
UNIFYING DISJUNCTIVE FEATURE STRUCTURES
L E N A S ' F R O M B A C K

Deparlment of Coinputer ,and htforntatiol~ Science
Link0ping University

S-58183 LinkOping, Sweden
Telephone +46 13282676

elnail: lcsti(Wida, liu.se

A b s t r a c t

This paper describes an algorithm for unifying dis-
junc t ive feature structnres. Unl ike previous algo-
rithms, except Eisele & l)6n'e (1990), this algorithm
is as fast as an algori thm withont disjunction when
disjunctions do not participate in the unification, it is
also as fast as an algorithm handling only local dis-
junctions when there are only local disjunctions, and
expensive only in tile case of unifying fnll disjunc-
tion. The descript ion is g iven in the f iamework of
graph unification algoritbnls which ulakes it easy to
implement as an extension of such an algorithm.

1 I n t r o d u c t i o n

Dis junc t ion is all impor tan t ex tens ion to feature
structure languages since it increases the compact-
uess of the descriptions. The mmn problem with in-
c l ud ing d i s j u n c t i o n in ti le s t ruc tu res is tha t the
unification operation becomes NP-complete. There-
lore there have been many proposals on how to uni-
fy disjunctive feature structures, the most important
be ing K a r t t u n e n ' s (1984) un i f i ca t ion wi th con-
straints, Kasper 's (1987) unification by successive
approximation, Eisele & D0rru's (1988) value unifi-
cation and lately Eisele & D0rre's (1990a, b) unifi-
cation with named disjunctions. Since Kasper's and
Eisele & D0rre's algorithms seem to be more gener-
al and efficient than Karttunen's algorithm I will re-
strict my discussion to them.

hi Kasper 's algorithin the structures to be unified
are divided into two parts, one that does not contain
any disjunctions and one that is a conjunction of all
disjunctions in the structure. Tile idea is to unify the
non-disjunctive parts first and then unify the result
with the disjunctions, thus trying to exclude as many
alternatives as possible. The last step is to compare
all disjunctions with each other, making it possible
to discard further alternatives. At is this comparison
that is expensive. The algorithm is always expensive
for disjunctions, regardless of whether they coutain
path equivalences or not and independent of wheth-
er they are affected by the unification or not. This is
due to the representation, where all disjunctions are
moved to the top level of the strncture, which means
that larger parts of the structures are moved into the
disjunctions and must be compared by the algo-
rithm. Carter (1990) has made a development of this
algorithm which improves the efficiency when nsed
together with bottom-up parsing.

Eisele & D01Te'S (1988) approach is based on the
fact that unification of path equivalences should re-
turn uot only a local value, but also a global value
that affects some other part of the struetm'e. Their
solution is to compute tbe local value and save tile
global value a~s a global Jesuit. The global results
will be unified with the result of the first unification.
This new unification can also generate a new global
disjunction so that the unification with global results
will be repeated until no new global result is gener-
ated. This solution generates at least one, but otten
more than one, exUa nnification for each path equiv-
alence. Thus, tile algorithm is always expensive for
path equivalences, regardless of whether they are
contained inside disjuncttous or not.

Tbe approach taken by Eisele & D0rre (1990) is
similar to file approach taken in tills paper. They use
'nmned disjunction' (Kaplan & Maxwell 1989) and
one of their central ideas i.e. to use a disjunction as
the value of a variable to decide when the value is
dependent on the choice in some disjunction is simi-
itu" to the way of unifying variables in the present
paper, ltowevcr, they use feature terms for repre-
setmug the structures and their algorithm is de-
scribed by a set of rewrite rules lo t feature terms.
This makes the algorithm different from algorittuns
described for graph unification.

What is special with the algorithm in the present
paper is filat it is

1. As efficient as au algorithm not handling disjunc-
tion wlleu the participating structures do not con-
tain any disjuuclions.

2. As efficient as an algorithm allowing only local
disjunctions when the participating structures
only contain such disjunction.

