
ORGANIZING DIALOGUE FROM AN INCOHERENT STREAM OF GOALS*

ELISE H. TURNER

Department of Computer Science
University of New Hampshire

Durham, NH, 03824
USA

Abstract--Human discourse appears coherent when it re-
fleets coherent human thought. However, computers do not
necessarily store or process information in the same way
that people do a.ud~ therefore, cannot rely on the structure
of their reuouing for the structure of thehr dialogue,s. In-
stead, computer-generated conversation must rely on some
other mechanism for its orgsaiisation. In this paper, we
discuss one such mechanism. We describe a template that
provides a guide for conversation. The template is built
from schemata representing discourse convention. As goals
arrive from the problem solver they are added to the tem-
plate. Because accepted discourse structures are used to
connect a new goal to the existing template, goals are or-
ganiaed into sub-groups that follow conventional, coherent
patterns of discourse. We present JUDIS, an interface to a
distributed problem solver that uses this approach to orga-
nise dialogues f~om an incoherent stream of goals.

I INTRODUCTION

Conversation seems coherent and is easy to follow be-
cause it reflects the way people think. When the
speaker thinks coherently, his or her communication
goals will be properly organised to follow linguistic con-
vention. So s models of human language generation can
allow domain goals to directly motivate conversation
and add clue words only when the occasional utterance
violates convention [5; 8].

However~ computer-generated conversation cannot
rely on problem solving for its organisation. Some prob-
lem solvers make no attempt to be "cognitively plausi-
ble" and do not produce goals in sequences that would
appear coherent to human users. The combined goals
from a distributed problem solver where several inde-
pendent reasoners use a single interface to communicate
with the user are also likely to be incoherent. Even if
individual problem solvers produce coherent streams of
goals, the stream of goals from the aggregate is likely
to switch back and forth between sub-problems that
are being addressed by the individual systems. We call

* Some of the work described in this paper was done at the Com-
puter Science Depaxtment of Georgia Institute of Technology,
AtlJnts, Georgia, 30332, supported by the NSF under llrmat
lST-S608362. The &uther wishes to thank the anonymous re-
viewers for their comments.

the sequence of goals produced by such systems an in-
coherent stream of goab because the goals are ordered
in a way that would not seem reasonable to a human
listener. Interfaces to such systems, while being re-
sponsive to the goals of problem solving, must rely on
something else to give dialogue its organisation.

In this paper, we describe a template that can provide
computer-generated conversation with a coherent orga-
nisation while meeting the needs of the problem solvers.
This template is built from schemata representing ex-
pected discourse structure. These schemata include
general linguistic conventions as well as expected or-
ganisations for specific situations. Before conversation
begins the template is very abstract, giving only broad
descriptions of topics that might be expected in a spe-
cific domain. These expectations provide a framework
for organising goals from the problem solvers. New
goals are associated with the existing template, orga-
nising them into groups that are related by conven-
tional discourse structure. Goals are added by finding
schemata which connect them to the template. Since
the schemata specify acceptable conversational struc-
ture, the template represents a coherent conversation.

The dialogue in Figure 1 was organised using such
a template. The arrows in the figure show the order
in which goals arrived at the interface. The tall of the
arrow shows when a goal arrived at the interface; the
head, where it is realised in the dialogue. Each time the
arrows cross, the goal has been delayed to fit more nat-
urally into the conversation. Goals have been grouped
by the course that they relate to as well as being fur-
ther organised by attributes such as ingredients of the
main-dish of a course (utterances 10a~10d). The dia-
logue also includes a story to connect two utterances
(10a and 10b), which adds variety to the structure of
the conversation.

This dialogue was generated by JUDIS [15], an in-
terface to Julia, an advisor for meal-planning [3]. I Ju-

t JUDIS is rcsponsihle for the organlsing the conversation mad
works with conceptl instead of actual English ut ter~c~s. Con-
cepts are converted to Ensllsh and En~ah trandated into the
conceptual language by the NLPTool [2]. JUDIS ~ worked
with the NLPTool to participate in Engiish dialogues, hut wu
not col~ected to the NLPTool for this ¢x~ple. In the fillur~,
EnsUsb is used to make the dialogue readable.

The Julla described here is the original version of the system.

AcrEs DE COLING-92, NANTES, 23-28 AOt3T 1992 3 3 8 PRec. OF COLING-92, NANTES, AUO. 23-28. 1992

(1) U s e r : i ' l a p l a n n i n g a d i n n e r a n d w o u l d l i k e
to ~ e r v e Mexclan f o o d .

(2) JUDIS:I'm thinking of chili for a ll~ill
course. D~s everyone llke spicy food?

(3) User: No, Tom hates splcy food.

~(4) JUDIS:Would you like enchiladas?

(5) U s e s : What a r e enchiladas?

~(6) dODIS:They'ge a Mexlc~ food made of
tortillas and rmsat. They also contain
onion and garlic.

(7) U s e r : OK.
(8) dOD~S:het'~ have guacarnole for at~ appetizer.

