
Bottom-Up Earley Deduction

Gregor Erbach*
University of the Saarland
Computat ional Linguistics

D-66041 Saarbrficken, Germany
erbach@coli.uni-sb.de

A b s t r a c t

We propose a bottom-up variant of Earley de-
duction. Bottom-up deduction is preferable to
top-down deduction because it allows incremen-
tai processing (even for head-driven grammars),
it is data-driven, no subsumption check is needed,
and preference values attached to lexical items can
be used to guide best-first search. We discuss the
scanning step for bottom-up Earley deduction and
indexing schemes that help avoid useless deduc-
tion steps.

1 Introduction

Recently, there has been a lot of interest in Earley
deduction [10] with applications to parsing and
generation [13, 6, 7, 3].

Earley deduction is a very attractive framwork
for natural language processing because it has the
following properties and applications.

• Memoization and reuse of partial results

• Incremental processing by addition of new
items

• Hypothetical reasoning by keeping track of
dependencies between items

• Best-first search by means of an agenda

*This work was supported by the Deutsche Forschuugs-
gemeinschaft through the project N3 "Bidirektionale Lin-
guistische Deduktion (BiLD)" in the Sonderforschungsbe-
reich 314 Ki lns t l i che In te l l igenz - - Wissensbas ier te Sy-
sterne and by the Commission of the European Communi-
ties through the project LRE-61-061 "Reusable Gramma-
tical Resources." I would like to thank Gfinter Neumann,
Christer Samuelsson and Mats Wirdn for comments on this
paper.

Like Earley's algorithm, all of these approa-
ches operate top-down (backward chaining). The
interest has naturally focussed on top-down me-
thods because they are at least to a certain degree
goal-directed.

In this paper, we present a bottom-up variant
of Earley deduction, which we find advantageous
for the following reasons:

I ne r emen ta l i t y : Portions of an input string can
be analysed as soon as they are produced (or
generated as soon as the what-to-say com-
ponent has decided to verbalize them), even
for grammars where one cannot assume that
the left-corner has been predicted before it
is scanned.

Da t a -Dr lven Process ing : Top-down al-
gorithms are not well suited for processing
grammatical theories like Categoriai Gram-
mar or nesG that would only allow very
general predictions because they make use
of general schemata instead of construction-
specific rules. For these grammars data-
driven bottom-up processing is more appro-
priate. The same is true for large-coverage
rule-based grammars which lead to the crea-
tion of very many predictions.

S u b s u m p t i o n Checking: Since the bottom-up
algorithm does not have a prediction step,
there is no need for the costly operation of
subsumption checking)

Search S t ra t egy : In the case where lexical ent-
ries]lave been associated with preference in-

1Subsumption checking may still be needed to filter out
spurious ambiguities.

796

formation, this information can be exploited
to guide the heuristic search.

2 Bottom-up Earley Deduction

Earley deduction [10] is based on grammars en-
coded as definite clauses. The ins tant ia t ion (pre-
diction) rule of top-down Earley deduction is not
needed in bo t tom-up Earley deduction, because
there is no prediction. There is only one inference
rule, namely the reduction rule (1)3 In (1), X ,
G and G t are literals, ~ is a (possibly empty) se-
quence of l i terals, and a is the most general unifier
of G and G'. The leftmost l i teral in the. lmdy of a
non:unit clause is Mways the selected literal.

X ~ (;' A ~
(.~l (:__

~(.x +- ~) (~)

In 1)riuciple, this rule can be applied to any
pair of unit clanses and non:unit clauses of the
program to derive any consequences of the pro:
gram. In order to reduce this search space and
achieve a more goal-directed behaviour, the rule
is not applied to any pair of clauses, but clauses
are on]y selected if they can contr ibute to a proof
of the goal. The set of selected clauses is (;ailed
the char t . 3 The selection of clauses is guided by a
scanning step (section 2.1) an(l indexing of clauses
(section 2.2).

2 .1 Scann ing

The purpose of the scanning step, whic:h corre-
sponds to lexical lookup in chart parsers, is to
look up base cases of recursive definitions to serve
as a s tar t ing point for bo t tom-up processing. The
scanning step selects clauses tha t can appear as
leaves in the proof tree lbr a given goal C.

