '
and if it re turns several arc copies, Copy_Node cre-
ates a new copy node and then adds to the new
node the arc copies and arcs of node[' tha t are not
copied, and re turns the ne.w node to indicate the an-
eestor node having to be coiffed immedia te ly ; o ther-
wise, (iii) Copy_Node registors the copy-dependency
between the n o d e l ' and the ances tor node node2
tha t is, it adds the pair consis t ing of the ancestor node
node2 a.nd the arc arc I into the copy field of node 1 '-
and re turns Nil , to indicate t ha t the ancestor mus t
not be copied immedia te lyf i W h e n a new copy of a
node is needed later, this a lgor i thm will copy struc-

eIn tile],IN(-; unlfica.iton Mgorithm, ~t node structure's
copy field is used to keep either copy iuform~ttion or copy-
dependency inform~ttion. When tile', field keeps copy-
dependency inform;ttion, its v~hle is a copydep structure
consisting of an integer generation field- and a set of

P R O C E D U R E Copy_Node_L(node, arc, ancestor)
node ~- Derference_L(node);
IF Current_p(node) T H E N

return(node);
E L S E IF node.reuse: - " rused T H E N

return(Simple_ Copy_Node_L(nodc))
E N D I F
newarcs ~- Copy_A rcs_L(node);
IF newarcs 5£ 0 T H E N

newnodc ~- Create_No&O;
uewnode.tsymbol ~ node.tsymbol;
node.lcopy ~-- newnode;
FOIl. arc IN nodc.arcs D O

newarc *-- Find_Are(arc.labcl, newarcs);
IF Arc_p(newarc) T H E N

newvalne
~- A dd_A rc(newnodc, arc.label, n eware, vahte)

E L S E
newv(thte

~- A dd_Arc(ncwnode, arc.lab(l, are.value)
E N D I F

E N D F O R ;
return(newnode)

E L S E IF Copydep_p(node.leopy) A N D
node.lcopy.generation = generation T H E N

n ode. Icopy. deps
~- nod~2eopv.deps u {((,neestor, . r 4 } ;

node , re t t sc ~-- ltlsed;
return(NIL)

E L S E
copydcp ~ Create_CopydePO;
copydcp.gcneration ~ gcneration;
,'.opydep.d,,ps ,-- ((rLncesto,', are)};
node.leopy ,-. eopydep;
node. reuse ~- lused;
return(NIL)

E N D I F
E N D P R O C E D U I 1 , E

P R O C E D U R E Copy_Ares_L(node)
newarcs ~- 0;
F O R arc IN node.arcs DO

newnode ~- Copg_Nodc(arc. v(due, are, node);
IF Nodc_p(newnode) T H E N

newarc ~ Create_Are(arc.label, newnode);
newarcs +-- newarcs U {newarc}

E N D I F
E N D F O R ;

E N D P R O C E D U R , E

Fig. 8: The new revised Copy_Node procedure.

tures by using the copy-depe , ldency informat ion in its
copy field (in the revised Get_Out_Node procedure for
the 13NG unification). It subs t i tu t e s arcs with newly
copied nodes for exist ing arcs. Thus the an teceden t
nodes are also copied.

T h e revised L[NCI unificat ion is based on the re-
vised nondes t ruc t ive unificat ion and uses a node struc-
ture consis t ing of the fields in the node s t ruc tu re
shown in Fig. 5 and a new field reuse [br indicat

node and arc pMrs -deps field (see Fig. 3). The technique
used to control tile lifetime of copy-dependency informa-
tion is tile same as tha.t of copy information. That is, the
deps field value is meaningN1 only when the generation
vadne is equM to the unification process identifier.

8 9 1

ing data-structure sharing status. When the top-level
unification procedure is invoked, it sets two new sym-
bols to the two variables lused and fused. That a node
structure has as its reuse field value the lused value
means that it is used as part of the left input, and that
it has as its reuse value the rused value means that it
is used as part of the right input,. The revised LING
unification uses two new revised Copy_Node proce-
dures, Copy_Node_L (shown in Fig. 8) and the analo-
gons preocedure Copy_Node_It These procedures are
respectively used to treat the left and right inputs
and they differ from the corresponding original pro-
cedure in two places. First, instead of step (i) above,
if ~odel ' (the dereference result of n o & l) is current,
Cop?l_Node_l, (or Copy_Node_R) returns 7~ode l ' to in-
dicate that tire ancestor, node2, must be copied im-
mediately. But if node1' has as its reuse field value
the fused (or lused) value, it creates a copy of the
whole subgraph whose root is n o d e l ' a n d returns the
eopied structure also to indica~,c that the ancestor
node must be copied immediately. Second, in step
(iii), they register data-structure sharing status that
is, they set the lused (or fused) value to the reuse field
of node l" as well as register copy-dependency infor-
mation. This revised LING unification ensures safety
in data-structure sharing.

Again let us compare the newly introduced conr-
putational costs and the effect of l, his revision. The
newly introduced costs are the additional cost of the
revised dereference procedures (which is the same as
in the previous one) and the cost of checking reuse
status. The former cost is small, as shown in the dis-
cussion of the previous algorithm, ~nd the latter cost
is also small. These costs are thus not significant rel-
ative to the efficiency gain obtained by this revision.

