
P R O O F - N E T S AND D E P E N D E N C I E S

Alain LECOMTE

GRIL
Universit6 Blaise Pascal

3 4 A v e n u e C a r n o t
63037- CLERMONT-FERRAND codex

(France)

Abstract

Proof-Nets (Roorda 1990) are a good device for processing
with eategorial grammars, mainly because they avoid
spurious ambiguities. Nevertheless, they do not provide
easily readable structures and they hide the true proximity
between Categorial Grammars and Dependency Grammars.
We give here an other kind of Proof-Nets which is much
related to Dependency Structures similar to those we meet
in, for instance (Hudson 1984). These new Proof-Nets a r e

called Connection Nets. We show that Connection Nets
provide not only easily interpretable structures, but also

that processing with them is more efficient. 1

1 , I n t r o d u c t i o n

Nowadays, two formalisms are very attractive in Natural
Language Processing:

- Categorial Grammars, and
- Dependency Grammars.

Numerous studies try to shed light on their similarities
and differences. We may quote for instance works by
Hudson (1984, 1990), Barry & Picketing(1990), Hausser
(1990), Hepple (1991). One interesting particularity
common to these two formalisms seems to be the
capacity of leading to an incremental processing, which,
in turn, leads to an on-line processing.
Moreover, these formalisms are now very well known.
Categorial Grammars have been much studied recently,
particularly since the article of Ades and Steedman
(1982) and the re-discovering of previous works done by
Lambek (1958, 1961). The most comprehensive form
taken by Categorial Grammars is the Lambek Calculus,
studied by many authors like Moortgat (1988, 1990),
Buszkowski (1986, 1988), Descl6s (1990)etc. Since the
recent work by J-Y Girard (see for instance Girard 1987),
which led to the framework of Linear Logic, it has
become apparent that the Lambek Calculus amounts to a
non-commutative version of a sub-system of Linear
Logic, where a structural rule forbids seqnents with an
empty antecedent.
Semantic properties of this system have been studied by
Buszkowski (1986, 1988) and Wansing (1990). Two
models are often given: one consists of residuation
semigroups spread over free semigroups, and another one
is given by the directional typed lambda-calculus.

Dependency Grammars are originating from earlier works
by the French linguist Tesnitre (1965). They were
theoretically studied by Gaifman, who demonstrated
theorems on the Generative Capacity of Dependency
Grammars. We will consider here that the formalism of
"Word Grammar" (Hudson 1984, 1990) is representative
of this trend.
Our purpose in this communication is to show that
building dependency structures gives an other kind of
semantics for the Lambek Calculus and various
subsystems. This semantics is useful in that it will
allow us to conceive extensions of the Lambek
Calculus. Moreover, the correspondance proposed
between these two aspects provides us with a method of
parsing related to the conception of "parsing as
deduction", together with a method for avoiding spurious
ambiguities. We will show that it is isomorphic to the
method of proof-nets (Girard 1987, Danos and Regnier
1989, Roorda 1990, 1991), but that it has the advantage
over this last method of being more effieient and of
providing more clarity on the result of processing. The
devices we obtain are more readable, because they are
interpretable in terms of dependency structures.
Otherwi~, the parsing method can be an incremental
one.

2. The Method of Proof-Nets in the Lambek
C a l c u l u s

The problem of spurious ambiguities in Categorial
Grammar is very often discussed (see for instance
Hendriks and Roorda (1991)). A proof-net is a device
which contains all the equivalent proofs of the same
result. As Roorda (1990) says: "A proof-net can be
viewed as a parallellized sequent proof [...] It is a
concrete structure, not merely an abstract equivalence
class of derivations, and surely not a special derivation
with certain constraints on the order in which the rules
must be applied."
The principles of construction of proof-nets are related to
the inference rules of the Lambek Calculus, when it is
viewed as a sequent calculus. If we here omit the
product, we have the following rules, which belong to
two different types:

1 1 am indebted to Dirk Roorda for fruitful discussions
during a brief visit I made in Amsterdam in Spring 1991

Ac'rv_s DE COL1NG-92, NANTES, 2.3-28 hofrr 1992 3 9 4 Pgoc. OF COLING.92, NANTES, AUG. 23-28, 1992

B i n a r y rules (or type-2 rules):
(where O is a non-empty sequence of categories, and F

and A are arbitrary sequences of categories) 2

[L/I: O--4B F, A, A -4 C
.