Consider the following simple definition of an
HPSG, with the recursive definition of the predi-
cate sign/I. 4

2This rule is called combine by Earley, and is also re-
ferred to as the f lmdamental rule in the literature on
chart parsing.

aThc chart differs from the state of [10] in that clauses
in the chart arc indexed (cf. section 2.2).

4 We use feature terms in dcfinitc clauses in addition to
Prolog terms, f:X denotes a feature structure where X is
the value of h:ature f, and X ~ Y denotes the conjunction

sign(X) <- phrasal_sign(X).
sign(X) <- l e x i c a l sign(X).

phrasal sign(X ~ dtrs:(head dtr:RD &
comp_dtr:CD)

sign(RD),
sign(CD),
principles(X,HD,CD).

) <-

principles(X,HD,CD) <-
constituent_order_principle(X,HD,CD),
head_featureprinciple(X,RD),

constituent order principle(phon:X_Ph,
phon:HD_Ph,
phon:CD_Ph) <-

sequence_union(CD_Ph,HD_Ph,X_Ph).

The predicate sign/1 is defined recursi-
vely, and the base case is the predicate
l e x i c a l _ s i g n / 1 . But, clearly it is not restric-
tive enough to find only the predicate name of
the base case for a given goal. The base cases
must also be ins tant ia ted in order to find those
that are useful for proving a given goal. In the
case of parsing, the lookup of base cases (lexi-
cal i tems) will depend on the words tha t are
present in the input string. This is implied by
the first goal of the predicate p r i n c i p l e s / 3 , the
c o n s t i t u e n t o r d e r p r i n c i p l e , which determi-
nes ihow the l'nON value of a const i tuent is con-
s t ru t t ed from the eflON values of its daughters.
in general, we assume tha t the const i tuent order
principle makes use of a linear and non-erasing
oI)eratkm tor combining s t r ingsJ If this is the
case, then M1 the words contained in the PnON va-
lue of the goal can have their lexical i tems selected
as unit clauses to s tar t bo t tom-up processing.

l%r generation, an analogous condition on logi-
cal forms has been proposed by Shieber [13] as the
"semantic monotonici ty condition," which requi-
res tha t the :logical form of every base case must
subsume some por t ion of the goal 's logical form.

Base case lookup must be defined specifically
tbr different g rammat ica l theories and directions
of processing by the predicate l o o k u p / 2 , whose
first argument is the goal and whose second ar-
gument is the selected base case. The following

of the feature terms X and Y.
r'There is an obvions connection to the Linear Context-

Free Rewriting Systems (LCFRS) [15, 16].

797

clause defines the lookup relation for parsing with
HPSG.

7. lookup(+Goal,-BaseCase)
lookup (phon : PhonList,

lexical_sign(phon: [Word] ~ synsem:X)
) <-

member (Word, PhonList),
lexicon(Word,X).

Note that the base case clauses can become
further instantiated in this step. If concatena-
tion (of difference lists) is used as the operation
on strings, then each base case clause can be in-
stantiated with the string that follows it. This
avoids combination of items that are not adjacent
in the input string.

lookup (phon : PhonLis t,
lexical_sign(phon: [Word[Suf] -Suf

synsem : Synsem)
) <-

append(_, [Word I Suf] , PhonList),
lexicon (Word, Synsem).

In bottom-up Earley deduction, the first step
towards proving a goal is perform lookup for the
goal, and to add all the resulting (unit) clauses to
the chart. Also, all non-unit clauses of the pro-
gram, which can appear as internal nodes in the
proof tree of the goal, are added to the chart.

The scanning step achieves a certain degree of
goal-directedness for bottom-up algorithms bec-
ause only those clauses which can appear as lea-
ves in the proof tree of the goal are added to the
chart.

2.2 Indexing

An item in normal context-free chart parsing can
be regarded as a pair (R,S) consisting of a dotted
rule R and the substring S that the item covers
(a pair of starting and ending position). The fun-
damental rule of chart parsing makes use of these
string positions to ensure that only adjacent sub-
strings are combined and that the result is the
concatenation of the substrings.