R e v i s e d Q u a s i - D e s t r u c t i v e U n i f i c a t i o n
The strncture-sharillg version of quasi-destructive
unification keeps update information in the field
meaningful only during l, he unification. After a suc-
eessful unification is obtained, this algorithm copies
the unification result and attempts data-structure
sharing. This algorithm can be revised to ensure
safety in dal, a-structurc sharing hy using a node struc-
ture including two sets of fields for update information
and one reuse field and by checking node reuse status
while eopying.

5 C O N C L U S I O N

The graph unification algorithms described ira this pa-
per increase the efIiciency of feature structure unifica-
tion by discarding tile assumption that data-structure
sharing between two input structures nccurs only
when the t~ature-structure sharing occurs lyetween the
feature-addresses they represent. All graph unifica-
tion algorithms proposed so far make this assumption
and are therefore required to copy all or part of their
input strucl, ures when there is a possibility of violat-
ing it. '['his copying reduces their etIiciency. This
pape.r analyzed this problem and points out key ideas
for solving it. Revised procedures tbr nondestructive
unification, LING unification, and quasi-destructive
unification have been developed. These algorithms
make the use of feature structures in constraint-based
natural language processing mnch more elficient. The

key ideas in this paper can also be used to make the
incremental graph generalization algorithm (Kogure,
1993) more efficient,

A C K N O W L E D G M E N T S

1 thank Akira Shimazu, Mikio Nakmto, and other col-
leagues in the Dialogue Understanding Group at the
NTT Basic Research Laboratories for their encour-
agement and thought-prow)king discussions.

R E F E R E N C E S
Air-Karl, H. (1986). An Algebraic Semantics Approach to

the Effective Resolution of Type Equations. J. of
Thcor. Comp. Sci., It5, 293-351.

Boyer, R. S., 8z Moore, J. S. (11972). The Sharing of Struc-
ture in Theorem-Proving Programs. In Meltzer, B.,
& Michie, D. (Eds.), Machine Intelligencc Vol. 7,
chap. 6, pp. 101-116. Edinburgh University Press.

gmele, M. (1991). Unification with Lazy Non-Redundant
Copying.]in Prec. of the P,9th ACL, pp. 325-330.

Godden, K. (1990). Lazy Unification. In Prec. of the 28th
ACL, pp. 180 187.

Gunji, T. (1987). Japanesc Phrase Structurc Grammar.
Reidel.

IIoperoft, J. E., & Karl), R. M. (1971). An Algorithm for
Testing the Equivalence of Finite Automata. 51"ech.
Rep. 51']t-71-114, Dept. of Comp. Sci., Coruell Uni-
versity.

lluet, G. (]976). l?&olution d'Equations dens des Lan-
gages d'Ordrc l, 2, ..., w. Ph.D. thesis, Universitd
de Paris VII.

Karttunen, I, (1986). D-PNI?R- A Development Environ-
meat for Unification-Based Grammars. '['ech. Rep.
CSLI-86-61, CSI,I.

Karttuneu, I,., & Kay, M. (1985). Structure Sharing Rep-
resentation with Binary Trees. In Prec. of the 23rd
ACL, pp. 133--136.

K~sper, R. T., & Rounds, W. C. (1986). A Logical Se-
mantics for l!'e~ture Structure. [n Prec. of the 24th
A CL.

Kogurc, K. (1989). P~rsing Japanese Spoken Sentences
based on HPS(L In Prec. of the Int. Workshop on
Parsing Technologies, pp. 132 14l.

Kogure, K. (1990). Strategic Lazy Incremental Copy
Graph Unification. In Prec. of the 13th COLING,
Vol. 2, pp. 223-228.

Kogure, K. (1993). Typed l"eaturc Structure Generaliza-
tion by Incremental Graph Copying.]n 'Frost, tI.
(Ed.), Feature l'brmalisms and Linguistic Ambigu-
ity, pp. 1;t9 158. l'llis Horwood,

t?ereira, F. C. N. (1985). Structure Sharing Representation
for Unitieation-Based Formalisms. In Prec. of the
23rd ACL, pp. 137 144.

Pollard, C., & Sag, [. (1987). An Information-Bascd
Syntax and Semantics Volume l: Fundamcntals.
CSLI Lecture' Notes No. 13. CSLI.

Shieber, S. M. (1989). Constraint.Based Grammar
Formalisms Parsing and Type i~tference for Natu-
ral and Computer Languages. Ph.D. thesis, Stanford
University.

Smolka, G. (1988). A l"eature Logic with Subsorts.
LILOG 33, IBM Deutschland.

Tomabechi, tI. (1991). Quasi-Destructive Graph Unifica-
tion. In Prec. of the 29th ACL, pp. 315. 322.

Tomabechi, II. (1992). Quasi-])estructive Graph Unifica-
tion with Structure-Sh~ring. [n Prec. of the 14th
COLING, pp. 440-.446.

Wroblewski, D. A. (1987). Nondestructive (-lraph Unifica-
tion. Irt })roe. of the 6th AAAI, pp. 582-587.

892