3. Expensive only when non-local disjunction is in-
volved.

The description is given in a way that makes the
algorithin easy to implement as an extensron of a
graph unification algorithm.

2 T h e F o r m u l a s

Feature structures are represented by fornlulas. The
syntax of the formulas, especial ly the way of con-
structing complex graphs, is chosen so as to get a
close relation to feature st~ uctmes. This also makes
it easy to construct a unification procedure s~milar to

ACTES DE COLING-92, NANTES. 23 28 AOt';r 1992 116 7 PROC. O1: COLING-92. NANTES, AUG. 23-28, 1992

graph unification and give the formulas a semantics
based on graph models. For disjunction a generali-
zation of Kaplan & Maxwel l ' s (1989) 'named dis-
j u n c t i o n ' i s u s e d . T h e i r i d e a is to g i v e the
dis junct ions names so that it is poss ible to restrict
the choices in them. Kaplan and Maxwell use only
binary disjunctions, and if the left alternative in one
disjunction is chosen the left al ternative in all dis-
junctions with the same name has to be chosen. In
this paper I do not restrict the algori thm to binary
d is junct ions . Instead of g iv ing the d is junct ion a
name I g ive each al ternative a name. Alternat ives
with the same name are then connected so that i f
one of them is chosen we also have to choose all the
others.

We assume four basic sets A, F, X and E of atoms,
feature attributes, variables and disjunction switches
respectively. These sets contain symbols denoted by
strings. They are all assumed to be enumerable and
pmrwise disjoint. From these basic sets we define
the set S of feature structures. S contains the follow-
ing structures:

• T : no information

• .L : failure

• a f o r a l l a E A : a t o m s

• x for all x E X : variables

• [ft:sl fn:sn] for a n y f i E F, s i E S, n > 0 such
that fr- ~ for i~j: complex feature slructure

• { o t : S l , . . . , O n : S n } f O r a n y o i E)2, s iE S, n 2 0
such that of,-~crj for i~j : disjunction

A formula is defined to be a pair (s, v) where s is a
feature structure and v : X -) S a valuation function
that assigns structures to variables. We demand that
the formulas are acyclic.

An example of a formula is given in figure 1. Var-
iables are denoted by using the symbol # and a
number. The same formula is also given in matrix
format which will be used to make the examples
easier to read.

([a : [e : # 1] , b : 3 , c : # l] , { (#1 , [d : 4]) }

Figure 1

We can observe that according to this definflion
formulas are not unambiguously determined. The
same formula can for example be expressed with
different variables. There is also nothing said about
the value of the valuation function v for variables
not occurring in the formulas.

3 Semantics

The semantics given for these formulas is similar to
the one given by Kasper & Rounds (1986) for their
logic of feature structures. This logic is modified in
the same way as in Reape (1991) to a l low for the
use of variables instead of equational coustraints as
used by Kasper and Rounds. As Kasper and Rounds
I wil l use a graph model for the formulas where
each formula is satisfied by a set of graphs. I wil l
use b to denote the t rans i t ion funct ion be tween
nodes in the graph. We also need to define a valua-
tion to describe the semantics of variables. Given a
graph a va lua t ion is a funct ion V:X-->N. By this
fnnct ion every var iable is ass igned a node in the
graph as its value.

Satisfaction is defined by the following rules. The
model M = (G, V, L) where G is a graph, V a valua-
tion and L a subset of the switches occurring in the
formula.satisfies a formula at node i iff it fulfils any
of these cases. 1 will use the notion sat(i) if node i in
the graph satisfies a formula.

• M sat(i) {T, v) for all v

• M sat(i) (t , v) for no v

• M sat(i) (a, v) iff node i in G is the leaf a E A

• M sat(i) (x, v) iff V(x)=i and M sat(i) (v(x), v)

• M sat(i) ([fl:Sl fn:Sn], v) iff for all k = 1 ... n
~(if~z)=jk and M sat(jr :) (s k, v)

• M sat(i) ({o l : s I On:Sn}, v) i ffprecisely one of
o t ... o n is in L and M sat(i) (s k, v) for k such that
OkE L

These rules correspond to the usual sansfaction
definitions for feature structures. The snbset of
switches L forces us to choose exactly one alterna-
tive in each disjunction and the model should satisfy
this alternative.

