LOGIC COMPRESSION OF DICTIONARIES FOR
MULTILINGUAL SPELLING CHECKERS

Boubaker MEDDEDR ITAMROUNI

GETA, IMAG-campus (UJF & CNRS)
BP 53, I'-38041 Grenoble Cedex 09, FRANCLE

Boubaker .Meddeb-Hamrouni@imayg. fr

ABSTRACT

To provide practical spelling checkers on micro-com-
puters, good compression algorithms are essential. Current
techniques used to compress lexicons for indo-Iuropean
languages provide efficient spelling checker, Applying the
same methods to languages which have a different morpho-
logical system (Arabic, Turkish,...) gives insufficient re-
snlts. To get better results, we apply other “logical” com-
pression mechanisms based on the structure of the lan-
guage itself. Experiments with multilingual dictionarics
show a significant reduction rate attributable to our logic
compression alone and even better results when using our
method in conjunction with existing methads,

KEY WORDS: Spelling checkers, Multilinguism,
Compression, Dictionary, Iinite-state machines.

INTRODUCTION

Since the first work in 1957 by Glantz [6), a great
deal of theorizing and research has taken place on the sub-
ject of spelling verification and correction. Many commer-
cial products (word processors, desktop presentation,...) in-
clude efficient spelling checkers on micro-computers. The
classical mcthods, used are generally based on a morpho-
logical analyzer., This is sufficient to provide a robust
monolingual spelling checker, but using morphological
analyzers can become unrealistic when we want to develop
an universal solution. In fact, the analyzers built for each
language use various linguistic models and engines, and it
is impossible to convert a morphological analyzer from
onc formalism to another. Furthermore, using these classi-
cal methods would lead to combining into the host appli-
cation as many of grammars and parsers as languages,
which would increase the code sive and the maintenance
problem of rules and data. The method presented in this
paper is based on building a dictionary of all surface forms
for each language, which is sufficient for spelling checkers
applications. The dictionary built with the existing genera-
tors can be casily updated manually but may be huge, es-
pecially for some agglutinative language (Arabic,
Turkish,...). A compression process on the multilingual
dictionaries is necessary to obtain a reduced size. The exist-
ing compression methods generally used are physical and
provide good resnlts for indo-Europcan languages.
Applying the same technigues to other languages (Arabic,
Turkish,...) shows their limits, For this rcason we intro-
duce a new kind of compression techniques that we called
"logic compression”. This new technique requires a primi-
tive morphological knowledge during the compression
process and requires less storage space than previous meth-
ods. It also has the advantage of being an universal method
applicable to all languages,

Section 1 contains an overview of existing methods
for building spell checkers and the limits of such system

292

&

WinSoft SA.
34, Bd. de 'Iisplanade
1:-38000 Grenoble, FRANCI

when we take into account new constraints such as multi-
lingualism. Section 2 outlines the first two steps of our
work: we adapt an cxisting method to Arabic, then make a
first extension by introducing a new kind of compression
called "fogic compression”. Scction 3 introduces in detail
the logic compression with its application o other lan-
guages, and shows the improvements obtained when nsing
logic compression in conjunction with existing methods.
Section 4 outlines the architecture of our mullilingual
spelling cheeker system and some future projects.

I. OVERVIEW OF EXISTING
METHODS

L1, Grammar-based approach

These methods were used in the beginning on early
computers when storage space was expensive, It consists
in building a small lexicon containing roots and aflixes,
grammar of rules that express the morphographemic alter-
nations, and an engine that uses the grammar and the fexi-
con o see if an input word belongs to the language or not.
Il the process of recognition fails, some operations
(substitution, insertion,...) are performed on the misspelled
word (o provide a list of candidate words that helps the user
to select the correct form,

Lven though, it is a great accomplishment to design a
powerful engine [3] [8] and to express rules in a psceudo
natural way [9] even for different languages (1] {2] [117,
these systems present some limits:

- Multilinguism: This methods does not support all lan-
guages. To offer a multilingnal solution for n langnages
you have to store n grammars and n lexicons, and gener-
ally n different engines into the host application.

- Cost of retrieval: For some languages, the retrieval of
words may be long, For instance, a vocalized Arabic spell
checker must accept non-vocalized or partially vocalized
words which require more time to be accepted than fully
vocalized words.