F, A/B, O, A --~ C

[L\]: O -~ B F, A, A --7 C

F, O, B\A, A --~ C

Unary rules (or type-I rules): (F is non empty)

[R/l: 0 , B --~ A [R\]: B, @ ~ A

@~A/B O~BXA

In these rules, contexts (O, F, A) are "static". That
means that they can neither be contracted, nor expanded,
nor permuted. They play no role in the application of
rules. So, it is convenient to "forget" them and to
represent the rules according to schemes similar to:

A*B
Such a scheme is called a link. Other types of links are
provided by the identity axiom: [axl A---~A, which
becomes:

r - - - - - - - - i
+

A A
and by the cta-rule:

O - -) A A, A, F --~ C
[cut]: . which becomes:

A, O, F - o C
+

A A

Links associawal to rules belong to two type.s:
type-2 links corresponding to type-2 rules

(depicted by lines)
type-I links corresponding to type-1 rules

(depicted by dashed lines)
D. Reorda (1990) has shown the following theorem:

Theorem: (Soundness and Completeness of Proof-Nets
w.r . t .L.)

2 We use here the notation introduced by J. Lambek,
according to which the argument category is always under
the slash, in such a way that Aft] means a category which
becomes an A if a B is met on file right, and BXA a category
which becomes an A if a B is met on tlie left.

If the rules [L\], [L/J, JR\], [R/I are represented by the
following links:

+ +
A B I3- A

A~I3 B/A

+ +
B d d B
• ° • °

A~B B/A
then a sequent F --~ A is a theorem of the (Product free)
Lambek Calculus if and only if we can build, starting
with this sequent and applying links re, cursively, a
connected planar graph having the following property:
for each application of a typed link, every suppression
of one of the two dashed lines leaves the graph
connected.
E x a m p l e s :
a - ' , b / (a \ b) is a theorem: see figure (1) below.
b / (a \ b) ~ a is not a theorem: see figure (2) below.

figure (1):

b/&,)
figure (2):

r - -

a

b/(aXb) +a

In this last ease, we see that file suppression of the edge
2 leads to disconnection.

3 . D e p e n d e n c y S t r u c t u r e s

A dependency structure associated to a sentence is a tree
on the words of this sentence. Edges represent
dependency links such that the source of an edge is
considered as the head and the target as a dependant.
Hudson (1984) givcs criteria to distinguish heads and
dependants. It is an open question whether a head can be
vicwed as a functor, the dependant being viewed as an
argumenL The facts that criteria involve agreement and

ACTES DE COLING-92, NANTES, 23-28 AO'tYr I992 3 9 5 Paoc. OF COL1NG-92, NANTES, AUG. 23-28, 1992

that according to the Keenan's thesis: "functors agree
with their argument" seem in favour of identification.
But other scholars disagree, like Moortgat and Morrill,
who introduce in their recent works, four notions: head,
dependant,functor and argument. Nevertheless, we will
accept the first thesis in the following, adopting the
conception of Barry and Pickering (1990) on this
subjecL
Another problem appears in the necessity of accounting
for slructums with multiplicity of heads (in Ihe case of
the control of infinitives for instance) because this
necessity leads to graphs which are no longer trees, but
dags.
We assume that a dependency structure is a graph on
words, In a first step, we will consider only trees. The
approach will be that of a semantic interpretation in
terms of wee.s, similar to what we do when we give a
semantic interpretation of logic formulae in terms of
sets. The usual operators like / and \ will be interpreted
as connection operations in an algebra of trees. In a
second step, we will have to modify this interpretation
in order to obtain not only application and composition
but division too.