4 U n i f i c a t i o n

in this section I will define a set of rewrite rules for
comput ing the unif icat ion of two formulas. 1 will
start by inu'oducing the operator ^ into our formu-
las. The syntax and semantics is g iven by the fol-
lowing rules:

• M sat(i)fst/,fs;~ i f f f s I andfs 2 are formulas and M
sat(i) f s I and M sat(i) f s 2

• M sat(i) (SlAS2, v) i f fM sat(i) (s 1, v} and M sat(i)
<s2, v)

The operator ^ can be viewed as the unification
operator. By the definition we can see that it is inter+
preted as a conjunction or intersection of the two
participating formulas, which is the normal interpre-
tation of unification. The task of unifying two for-
mulas is then the task of rewriting two tormulas
containing ^ into a formula not containing A. Here
we can note that since a formula is not unambigu-
ously determined the unified formula is not unique.
Actually there is a set of formulas that all have the

AerE.s DE COLING-92, NANTES. 23-28 AOt~'r 1992 l 1 6 8 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

same model as the unification of the l"ormulas. The
aim here is to compute one of these formulas as a
representative for this set, and thus a representative
for the unification o f f s t and fs 2. The rewrite rules
given below correspond to the unification algorithm
for formulas not containing disjunction.

1, (s t, vl)A(s 2, v,~) ~ (slAs 2, v) if v I and v 2 are dis-
joint and v(x)=vl(x) for all x in v 1, v(x)=vHx) for
all x in v),.

2. (~ /~2 , v) ~ (s 2 ~ 1, v)
3. (T,~, v) ~ (s, v)
4. (aAa, v) r. (a, v) where aEA

5. (a/49, v) r. (±, v) where ae:b and a,bEA

6. (a^lfl:Sl..~,:sn], v) ~ (.1_, v) where a6 A

7. <_t~,, v> ~ <±, v>
8. <xm, v> - <x, v~>

where (v(x)^s, v) ~ (s t , Vl) and xeX, v;~(x)=s I
and v2=v I for all other variables

9. ([fll:Sll"fln:Sln]m[f21:s21"f2m:SemI, v)~ (s, v e)
where s is tim complex feature structure contam-
ing:
fl,:suj for a n y j such that fLr~fek for all k
-~-~f)):s)i for a n y j such that/2f,-eflt_ _ for all k
f lj.'S3i for any j,k such that f u=f,~ t where (s ljAs2t,
V(F1)) ~ (S3i, Vi)
and i describes some enumerauon of the result-
ing formulas vo=v and <x3p, vp) is the last of tim
formulas.

The first rule is a kind of entry rule and can be in-
terpreted as saying that it is possible to unify two
formulas i f the variables occumng within them are
disjoint. "l~le second rule says that unification is
commutative, and are used to avoid duplicating the
other rules. The next rule says that T unifies with
everything. Rules four to six says that an atom only
unifies with itself and becomes failure when unified
with some other atom or a complex structnre. The
seventh rule says that unifying failure always yields
failure. The eighth rule deals with unification of var-
iables. Here we have to start with unifying the value
of the variable with the other saucmre. This unifica-
tion gives a new pair of feature structure and valua-
tion function as result where the new valuation
function contains the changes of variables that have
been made during this unification. The result of the
unification of a variable is the pair of the variable
and the new valuation function where the value of
the variable is replaced with the unified one. Rule
nine deals with the umfication of two complex fea-
ture structures and says that the result is the struc-
ture obtained by unifying the values of the common
attributes of the two structures and then adding all
a tmbutes that occurs in either of the structures to the
result.