- Cost of guessing alternatives for a misspelled word: To
guess a correct word when a misspelled word is found, we
fhave to modify the misspelied word by all possible opera-
tions (subslitution, inscrtion, suppression,...) for 1 or 2
characters and then try to check them. This matter can take
a lot of time before displaying the correct forms for end-
users.

- Maintaining the grammars and data; ‘The grammars and
lexicon require continuous updating, You need to find a
multilingual computational linguist who knows the fin-
guistic theory and the formalism to easily update data and
rules {8].

- Ergonomic features: In some langnages, end users want
to have some options that let them choose how the spell
checker will accept words. In Arabic, for example, different
regions have slightly different orthographical conventions.

I.2. Lexical-based approach:

Lexical-based approach appear after the first methods
described above, when storage space become less
expensive. The first step is to build complete list of
surface forms belonging to the language using
morphological generators, SLLP (Specialized Languages
for Linguistic Programs), ¢tc. and then compresses the
large word-dictionary. They are generally used for office
applications such as word processors, desktop presentation,
cte. Their main advantage is that they cover a complete
language since all the forms can be found in the initial
list. Also, they allow efficient retricval and gucessing ol
misspelled words [4]. However, some limits exist in such

- systems:

- Multilinguism: The compression process give a good
ratio for langnages with a weak inflexion factor
(Iinglish,...) where the compression mechanism give up (o
150 KB of storage from around 3 MB of a full list [4]. The
compression technologics are still powerful for languages
with a medium inflexion factor (Russian,...). For example,
a list of all surface Russian words of between 10 and 15
MB of size can be reduced to 700 KB [4]. For languages
with a high inflexion factor (Arabic, Finnish,
Hungarian,...), it won't be casy to find compression tech-
nologics that give practical results [4]. For instance, a full
list of completed vocalized words in Arabic has 300 MB in
size and the current compression methods are impractical.

- No morphological knowledge : These methods are neu-
tral with respect to the text language, the efficiency of
compression techniques may be improved by using spe-
cific propertics of the language [41.

II. A FIRST APPROACH: ADAPTING
AN EXISTING METHOD FOR ARABIC

II.1. Using an existing method

As a first step, we take an cfficient method used to
compress dictionarics for Luropean (Iinglish, Irench,...)
spelling checkers [4] and try to apply it to Arabic, The
first step of our work consists in building a full list of sur-
face forms using a morphological generator [S] and com-
pleted by all irregular forms and existing corpus. “The final
large word dictionary which covers non-vocalized Arabic
has a size of 75 MB. The compression process yields 18
MDB in a compressed format. For an idea of the compres-
sion process readers can refer to [10]. Table 1 gives some
results of the compression process for a few Furopean lan-
guages to see the efficiency of the method and its inade-
quacy for the Arabic language.

word size size
forms uncompressed | compressed
Danish 448,000 5689 KB 725 KB
German 403.000 5297 KB 8§66 K13
Arabic |7 millions 75 MB 18 MB
English 88.000 841 KB 224 KIy
Table 1

The result for Arabic is impractical for small computers.
‘We must then find other techniques that produce a smaller
dictionary or extend this method; to get an exploitable so-
lution.

11.2, Extension of the method:

‘The initial idea is applicd to the morphological sys-
tem of Arabic. While most of the fully inflccted forms

words in Arabic are built by adding to a stem prefixes and
suffixes we propose replacing some words with only one
form beginning by a special code that represents a family
of prefixes and finishing by another special code which
represents a family of suffixes. or this purpose, we wrote
a program in MPW-C that processes a full list of inflected
forms and using an existing decomposition of atfixes into
sub-sets already established, give the reduced lexicon where
many forms are replaced by only one representation
(PS_stem_85) where PS; (with respect to 8S)) is the set i
(with respect to j) of prefixes (with respect to suffixes).
Note that the reduced lexicon represents faithfully the ini-
tial list without any silence (missing words) or noise
(incorreet words). Only compressed words are replaced, and
the rest remain in the reduced list, The figure 1 gives an
example of words, an example of a decompositions and the
obtained result.