4.Operat ions on Trees

We start with a set of directed trees associated to lexical
entries. (see figure (3) below).
figure (3)

c o nnai t : A

np np

promet

np sp[A]

np
trees are called initial trees. The initial state of a

representation of the structure of a sentence consists in
an ordered sequence of these initial trees, Then, at each
~aep. we build a new tree obtained by connection of
previous trees, These operations are: (cf Lecomte 1990)

- left-linkage
- right-linkage

A tree GI is right (resp. left) linkable to a tree G2 iff:
I) G 1 and G2 are adjacent, G2 being adjacent to the right
(w.ap, left) ofG 1
2) GI has a rightmost (resp leftmost) branch the first
edge of which is right (resp left) directed and the
maximal sub-tree attached to this first edge entirely
covers a continuous subtree of G2.
The by-product of the right-linkage (resp left-linkage) of
GI with G2, when GI is right (resp left) linkable to G2
is the tree G3 obtained as the union of G 1 and G2,
modified in the following way:

The rightmost dght-direeted (resp. leftmost left-directed)
first-levd edge of G 1 is connected to the root of G2, and
the subtree of G2 covered by the maximal subtree
attached to this edge is said to be marked in G2. Left
(res'p. right)-directed edges of G 2 which are not marked
romainfree and take precedence in the left-to-right (resp
right-to-left) order of first-level edges over those
remaining free in G 1.
We can introduce restrictions on these operations:
we will call restriction-AB the following constraint: the
subtree of G 2 covered by the subtre, e of G1 must be
identical to the whole tree G2,
restriction-C: at most the rightmost (rcsp leftmost)
branch of G2 may be uncovered.
restriction-Crec: a right (resp left) subtree of G2 may be
uncove~d
restriction-Cmix: at most the rightmost (resp leftmos0
or the leftmost (resp rightmost) branch of G2 may be
uncovered
Definition: we call connection tree every initial tree
and every tree obtained by the application of linkage
operations on earlier connection trees (according to
eventual restrictions).
We claim that such a system gives an interpretation of
very simple categorial grammars, depending on the
restrictions we select. Like similar constructions
(Stoedman 1991) where general principles such as
Adjacency, Directional Consistency and Directional
Inheritance arc explained in terms of a more detailed
analysis of categories, this system is suited to express
such generalities. Because of the structure of linkage
operations, these principles are obvious. Adjacency and
Directional Consistency are contained in the definition.
Directional Inheritance comes from the fact that we never
allow to change anything in the labels of edges (the fact
that they are left or right directed). We only allow m
change tile status of an edge (free to bound or marked). In
so doing, we reach, like Steedman does. the conclusion
that so-called Dysharmonic Composition Rules are
consistent with these principles (even if they are not
with the Lambek Calculus[).
A connection system eliminates spurious ambiguities
because when they are bound, links are undefeasable :
there is no way of re-doing something that was
primilarly done with success. In this respect, the
calculus on trees concurs with the well known method of
chart-parsing. (see figure (4): there is only one tree for
two reductions by means of Cancellation Schemes).

Ac'rF.s DE COLING-92, NANTES, 23-28 AOt~'r 1992 3 9 6 PREC. OF COLING-92, NANTES, AUO. 23-28, 1992

figure (4):

a/ (c\b) (c\b) /d

c \ b

d

>

a

a/(c\b) (c\b)/d

a / d

d

> B

a

/
Moreover, a connection system provides us with a
semantics for Dependency-Constituency Grammars, in
the tradition of Barry and Picketing (1990) and Mark
Hepple (1991).

5 . C o n n e c t i o n a n d I d e n t i f i c a t i o n : a n E x t e n s i o n
o f C o n n e c t i o n S y s t e m s

5.1.The Need for Division Rules

It is obvious that the previous system does not include
any kind of Division Rules or any kind of Type-Raising
Rule. So, it cannot provide any analysis for sentences
with extraction, as for instance:

le livre dont je connais le titre est sur la table
(the book the title of which I know is on the table)

because in such an analysis, we have to transform a
regular n (titre) into a functorial category which requires
a nonn-tandifier on its right (n/(nkn)).
We shall define a new connection system which is a
conservative extension of the previous one (except for
the admissibility of Dysharmonic Rules). We will call
it: the Connection Net System.
As for the proof-nets, we want to demonstrate theorems
that have a sequent form like: F---~ X, where F is a non
empty sequence of categories and X is a category. We
distinguish two kinds of connection Irees: those which
are on the right-hand side of the sequent we want to
demonstrate, and those which are on the left-hand side.
When we are viewing the problems in a natural-
deduction way, we can say that the first are the trees to
build and the second are those which are used in this
task. We will call the firstright-trees and the second left-
trees. The se t of left-trees and right-trees at any stage
will be called a Construction Net.