Figure 2 gives an example that illustrates what
modifications that must be made to the rewrite rules
to be able to handle unification of disjunction. Uni-

fying a disjunction is basically unifying each of its
alternatives. But the exmnple also shows what mnst

o{ol
.2:#libel ^I °:[)'

lb.. #1

I (/:
I

ib:

o1:

02 :#1

#1

C.' I
[e

t [a. 31

Figme 2

happen if a variable occurs within the disjuncUon.
The value of the variable is global sitice it can affect
parts of the structure outside the disjunction. There-
fore this value must be dependent on what alterna-
t ive that is chosen m the disjunction. This is done by
representing the value of the variable as a new dis-
junction where we only choose the unified value if
the alternative o 7 is chosen, qb express this in the
rewrite rule we index all rules by the list of switches
that are Uaversed in the formula. This is expressed
by replacing the m with __x in all rules where X is a
list of the switches passed to reach this point of the
unification. We also need to split rule 8 into two
rules depending on if any disjunctions have been
passed to reach the variable. The new rules are giv-
en below and we assume that the switches occurring
in each formula are unique.

8.a(xm, v) ~0 (x, v~_:{'.st))
where (v(x)^s, v) ~ (s t, v 1) x~X, vHx)=s I and
v2=v I for all other variables

8.b(x,~', v) ~ lot 'O(x, v~) ,
where (v(x)^s, v) ~ o l ... om (si, Vl), xCX,
vJx)={ol :l o2: I...[o~:sl o :v(x)... I
Onow2: v(x) } cr new I : v(x) }, v~ = v I for all other vari -
ables and Onewi is a switch name not used before.

10.({Ol:Sll...On:Sln}AS, v).,----X,~ ({Ol:S21...Crn:S2n }, Vn)
where (Sli^S, v(i 1)) i~°lu'~ (s2i, vi) and v o =v

In StrOmblick (1991, 1992) these rewrite rules are
proved to compute the unification of two foimulas.

5 D i s c u s s i o n

The syntax and semantics of the formulas are very
s imi l a r to wha t is g iven in Reape (1991 pp 35)
which is a deve lopment of the semant ics g iven in
Kasper & Rounds (1986) that allows the use of vari-

ACrEs DE COLING-92, NANa~2S, 23-28 XOt;r 1992 l 1 6 9 PROC. OF COLING-92, NANTES, AUO. 23-28, 1992

ables to express equational constraints. The differ-
ence is that I use formulas of the form [/l:sl...f,:sn]
instead of an ordinary conjunction and that we use
named disjunction. This restricts the syntax of the
formulas somewhat and makes them closer to ordi-
nary feature structures. The restricted syntax is also
the reason why we need to include a valuation func-
tion in the formulas.

It is easy to represent the formulas as ordinary di-
rected acyclic graphs where variables are represent-
ed as references to the same substructure in the
graphs. If we think of the formulas as graphs it is
also easy to compare the rewrite rules 1-9 above
with an ordinary graph unification algorithm. Doing
this we can conclude that each of the rewrite roles
three to nine corresponds to a case in the unification
algorithm. The only difference is that when varia-
bles are represented as reentrant subgraphs we never
have to look-up the variable to find its value. The
main advantage with defining unification by a set of
rewrite rules is that the procedure can be proved to
be correct.

6 Detection of failure and
improvements

The problem with the rewrite rules is that they
sometimes produces formulas which have no model.
Such formulas must be detected in order to know
when the unification fails. As long as the formulas
only contain local disjunction this is not a problem
and it is easy to change the rewrite rules in order to
propagate a failure to the top level in the formula.
The ninth rule is, for example, changed to return (.±,
vp) whenever any of the values of the attributes in
the resulting formula is fail.

When nonlocal disjunction is included we must
find some of keeping track of which choices of
switches in the disjunctions that represent a failure.
This can be done by building a tree where the paths
represents possible choices of switches and the leaf
nodes in the tree contains a value that is fa lse if this
choice represents a subset of switches for which the
formula has no model and true otherwise. Figure 3
shows an example of a formula and its correspond-
ing choice tree. To reach the leaf b in the tree the
switches 0.1, 03, and crn have been chosen and or2,
0.4, and 03 have not. So 0.3 is both chosen and not
chosen and the value of this leaf must be false. Con-
tinuing this reasoning for the other paths in the tree
we could see that the leafs b, e, and f must have the
value false and the other leafs must have the value
true. If some value of an alternative is .1_ the corre-
sponding leafs in the choice tree must be false. If
we, for example assume that the value of or4 is fail
we must assign fa lse to the leafs c , f , and g.