In grammar formalisms like DCG or IIPSG, the
complex nonterminals have an argument or a fea-
ture (PtION) that represents the covered substring
explicitly. The combination of the substrings is

explicit in the rules of the grammar. As a conse-
quence, Earley deduction does not need to make
use of string positions for its clauses, as Pereira
and Warren [10] point out.

Moreover, the use of string positions known
from chart parsing is too inflexible because it el=
lows only concatenation of adjacent contiguous
substrings. In linguistic theory, the interest has
shifted from phrase structure rules that combine
adjacent and contiguous constituents to

• principle-based approaches to grammar that
state general well-formedness conditions in-
stead of describing particular constructions
(e.g. IIPSG)

• operations on strings that go beyond conca-
tenation (head wrapping [11], tree adjoining
[15], sequence uuion [12]).

The string positions known from chart parsing
are also inadequate for generation, as pointed out
by Shieber [13] in whose generator all items go
from position 0 to 0 so that any item can be com-
bined with any item.

Itowever, the string positions are useful as an
indexing of the items so that it can be easily detec-
ted whether their combination can contribute to a
proof of the goal. This is especially important for
a bottom-up algorithm which is not goal-directed
like top-down processing. Without indexing, there
are too many combinations of items which are use-
less for a proof of the goal, in fact there may be in-
finitely many items so that termination problems
can arise.

For example, in an order-monotonic grammar
formalism that uses sequence union as the opera-
tion for combining strings, a combination of items
would be useless which results in a sign in which
the words are not in the same order as in the input
string [14].

We generalize the indexing scheme from chart
parsing in order to allow different operations for
the combination of strings. Indexing improves ef-
ficiency by detecting combinations that would fall
anyway and by avoiding combinations of items
that are useless for a proof of the goal.

We define an item as a pair of a clause Cl and
an index Idx, written as (Cl~ Idx}.

798

Below, we give some examples of possible in-
dexing schemes. Other indexing schemes can be
used if they are needed.

1. N o n - r e u s e o f I t e m s : This is useful for
LCFRS, where no word of the input string
can be used twice in a proof, or for genera-
tion where no part of the goal logical form
should be verbalized twice in a derivation.

2. N o n - a d j a c e n t c o m b i n a t i o n : This indexing
scheme is useful for order-monotonic gram-
mars.

3. N o n - d i r e c t i o n a l a d j a c e n t c o m b i n a t i o n :
This indexing is used if only adjacent con-
stituents can be combined, but the order
of comhination is not prescrihcd (e.g. non-
directional basic categorial grammars).

4. D i r e c t i o n a l a d j a c e n t c o m b i n a t i o n :
This is used tbr grammars with a "context-
flee backbone."

5. F ree c o m b i n a t i o n : Allows an item to be
used several times in a proof, tor example for
the non-unit clauses of the program, which
would be represented as items of the form
<X ~-- (11 A . . . h Gn, fret;).

The following table summarizes the properties
of these live coml)ination schemes. Index 1 (11)

is the index associated with the non-unit clause,
Index 2 (12) is associated with the unit clause, and
I1 * 12 is tit(; result of coml)ining tile indices.

I Index 1 Index 2 Result [Nolc
12 11 ,12 [

1. X Y X U Y I X r q Y - - q)
2. X Y X (.) Y I
3. X + Y Y + Z X + Z I

Y + Z X + Y X + Z I
. +

4. X - Y Y - Z X - Z I
5 . l--~-- 'free ~ ~ - - +

In case 2 ("non-adjacent combinatiou"), the
indices X and Y consist of a set of string positions,
and tile operation (:) is the union of these string
positions, provided that no two string positions
fi'om X and Y do overlap.

In (2), the reduction rule is augmented to
handle indices. X , Y denotes the combination
of the indices X and Y.