Schematically, operations are not merely connections
because connections can only expand elementary trees
towards more complex ones. And we need operations to
reduce the complexity of a tree. For instance, to show
the usual rule of Type-Raising: a ~ b/(a~b) we have to
show that the fight-tree associated to b/(a~b) reduces to
something isomorphic to a. The fact that, generally, the
converse (b/(a~)-oa) is not true results from the fact that
the same reduction is not possible when the same tree is
put on the left-hand side. This exemplifies the
fundamental dissymetry of the calculus.

5.2.Type-I Edges and Type-2 Edges

We will then distinguish two sorts of edges and two
sorts of nodes in a connection tree: typed edges and
nodes and type-2 edges and nodes.
D e f i n i t i o n : A type-2 edge in a connection tree is:

- an odd level edge in a left-tree, or
- an even level edge in a right-tree
A type-1 edge in a connection tree is:

- an even level edge in a left-tree, or
- an odd level edge in a right-tree
A type-i (i =1.2) node is the target of a type-i
edge.
Roots are type-1 nodes if in a left-tree, and tyl~-
2 nodes if in a right-tree.

Two nodes are mid to be complementary if they have not
the same type.

Examples: figure (5)
a) a new tree assigned to a lexical entry:

promet

np ,," s [infl sp[/l]

np
b) a pair (L, R) associated to a sequent:
a ~ b/ (a\b)

b % ,

L R

D e f i n i t i o n : we call identification link either a non-
directed edge which links two identical nodes which are
complementary, one in a left-tree, the other in a right-
tree, or a type-I directed edge linking two comple-
mentary nodes having same label.
We call connection link every link we shall be able to
establish, according to the following conventions,
between a typo-I node, which is the ending point of a

ACRES DE COLING-92, NANTFm, 23-28 Aotrr 1992 3 9 7 PRec. OF COLING-92, NANTES, AUG. 23-28, 1992

type-2 edge, and a type-2 node which does not belong to
the same tree.

5.3.Nodes-numbering

Rule: each node of the initial construction net receives a
number, called its degree, according to the following
roles:

-for a type-2 edge:
if it is right directed, the degree of its source is less

than the degree of all the nodes below it,
if it is left directed, the degree of its source is

greater than the degree of all the nodes below
it,

for two type-2 edges, children's degrees of the
leftmost branch are less than those of the
rightmost branch.

-for a type-1 edge:
if it is right directed, the degree of its source is

greater than the degree of all the nodes below
it,

if it is left directed, the degree of its source is less
than the degree of all the nodes below it,

for two type-I edges, children's degrees of the
rightmost branch are less than those of the
leftmost branch.

The lowest degree of the right successor of an initial
tree is the successor of the greatest degree of this
latter tree.

Example of such a numbering: figure (6)

. . . .

©",%

L R
intervals:

s'-s' : [1 _ 8]

s-s : [3 _ 41

np-np : [2 _ 7]

s-s: [5_61
Each link is now associated to a pair of degrees, called
its interval.
From now on, L and R will denote respectively: the left
hand side and the right hand side of a Construction Net.
The Construction Net will be denoted by: <L I R>.

5.4.Linking the Nodes

Nodes will be linked according to the following
principles:
COMPLEMENTARITY: two nodes are linked only if
they have the same label and they are of complementary
types.
NON-OVERLAP: the linking of all the nodes in the
Const ruct ion Net must meet the non-over lap
convention, which stipulates that given two arbitrary
intervals, either one contains the other or they are
disjoint.
Theorem: (Conservativity of Connection Operations)
The Non-Overlap condition is a conservative extension
of the conditions on connection (restriction C rec)
stipulated in ~4. That means: every connection system
based on C rec, when translated in the Connection Net
System, follows this convention.

5.5.Building a Correct Net

Definition: Given an ordered sequence of left-trees L
and a right-tree R, we will say that L and R yield a
correct net iff there is a linkage of all the nodes in the
Construction Net <L I R>, which gives a connected
graph, respects the complementarity principle and the
non-overlap principle, and is such that: when all the
rype-I edges are removed, the graph remains connected.