Decornposition

Full surface forms N
Prefixes
xyweqe=1

Reduced list

xyAXIkiw
weAXdw
wlAX Das

EAXDdw
weAX s
xyAXDas
qeAX s

wlAXDas
1_AXD 3

Fig. 1: Example of the compression process

The next crucial problem to resolve is to find the best de-
composition that provide the best reduced lexicon, The
methad must be automatic, It must process the large word-
dictionary, and regarding an initial list of prefixes and suf-
fixes, must give as output the best decomposition and the
optimal reduced dictionary, But, before studying the im-
plementation of such an algorithm, we began, to see how
much space we could gain by this technique starting {rom a
manual decomposition,

+ Manual method: Starting from a different full lists for
cach catecgory of words (transitive verbs, nouns,...), we
choose different decompositions and processed the full list
with the compression tool. The best decomposition kept
for cach calegory was the decomposition which climinated
the maximum forms. This method gave many candidate
decompositions depending on the grammatical category off
the word. To choose the best global one we took into ac-
count the frequency of dictionary entries, This method was
tested on different Arabic word lists and some results are
described here. Readers can refer (o [10] or [1] for more
information. T'o sce some decomposition, consider the fol-
lowing sets:

By = [wa, fa), /,0/
Lig={na, aa), /5i/ ...
Fy = {tom, touma, ta, tona}, /7 53/

By = {ya, adn, ying, ounal, /ol o) o Lo

Fg = {ha, had, ya, ka, kom, kouma, kona, hom, houma, hona,
nait}, Py = Fg \ {ya, nad} + {ni},

lig={wa}, ...

E (with respect to T5) is a sct of prefixes (with respect to
suffixes). We note the quantity 1415 (with respect to F15)
all strings built by a concatenation of cach clement of E;
(with respeet to 19) with each clement of F; (with respect
to Fj).

Lxample of 3 class (from 6) of the prelix class:

Ly = {la, sa}, /0,

293

Fig, 2: Initial automaton

P‘ = E]. Pz = E4.
P3 = E3 + E2 .E3 + EI'EZ .E3
Example of 4 class (from 13) of the suffix class:
51 = Fl. Sg = F2. S7 = F’]. Sg = Fg.F’].

= First results: case of Arabic; With all the classes al-
ready found for Arabic (6 classes of prefixes, 13 classes of
suffixes; each class containing an average of 8 affixes), we
processed a collection of non-vocalized Arabic dictionarics
(17 MB), the result gave a reduction lexicon of 254 KB,
Used this in combination with the compression process
described in § 1.2, the final result is 121 KB. Note also
that part of this work was implemented in a commercial
multilingual word processor (WinText®) to offer Arabic
spell checking.

I LOGIC COMPRESSION:

II1.1. Theoretical aspects:

Let V be a finite sct and V* the set of words buill on
V including null strings noted @,

We V5. W=WW,. W, WeV.
ie [L.n}. Let vV =V* - {@).
TetY be a sub-set of V that contain vowels.

1. Prefix(W). VWe V*,
We call order i prefix the quantity:
Pi = W]W2,..Wi. (1 <i< n—l),

2. Suffix(W). VWe V+,
We call order j suffix the quantity:
SJ' = Wjo”...Wn. (1 Sj < Il).

3. VocPat(W) VWe vt
We call vocalic pattern of W the sct:

Vy = [Wi ,Wj,...Wk}. WiE Y.
card(Vy) < length(W)
4. Root(W). VWe Vt

We call root the quantity:
R=W,. W, (1<p<gsn),
card(R) < g-p+1.

5. Pi: Prefixes class. Py = (@, Py, Py, Py).

Pjisaprefix. 1<j<k
Card(P) =k+ 1. ilkz1.
= 1 ifl)i:: {@].

6. Sj: Suffixes class, Sj = [(5, Sjl» Sj2""Sjk}'
Sjisasuffix. 1<i<k
Card(S)) =k+ 1. ifk>1.
=1. if §; = (&),
7. V. Vowel class.
Vi = (D, VY, Vyio,.. Vil

294

Vyy 18 a vocalic pattern, 1 <i<k
Card(Vp =k + 1. ifk=>1.
=1, it V= ().

TI1.2. Logic Compression: What is it ?