(X +- G Afl, l l)
(c' +-,12/

+- a) , n . 12> (2)

With the use of indices, the lookup relation
becomes a relation between goals and i tems. The
following specification of the lookup relation pro-
vides indexing according to string positions as in
a chart parser (usable for combination schemes 2,
3, and 4).

lookup (phon : PhonList,
item(lexical sign(phon:[Word] &

synsem:X),
Begin-End)

) <-

nt h_member (Word, Begin, End, PhonLis t),
lexicon(Word,X) .

nth member(X,O,l,[X[_]).

nth member(X,NI,N2,[_lR]) <-
nth member(X,NO,Ni,R),
N2 is N1 + 1.

2.3 Goal Types

In constraint-based grammars there are some pre-
dicates that are not adequately dealt with by
bottom-up Earley deduction, for example the
llead Feature Principle and the Subcategorization
Principle of nrsG. The Head Feature Principle
just unifies two variables, so that it can be exe-
cuted at compile time and need not be called as
a goal at runtime. The Subcategorization Princi-
ple involves an operation on lists (appond/3 or
d o l o t + / 3 in different formalizations) that does
not need bot tom-up processing, but can better
be evaluated by top-down resolution if its argu-
ments are sulficiently instantiated. Creating and
managing items for these proofs is too much of a
computational overhead, arid, moreover, a proof
may not terminate in the bot tom-up case because
infinitely many consequences may be derived fi'om
the base case of a recursively defined relation.

In order to (teal with such goals, we associate
the goals in the body of a clause with goal types.
The goals that are relevant for bot tom-up Earley
deduction are called wail ing goals because they
wait until they are activated by a unit clause that
unifies with the goalfi Whenever at unit clause is

6The other goM types arc top-down goals (top-down

799

combined with a non-unit clause all goals up to
the first waiting goal of the resulting clause are
proved according to their goal type, and then a
new clause is added whose selected goal is the first
waiting goal.

In the following inference rule for clauses with
mixed goal types, E is a (possibly empty) sequence
of goals without any waiting goals, and 9t is a
(possibly empty) sequence of goals starting with
a waiting goal. (r is the most general unifier of
G and G ~, and the substitution v is the solution
which results from proving the sequence of goals
~ ,

(X + - - G A ~ A ~ , I 1)
(a' ~-, x2)

(r a (X ~ f~), 11 * 12)
(a)

2.4 Correctness and Completeness

In order to show the correctness of the system,
we must show that the scanning step only adds
consequences of the program to the chart, and
that any items derived by the inference rule are
consequences of the program clauses. The former
is easy to show because all clauses added by the
scanning step are instances of program clauses,
and the inference rule performs a resolution step
whose correctness is well-known in logic program-
ming. The other goal types are also proved by
resolution.

There are two potential sources of incomple-
teness in the algorithm. One is that the scanning
step may not add all the program clauses to tim
chart that are needed for proving a goal, and the
other is that the indexing may prevent the deriva-
tion of a clause that is needed to prove the goal.

In order to avoid incompleteness, the scanning
step must add all program clauses that are needed
for a proof of the goal to the chart, and the combi-
nation of indices may only fail for inference steps
which are useless for a proof of the goal. That

depth-first search), x-corner goals (which combine bottom-
up and top-down processing like left-corner or head-corner
algorithms), Prolog goals (which are directly executed by
Prolog for efficiency or side-effects), and chart goals which
create a new, independent chart for the proof of the goal.
DSrre [3] proposes a system with two goal types, namely
trigger goals, which lead to the creation of items and othcr
goals which don't .

the lookup relation and the indexing scheme sa-
tisfy this property must be shown for particular
grammar formalisms.

In order to keep the search space small (and
finite to ensure termination) the scanning step
should (ideally) add only those items that are nee-
ded for proving the goal to the chart, and the in-
dexing should be chosen in such a way that it ex-
cludes derived items that are useless for a proof of
the goal.

3 Best-First Search

For practical NL applications, it is desirable to
have a best-first search strategy, which follows the
most promising paths in the search space first, and
:finds preferred solutions before the less preferred
ones .