The fundamental result is the following:

T h e o r e m : (Soundness and Completeness w.r.t. A 3)
Let F --~ A be a sequent expressed in the
Product-Free Lambek Calculus, where F is a non
empty sequence of categories and A is a
category, let L be the sequence of left connection
trees associated to the elements of F and R be
the right tree associated to A, the sequent is a
theorem if and only if L and R yield a correct
neL In other terms: the Connection Net System
is sound and complete w.r.t, the Product-Free
Lambek Calculus,

Examples: figure (6) shows that:

s/(s/np) s/((s/np)ks) I-- s

is a theorem of the Lambek Calculus.
Figure (7) below gives a correct net for the analysis of
the sentence:
le livre dont je connais le litre est sur la table

3 A is the usual designation of the Product-Free Lambek
Calculus (see Zielonka 1981).

AcrEs DE COLING-92, NANTES, 23~28 AOUT 1992 3 9 8 PROC. OF COL1NG-92, NANTES, AUO. 23-28, 1992

(figure 7):

np npXnp/(s/(npXnp))np npks/np np np\s ~ s

n p ~ s

Theorem: (Categorization of Links) In a correct net,
links are either identification links or connection links.
Corol lary: A net is correct if and only if all nodes are
either identified or connected.
Def in i t ion: we call Tree on words the tree obtained
from a correct net by merging connected nodes and
removing identification links. In the case of an
identification link consisting in a type-1 edge, the link
and the nodes linked by it are removed, and the adjacent
type-2 edges are merged.

Example: figure (g): Pierre promet d Marie de venir

np s sp[~t] s
___ ii s

np

6. Bu i ld ing Dependenc ie s

Obtaining a Dependency Structure from a tree on words
amounts to doing little transformations on the correct
net obtained by "equating" an ordered sequence of initial
trees to a node representing a primitive category. These
transformations involve indexing nodes in such a way
that:

- indices of two different initial trees constitute two
disjoint sets.
- indices inside an initial tree may be identical (if we
want to express a coreference)
- linking two nodes results in identifying their
indices.

Example: figure (9)

promet

np [i] O ~ # : s [infl sp[~] [j]

np [i]
spJ~l lkl

a " ~ np[kl

After getting a tree on words, we identify two distant
nodes having the same index: we call the new node
obtained: a shared node.
Finally, we can say that dependencies are obtained in the
following stages:

1 ~ indexing the nodes having the same label and
belonging to different initial trees by different variables,
taken in a set {i, j, ...} (the distribution of indices inside
an initial tree being set by the lexicon) [INDEXING-
step].

2-building the net corresponding to the
assertion that the sequence is of type s [NET-step].

3- suppressing the nodes identified by type-1
edges of the left-hand side and all the identification links
[COLLAPSING-step].

4- if the same index appears on distinct nodes
having the same label: merging them [MERGING-step]
Example: figure (10)

Pierre promet fi Marie de venir

[~ s [infl

np

O=kJ [
~[11 li=l}

yields:

np [i ~ ~ l n fl

but, with permet instead of promet:

permet e ~ ~ ~

npli] O,,~'s[inf] sp[~] [j]

np[Jl

Pierre permet d Marie de venir:

n p ~

ACRES DE COLING-92, NANTES, 23-28 AOOT 1992 3 9 9 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

7.Remarks and Conclusion

This method of Connection Nets has many advantages
over other methods.
Firstly, compared to classical strategies in the sequent
calculus, it avoids spurious ambiguities and in so doing,
it improves efficiency of searching the solution.
Secondly, compared to the method of Proof-Nets, it
gives more clarity to the resulting structures. It is more
efficient too, because the stage of checking the coanexity
when suppressing a branch of a type-1 link is replaced
by a stage where the connexity is checked only once:
when we have removed all the type-1 edges. The
corresponding stage in Proof-Nets is usually named
switching. In the early method by Girard which used the
"long lrip condition", there was a switch for each link
and that gave an exponential-time algorithm (in the
number of links). In the method defined by Roorda, only
type-1 links lead to switches. The reason lies in the
necessity of checking that a type-1 link is not used to
connect two subsets of the net, which would not be
connected without it. (Let us recall that a type-I link
refers to a unary rule). In our method, switches are
completely avoided.
Thirdly. it can be done incrementally. The reason is that
the numbering of nodes is consistent with the order of
initial trees. Thus, at each stage of the processing from
left to right, we may have a beginning net which
represents the present state of the processing. Here, the
properties of left-associative grammars (Hausser 1990)
are reeL
Finally, a very few transformations are needed in order to
obtain graphs on words which can be really interpreted as
Dependency Structures.