Choice trees can be built ones for each formula
and merged during the unification of formulas. A
better solution is to only build the choice trees when
they are needed, i.e. when a disjunction alternatave

O2:#1 { O3: ... }
On.'

{ O3: ~l }
04:

03 f:¢," true a

03. " ~ n "",~- false O
ol ~ - .

/ " o4 "~- true e
/
~\ 03 ~" trlte d

,,2 " C ~ " ' ~ - * - I alse,
. . 03 ._~- false f

on" J'~ true g
Figure 3

where the disjunction shares some switch name with
another disjunction fails. If this is done we only
have to do the expensive work when really needed
which is when we have failure in a non-local dis-
junction and achieves a better performance of the al-
gorithm for all other cases.

Str6mhiick (1991, 1992) discusses how the choice
tree is best used. The papers also discuss how the
choice tree can be used to remove failed alternatives
from a formula without destroying the interpretation
of the formula. The main idea here is to see what
switches that must be chosen to reach each disjunc-
tion alternative in the formula. For this set of
switches we find all leafs in the choice nee that can
be reached if these switches are chosen. If all these
leafs are false the alternative should be removed.
For example, if we assume that the value of 0.4 in
figure 3 is fail and that we have assigned fa lse to the
corresponding leafs in the choice tree, we can also
see that there is no way of reaching a leaf with the
value true if we have to choose tin. In this case we
can as well remove both 04 and on from the feature
StrUCture.

The two papers mentioned above also discuss
vmious improvements that can be made in order to
get a more efficient algorithm. Most important here
is that we can build only parts of the choice tree and
that the notion of switches for a disjunction can be
extended to allow sets of switches in order to avoid
creating too many new disjunctions.

7 I m p l e m e n t a t i o n

The algorithm has been implemented in Xerox
Common Lisp and is running on the Sun Sparcsta-
tions.

ACTES DE COLING-92. NANTES, 23-28 AOt~'r 1992 1 l 7 0 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

8 C o m p l e x i t y

To analyze the complexity of this algorith m 1 will
look at threc cases. If we assume that there are no
disjunctions in the formulas the procedure can be
implemented almost linearly. If we have local dis-
junction in the formulas, i.e. disjunctions which do
not contain variables and which not are connected
by switch nantes, the total complexity becomes ex-
ponential on the maximum depth of disjunctions oc-
curring within each other. For the third case we have
to add the complexity for the removal strategies
when alternatives have failed. The complexity for
this procedure is also exponential in the size of a",
where a is the total nnmbcr of alternatives OccutTing
in the formulas. For a more complete discussion of
the complexity see StrOmhack (1991, 1992)

When considering complexity one must remem-
ber that the second case will only be pcrforn~ed
when there are disjunctions in the formula and when
these disjunctions are actually affecWA by the unifi-
cation. Disjunctions in some subpart of the formula
not affected by the unification never affect the com-
plexity. It is also reasonable to assume that m most
case.q when a disjunction really participates in the
unification, some of its alternatives will be removed
due to failure. The same thing holds for the last
case; it will only be performed when some global al-
ternative has failed. This means that this procedure
can at most be performed once for each ordinary al-
ternative in the initial formulas.

Comparing this to the other proposed alternatives
we can see that Kasper's (1987) algorithm has a bet-
ter worst case complexity (2a/2). On the other hand
this complexity holds for all disjunctions in the
structure regardless of whetlmr they arc ',fffected by
the unification or not. The algorithm by Eisele &
D0rre (1988) has a similar worst case complexity.
The disadvantage here is that this 'algorithm is ex-
pensive even if the structures do not contain any dis-
junctions at all. The third algorithm (Eisele & D~3rre
1990a, b) will also be NP-complete in rite worst case
and will probably have a stinilar performartce com-
pared to the algorithm descritxxl in this paper.