There are often situations where the criteria
to guide the search are available only for the base
cases, for example

® weighted word hypotheses from a speech re-
cognizer

• readings for ambigous words with probabili-
ties, possibly assigned by a stochastic tagger
(el. [2])

hypotheses for correction of string errors
which should be delayed [5]

Goals and clauses are associated with prefe-
rence values that are intended to model the de-
gree of confidence that a particular solution is the
~correct' one. Unit clauses are associated with
a numerical preference value, and non-unit clau-
ses with a formula that determines how its prefe-
rence value is computed fi'om the preference va-
lues of the goals in the body of the clause. Prefe-
rence values can (but need not) be interpreted as
probabilities. 7

The preference values are the basis for giving
priorities to items, l'br unit clauses, the priority is
identified with the preference value, tibr non-unit
clauses, where the preference formula may contain
uninstantiated variables, the priority is the value
of the formula with the free variables instantiated
to the highest possible preference value (in case

7For further details and examples see [4] and [5].

800

of an interpretation as probabilities: 1), so that
the priority is equal to the maximal possible pre-
ference valne for the clause, s

The implementation of best-first search does
not combine new itelns with the chart immedia-
tely, but makes use of an agenda [8], on which new
items are ordered in order of descending priority.
The following is the algorithm for bot tom-up best-
first F, arley deduction.

p rocedure prove(Goal):
- initialize-agenda(Goal)
- consume-agenda
- for any item {G,I)

- return mgu(Goal, G) as solution if it exists

p rocedure initialize-agenda(Goal):
- f o r every unit clause UCin lookup(Goal, UC)

- create the index I for UC
- add item (UC, I) to agenda

- for every non-unit program clause H +- Body
- add item (H ",-- 13ody.free) to agenda

p rocedure add item 1 to agenda
- compute the priority of I
- agenda := agenda 12 {I}

p rocedure consume-agenda
- while agenda is not empty

- remove item I with highest priority from agenda
- add item I to chart

procedure add item (C, It) to chart
- chart := chart O {(C, I1)}
- if 6' is a unit clause

- for all items (H ~-- G A E A ~, 12)
- if I = 12-k I1 exists

and r, = mgu(C, G) exists
and goals ~ are provable with solution r
then add item (ra(H ~- ~), 1) to agenda

- i f C = H ~- G A E A ~ is a non-unit clause
- for all items (G' ~-, I2)

- if I = I1 -k I2 exists
and ~r = mgu(G, G') exists
and goals ~ are provable with solution r
then add item (ra(l t +- ~2), I) to agenda

The algorithm is parametrized with respect to
the relation l o o k u p / 2 and the choice of the inde-
xing scheme, which are specific for difi'erent gram-
matical theories and directions of processing.

SThere are also other methods for mssigning priorities to
items.

4 Implementation

The bot tom-up Earley deduction algorithm des-
cribed here has been implemented in Quintus Pro-
log as part of the GeLD system. GeLD (Gene-
raJized Linguistic Deduction) is an extension of
Prolog which provides typed feature descriptions
and preference values as additions to the expressi-
vity of the language, and partial evaluation, top-
down, head-driven, and bot tom-up Barley deduc-
tion as processing strategies. Tests of the system
with small grammars have shown promising re-
salts, and a medium-scale HPSG for German is pre-
sently being implemented in GeLD. The lookup
relation and the choice of an indexing scheme must
be specified by the user of the system.

5 Conclusion and thlture Work

We have proposed bot tom-up Earley deduction
as a useful alternative to the top-down methods
which require subsumption checking and restric-
tion to avoid prediction loops.

The proposed method should be improved in
two directions. The first is that the lookup predi-
(:ate should not have to be specified by the user,
but automatically inferred from the program.

The second problem is that all non-unit clau-
ses of tile program are added to the chart. The
addition of non-unit clauses should be made de-
pendent on the goal and the base cases in order
to go from a purely bottora-up algorithm to a di-
rected algorithm that combines the advantages of
top-down and bot tom-up processing. It has been
repeatedly noted [8, 17, 1] that directed methods
are more efficient than pure top-down or bot tom-
up methods. However, it is not clear how well
the directed methods are applicable to grammars
which do not depend on concatenation and have
no unique 'left cornet" which should be connected
to the start symbol.