Let's take the following antomata that represent some
surface vocalized words (fig 2)

Pyisaprefix. 1 €£j<n,

Sjisasuffix. 1 i<,

C,; are the consonants of the vocabulary.
1<i<k

vjj is the vowel attached to the consonant C;.
I<i<qand 1<j<k.

¢ is the null string,

This automata recognizes all words beginning from an ini-
tial state (marked by *) and finighing in a final state
(marked by a double circle)

The number of arcs of such an automata is:

n n

S length(Pik)+ ¥ length(Sjk) + 2q(k-1)

k=1 k=1
If we consider, for cxample, that affixes have a single char-
acter, the number of arcs is cqual to 2(n+1) + 2q(k-1).

The logic compression consist in supplying the class of
prefixes, suffixes and vowels and replaces each set by only
onc arc that represent a family of prefixes, suffixes or
vowels.

Starting from the following sets already established:

Pr= (4, P00, Py aclass of prefixes stored as x.

Si= (%, Sji, Sjs-.Sju) A class of suffixes stored as y.
V= i (Van o vagd o (Vg eovge]) o class of
vocalic pattern stored as z.

The logic compression reduces the initial aulomaton to
this new one:

Fig. 3: Reduced antomata
The number of arcs kept in the automata is equal to 3 + k.
The set Vi contains a sub-set of k vowels which must be
applied to the last k characters.
II1.3. Lxperiments:

The logic compression with only an affix decomposi-
tion, built by the manual method cxplained above, has
been tested on various list of words that represent collec-
tions of multilingual dictionaries (a list of inflected
forms). Three languages are tested: non-vocalized Arabic
which has a great inflexion factor, French which has a

Arabic French Russian
Size of uncompressed list (M) 17 2.636 1
Ratio from a complete dictionary 33 80 16
Number of inflected forms 1.980.280 1 247.406 75.234
Class decomposition (Prefixes) 6 0 3
(suffixes) 13 84 23
1 - Physical compression 5 660 892.646 348.636
2 - Morpho-physical comp. 4 221 311.593 109,418
3 - FSM compression bk 201.216 48.78
4 - Logic compression 253.686 480,770 | 163.202
4+ 1 145.086 207.376 56.784
4+2 121.500 104.665 37.74
443 57.214 150.321 36.71
Table 2

weak inflexion factor, Russian which has & medium inflex-
ion factor. I'xperiments are done in two ways. First by us-
ing our logic compression alone and, then, in conjunction
with other methods by supplying the reduced lexicon (list
ol compressed words in text format) obtained with our
method as input to existing methods, The three other
methods tested are the following:

« Physical compression: Using a commercial physicil
process (Stuffit).

= Morpho-physical compression: This method was used
to compress dictionaries used (o build a spell checker [4].
It combines morphological proprictics by taking into ac-
count the suffixes of the language, but without any link
between them. It also contains some physical features | 7).

» I'SM (Finite-State Machine) Compression: Using the
Lexe (Finite State Lexicon Compiler) which allows the
conversion of a list of surface forms into a transducer
which is then minimized [8].
Results are described in table 2.

1T1.4. Interpretations:

The most interesting thing observed on this table is
the improvement obtained when we combine our method
with a previons one. These results show that the existing
methods are not optimal and can be improved by our logi-
cal compression in its first step. These important results
in storage space should not hide others aspects of spell
checker systems (retricval and guessing). It would be inter-
esting if the results given in the table were followed by
other results showing improvements in the retricval and
guessing of words,

.S Full Finite' State
l()l("Cl:,‘[’)]ll‘([)(:ll: sprfacc Machine (1'SM)
dictionary 7 forms S 1'01‘113:11ism

Corpus

Physical
Logical -

IV. A PROPOSED ARCHITECTURE OF
A UNIVERSAL SPELLING CHECKER:

Figure 3 shows the architectore of our proposcd uni-
versal spelling ehecker. Our method s inspired from pre-
vious methods (§ 1.2), but presents some new original as-
pects that allow it to be considerced a truly multitingoal so-
lution. In summary, our sysiem has the following fea-
tures:

« Multilinguisin: this method will insure the muolti-
lingual constraint. By using different tools, specilic to
cach language, to create a list of all surface forms.