9 Conclusion

This paper describes an algot~ithm for unifying
disjunctions which calls for as little computation as
possible for each ease. Disjunctions only affect the
complexity when they directly parucipate ~ are
affected by the unification, which is the only case
when we expand to disjunctive normal form. The
most expensive work is done only when there is a
failure in a disjunction which affects some other part
of the structure. The only algorithm that shows sim-
ilar complexity is the algorithm proposed by Eisele
& D0rre (1990). However the description given by
Eisele and DOne is harder to relate and implement
as a graph unification algorithm. This paper shows

that it is possible to use Snililar ideas together with
graph unification. The de,,;cription given here is fair°
ly easy to implement as mi extension of a graph uni~
ficatiou algorithm.

A c k n o w l e d g e m e n t s

This work is part of the project I)ynamic ! ,anguage
tlndcrstanding suppmted by the Swedish Council
for Research in the Itumauities and the Swedish
Bored for Industrial and "l~echnical Development. 1
would also like to thank Lars Ahrcnberg and "lhre
Laugholln for valuable comments on this work.

R e f e r e n c e s

Crater, David (1990). Efficient Disjunctive Unification
for Bottom-Up l'msmg. Proe. 13th International Confer-
ence on Computational Linguistics, vol. 3, pp 70-75.
Eisele, Andreas and Jochen D0rre (1988). Unification of
Disjunctive Feattne Descriptions. Proc. 26th Annual
Meeting of the Association fi~r Computational Linguis-
tics, pp 286-294.
Eisele, Andreas and Jochen DOtre (1990a). Disjt/r~ctive
Unification. IWBS Rep()rt 124, IWtIS, IBM Deutsehlat~d,
W. Gemmny, May 1990.
Eisele, Andreas eald Jochen DOne (19tX)b). Feature Logic
with Disjtmctive Unification. Proe. 13th International
Conference on Compntatiomll Linguistics, vol. 2, pp 100o
105.

Kalttnnen, Lauri (1984). Featttres and Values. lOth Inter-
national Conference on Computational l dnguistics122nd
Annual Meeting of the Association for Computational
Linguistics, Stanford, California, pp 28-33.

Karttenen, Lauri (1986). D-PATR: A Developnlent EaWl-
ronment for Unification Based Grammars. Proc. l l th In-
ternational Conference on Computational Linguistics,
Bonn, Federal Republic of Gemmny, pp 74~80.
Kaplall, Ronald M. mid John T. Maxwell lit (1989). An
Overview of Disjunctive Constraint Satisfaction. Proc.
International Workshop on I'arsing Technologies, Pitts-
bulgh, Pennsylvania, pp 18-27.
Kasper, Robert T. (1987). A ihtihcatien Method for Dis-
junctive Feature Descriptions. 25th Annual Meeting &
the Association for Computational Linguistics. pp 235-
242.
Reape, Mike (199 l). An Introduction to file Semantics of
Unification-Based Grmnmar Formalisms. Deliverable
R3.2.A DYANA - ESPRIT B~ic Research Action BR
3175.
Rotmds, Willianl C. and Robert Kasper (1986). A Com-
plete Logical Calculus for Record StmcttHes Represent-
ing Linguistic Information. Proe. Symposium on Logic in
Computer Science, Cambridge Massachusetts, pp 39 - 43
Str0mback, Lena (1991). Unifying Disjuucti ve Feature
Structures. Teclmical Report LiTH-1DA-R-91-34, l~e-
partmeslt of Computer and lnfommtion Science,
LinkOping Univelsity, Link0pixlg, Sweden.
Str~,mbitck, Lena (1992). Studies in Extended Uni]ication
Formalisms for Linguistic Description. Licentiate thesis.
Depmtment of Compute; and hfformation Scie~:e,
Link6ping University, LinktJping, Sweden.

ACRES Ul! COLING-92, NANTES, 23-28 AO(7l' 1992 l 1 7 1 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