BIBLIOGRAPHY

Ades, A. and Steedman, M.: 1982, 'On the Order of
Words', Linguistics and Philosophy4, 517-558.

Barry, G. and Morrill, G.: 1990. (Eds) Studies in
Categorial Grammar. Edinburgh Working
Papers in Cognitive Science, Volume 5. Centre
for Cognitive Science, Edinburgh.

Barry, G & Picketing, M.: 1990; 'Dependency and
Constituency in Categorial Grammar', in Barry,
G. and Morrill, G. 1990 and Lecomte, A.
1992.

Buszkowski 1986; 'Completeness Results for Lambek
Syntactic Calculus', Zeitschr. f . math. Logik
und Grundlagen d. Math. 32, 13-28.

Buszkowski 1988; 'Generative Power of Categorial
Grammar',in R.Oehrle, E.Bach et D.Wheeler
(eds) Categorial Grammars and Natural
Languages Structures.

Danos, V. and Regnier, L.: 1989, 'The structure of
multiplicatives' Arch. Math. Logic, 28, 181-
203.

Descl~,s, J.P.: 1990, Langages applicatifs, langues
naturelles el cognition, Hermes, Paris.

Girard 1987; 'Linear Logic', Thoreticol Computer
Science 50, 1-102.

Hausser, R.: 1990, Computation of Language,
Springer-Verlag, Berlin, Heidelberg.

Hendriks, H. and Roorda, D.: 1991, 'Spurious
Ambiguity in Categorial Grammar', deliverable
of the ESPRIT project BRA 3175 DYANA.

Hepple, M.:1991, 'Efficient Incremental Processing
with Categorial Grammar' Proceedings of ACL
1991, Berkeley.

Hudson, R.A.: 1984, Word Grammar, Blackwell,
Oxford.

Hudson, R. A.: 1990, English Word Grammar,
Blackwell, Oxford.

Lambek, J.: 1958, 'The Mathematics of Sentence
Structure',AmericanMath.Monthly 65,154-170.

Lambek, J.: 1961, 'On the Calculus of Syntactic Types'
in Structure of Language and its Mathematical
Aspects, AMS, Providence.

Lecomte, A.: 1990, 'Connection Grammars: a Graph-
Oriented lntertn'etation of Categorial Grammars'
in Lecomte, A. (ed), 1992.

Lecomte, A.: 1992. (ed.)Word Order in Categorial
Grammar, ADOSA, Clermout-Ferrend.

Moortgat, M.: 1988; Categorial Investigations. Logical
and Linguistic Aspects of the Lambek
Calculus, Dordrecht, Foris.

Moortgat, M.: 1990, 'Proof nets, partial deduction and
resolution - Part 2' in Lecomte, A. 1992.

Oehrle, R.,Bach, E.and Wheeler, D. (eds): 1988,
Categorial Grammars and Natural Languages
Structures, D. Reidel Publishing Company,
Dordrecht et Boston.

Roorda, D.: 1990, 'Proof nets, partial deduction and
resolution - Part 1' in Lecomte, A. 1992.

Roorda, D.: 1991, Resource Logics: Proof-theoretical
Investigations, PhD Thesis, Faculteit van
Wiskunde en informatica, Amsterdam.

Steedman, M.: 1991, ~I'ype-Raising and Directionality
in Combinatory Grammar', Proceedings of
ACL 1991, Berkeley.

TesniSre, L.: 1965, Eldments de syntaxe structurale,
Klincksieck, Paris.

Wansing, H.: 1990, Formulaes-as-types for a
tlierarchy of Sublogics of Intuitionistic
Propositional Logic, Gruppe fiir Logik,
Wissentheorie und Information an der Freien
Universit~t Berlin.

Zielonka, W.: 1981, 'Axiomatizability of Ajdukiewicz-
Lambek Calculus by Means of Cancellation
Schemes' Zeitschr. f . math. Logik und
Grundlagen d. Math. 27, 215-224.

ACRES DE COLING-92., NANTES, 2.3-28 ̂ OUT 1992 4 0 0 PROC, OF COLING-92, NANTEs, AUG. 23-28, 1992