It remains to I)e seeit how bot tom-up Barley
deduction compares with (and can be combined
with) the improved top-down Barley deduction of
l)hrre [3], Johnson [7] mud Neumann [91, and to
head-driven methods with well-formed substring
tables [1], and which methods are best suited for
which kinds of problems (e.g. parsing, generation,
noisy input, incremental processing etc.).

807

R e f e r e n c e s

[1] Gosse Bouma and Gertjan van Noord. Head-
driven parsing for lexicalist grammars: Expe-
rimental results. In EACL93, pages 71 - 80,
Utrecht, NL, 1993.

[2] Chris Brew. Adding preferences to CUF.
In Jochen D6rre, editor, DYANA-2 Deli-
verable RI.2.A: Computational Aspects of
Constraint-Based Linguistic Descrotion I,
pages 57 - 69. Esprit Basic Research Project
6852, 1993.

[3] Jochen D6rre. Generalizing Earley deduction
for constraint-based grammars. In Jochen
D6rre, editor, DYANA-2 Deliverable RI.2.A:
Computational Aspects of Constraint-Based
Linguistic Description I, pages 23 - 41. Es-
prit Basic Research Project 6852, 1993.

[4] Gregor Erbach. Using preference values in ty-
ped feature structures to exploit non-absolute
constraints for disambiguation. In Harald
Trost, editor, Feature Formalisms and Lin-
guistic Ambiguity. E1Jis-Horwood, 1993.

Gregor Erbach. Towards a theory of degrees
of grammaticality. In Carlos Martfn-Vide,
editor, Current Issues in Mathematical Lin-
guistics. North-Holland, Amsterdam, to ap-
pear. Also published as CLAUS Report 34,
Universit£t des Saarlandes, 1993.

[6] Dale Douglas Gerdemann. Parsing and Ge-
neration of Unification Grammars. PhD
thesis, University of Illinois at Urbana-
Champaign, 1991. Cognitive Science techni-
cal report CS-91-06 (Language Series).

[7] Mark Johnson. Memoization in constraint lo-
gic programming. Department of Cognitive
Science, Brown University. Presented at the
1st International Conference on Constraint
Programming, Newport, Rhode Island; to ap-
pear in the proceedings, 1993.

[8] Martin Kay. Algorithm schemata and data
structures in syntactic processing. Techni-
cal Report CSL-80-12, XEROX PARC, Palo
Alto, CA, 1980.

[9] Giinter Neumann. A Uniform Tabular Al-
gorithm for Natural Language Parsing and
Generation and its Use within Performance-
based Methods. PhD thesis, University
Saarbrficken. forthcoming.

[10] Fernando C.N. Pereira and David H.D. War-
ren. Parsing as deduction. In ACL Procee-
dings, 21st Annual Meeting, pages 137-144,
1983.

[11] Carl Pollard. Generalized Context-Free
Grammars, Head Grammars, and Natural
Language. PhD thesis, Stanford, 1984.

[12] Mike Reape. A theory of word order and dis-
continuous constituency in West Germanic.
In E. Engdahl and M. Reape, editors, Para-
metric Variation in Germanic and Romance:
Preliminary Investigations, pages 25-40. ~S-
PRIT Basic Research Action 3175 DYANA, De-
liverable RI.I.A, 1990.

[13] Stuart M. Shieber. A uniform architecture
for parsing and generation. In Proceedings of
the 12th International Conference on Com-
putational Linguistics (COLING), Budapest,
1988.

[14] Gertjan van Noord. Reversibility in Natural
Language Processing. PhD thesis, Rijksuni-
versiteit Utrecht, NL, 1993.

[15] K. Vijay-Shanker, David J. Weir, and Ara-
vind K. Joshi. Characterizing structural de-
scriptions produced by various grammatical
formalisms. In 25th Annual Meeting, pages
104-111, Stanford, CA, 1987. Association for
Computational Linguistics.

[16] David J. Weir. Characteri-
zing Mildly Context-Sensitive Grammar For-
malisms. PhD thesis, Department of Com-
puter and Information Science, University of
Pennsylvania, 1988.

[17] Mats Wir6n. A comparison of rule-invocation
strategies in context-free chart parsing. In
ACL Proceedings, Third European Confe-
rence, pages 226-235, 1987.

802