« Storage space: by introducing the logic compression
into the compression process, we will be able to get a re-
duced lexicon for whatever language we have to use. One
task that still remains is to improve the logic compression
by making the task of finding the best decomposition
more automatic. This problem is combinatorial; we must
discover how to apply the optimization algorithms
(genetic algorithm, stochastic algorithm,...) in each case 10
find an optimal reduced lexicon starting from (he large
word-dictionary and primitive morphological knowledge
(list of affixes and vowels),

» Retricval/guessing: even though we haven't any
conerele results now, the first experiments show that the
process of checking words in an FSM formalism is faster
than other existing methods. Furthermore, we are explor-
ing paths to introduce fonctions (similarity key,...) into
the final obtained lexicon to make a rapid goessing of re-
placements for misspelled words.

CONCILUSION

Our approach 1o spell checking differs from previous
methods by taking into account a new parameter which is

Reduced lexicon
(in binary format)

: } Compression

Fig. 3: Universal spelling checker

295

the multilinguism, The system proposed tries to give so-
lutions for the three main problems: Multilinguism, de-
tection/guessing and storage size.

The first results, although using a manual method to
find the decomposition in this first step, show that the
previous methods to store dictionaries are not optimal and
can be improved by exploring other techniques from the
language itsclf. Another interesting experiment is to find
an original optimization algorithm to find the optimal re-
duced lexicon that represents faithfully the initial list
without any silence (missing words) or noise (incorrect
words). Yct another project is to build a more robust
mcthod for the two other problems (detection and guess-
ing) from the reduced lexicon.

ACKNOWLEDGMENTS

The author would like to thank Prof. Christian BOITEET
for his constant support and cncouragement, I am also very
grateful to Mr. Kenneth BEESLEY (Rank Xerox,
Grenoble) for his fruitful discussions and Mr. Laori
KARTTUNEN (Rank Xerox, Grenoble) for his help to
realize some experiments.

REFERENCES

1 Beesley K. R., Bukwalter T., (1989)
Two-level, Finite-State Analysis of Arabic Morphology.
Proceedings of the Seminar on Bilingual Compuling in
Arabic and English, 6-7 Sept. 1989. Cambridge, England:
The Literary and Linguistic Computing Center & The
Center for Middle Eastern Studics.

21 Beesley K. R., (1990) Finite-state descrip-
tion of Arabic Morphology, in the Proceeding of the
Second Cambridge Conference on Bilingual Computing in
Arabic and English, Cambridge, England, 6-7 September
1989. No pagination.

13) Ben Hamadou A., (1986) A Compression
technique for Arabic Dictionaries: The affix Analysis, in
the Proceeding of COLING-86, Bonn 1986, pp. 286-289.

4] Circle Noetic Services (1989) Passwd,
Reference Manual, MIT Branch Office, Boston, pp. 1-6.

Is] Circle Noetic Services (1989) Conjugate
tool, Reference Manual, MIT Branch Office, Boston, pp.
1-5.

[6} Glantz XL, (1957) On the recognition of in-
Jormation with a digital computer, J. ACM, Vol. 4, No,
2, 178-188.

N Huffman D. A, (1951) A method for the
construction of minimum redundancy codes, Proc. IRE 40
(1951), 1098-1101.

18] Karttunen L. (1993), Finite-State Lexicon
Compiler, Xerox Palo Alto Rescarch Center, April 1993,
1-35.

9 Koskeniemmi K., (1983) 1Two level
Morphology, Publication no. 11, Department of General
Linguistics, University of Helsinki, pp. 18,

[101 Meddeb H.RB., (1993) Intégration d'une com-
posante morphologique pour la compression d'un diction-

296

naire arabe, in Proc. Langue Arabe et Technologics
Informatiques Avancées, Casablanca, pp. 14,

[11] Meddeb X.B., (1994) Logic Compression of
Multilingual dictionaries, in Proc. of ICEMCO-94,
International Conference and Exhibition on Multi-lingual
Computing, University of Cambridge, Center of Middle
Eastern Studies, London, April-1994, pp. 14,

[12] Oflazer K, Solak A, (1992) Parsing agglu-
tinative word structures and its application to spelling
checking for Turkish, Proc. of COLING-92, Nantes, Aug.
23-28, Vol. 1, pp. 39-45.