~ 191 U s e r : OK.
(IOakTUDIS: I ~ u g t r~bered a case where

q t sonmol3e h a d a p a r t y ~ d c o u l d ,tot m a s h

h tile a v o c a d o s b e c a u s e they w o r e u l t r i b ~ .
(l O b } L a t e r . g o - - o n e c o u l d n o t e a t t h e

enchiladas because he wa~ allergic to
I cileese.

(10c) Make sure no one i s allergic to cheese
and that the av~ados at'e rlpe enough.

(10d) You n~ay w~it to use red onions because
they are sweet.

(10o) Shall we g,z~e the appetizer at the
table or as her d'oeuveres?

(Ii) User: At the table.

~ (12) JUDIS: Would sopapllla or fried ice cre~
for dessert.?

(13) User: SopapJlla.

(14) JUDIS: | just remembered a meal where
so¢msone couldn't eat suaca~le because
he was allergic to tcwnat~s. Are ally of
your guests allergic to somalis?

(15) User : No.

Figure 1: A dialogue with JUDIS.

lia is a distributed problem solver comprised of a case-
based reasoner and a planner which uses more tradi-
tional problem solving techniques. The problem solvers
and the interface share their world knowledge. When
a problem solver has a goal to either give or get infor-
mation, the goal is sent to JUDIS where it is converted
into an appropriate utterance and attached to the tem-
plate. We refer to these goal-motivated utterances as
requests.

II REPRESENTING DISCOURSE STRUCTURB

We have chosen conversation MOPS (C-MOPS) [6;
16] as the representation for discourse structure in
JUDIS. C-MOPS participate in an abstraction hier-
archy which allows generalised conventions as well as
situation-specific expectations to he represented. A d~-
namic memory [7; 14] can retrieve the most predictive
MOP for the current situation.

A MOPs and C-MOPs

A memor~ orgsnization packet (MOP) [14] is a
schematic structure used to organise long-term, con-

A a r e s e a r c h on p r o b l e m s o l v i n g c o n t i n u e d , " J u l i a " w i t s ainu

used to refer only to the problem solvers and the dclign of the
problem solverl changed. JUDIS receives goal* from • micr¢~
version of the caterer and am input from the keyboard. The
goads in the example came as input and reflect the problem
solving of systen~ sugge.ted for the catererer architecture, At
the tlm¢ that 3UDIS wa. implemented, • complete •nd inte-
grated veralon of the caterer wu not available.

ceptual, episodic memory. An episode is represented
by scenes which have bccn performed to achieve some
goal. Episodes are stored in and retrieved from dy-
namic memory. This memory changes when ueneral~ed
episodes are created as individual episodes that share
features are stored in memory. The generalizations oc-
cur at many different levels forming a hierarchy of gen-
eralisations and their specializations, Episodes in dy~
narnic memory are linked by predictive indices, selected
feature-value pairs which mark differences between gen-
eraliaed episodes and their contributing specialiaations.
These indices are followed when an episode is retrieved
from dynamic memory, allowing a system to he Ure-
minded" of MOPs which match some predictive feature
of the current situation. We use the term "MOP" to
describe both a single episode and an episode with its
indices and npecialisations. In the context of being re-
trieved from memory or Junta, tinted in the template,
"MOP" will refer to a single episode. In the context of
representations stored in memory, "MOP" includes the
indices and specialisatioas.

When the events stored are conversations, we refer
to these structures as conversation MOPs or C~MOPs.
Kellermann, ei al. [6] suggest C-MOPs as the cog-
nitive structures for representing discourse structure.
C-MOPs can appear as scenes in other C-MOPs, allow-
ing for the recursion necessary in any representation of
discourse structure. The scenes of a C-MOP can he
given n total or partial ordering to capture the proper
sequencing of a conversation. Also, C-MOPs combine
intention, in the form of an associated goal, with con-
vention captured by generalised episodes. Kenermann
et al.'s experiments suggested that C-MOPs represent°
ing discourse structure are divided into scenes by topic.

In many ways C-MOPs are like other schemata that
capture discourse structure leg., 0; 10]. Their scenes
specify conventional patterns ofdiscourse. These scenes
can be either mandatorll or optional. Many types
of schemata can be easily tralmlated into a declara-
tive representation that explicitly gives the structure
of the conversation and, so, are suitable for building
the template. All types of schemata must allow recur-
stun, so a template built front any type of schemata
could be expanded. C-MOPs have one characteristic,
however, that makes them particularly useful for or-
ganising requests. They participate in a generalisa-
tion/apecialisation hierarchy. This hierarchy has two
advantages: it allows the heat prediction for a given sit-
uation to be returned from memory, and it allows those
predictions to be tuned as new information is learned
about the situation.

B The Generalization/Specialization Hierarchy

The ability to capture convention in the generalisa-
tion/apecialisation hierarchy is important for our work
in organising dialogues. In principle, generalisations

AcrEs DE COLING-92, NANTES, 23-28 AO6T 1992 3 3 9 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

are formed as a language user participates in conver-
sation with other language users [7; 14]. Because
these conversations follow convention, the generaliza-
tions of these conversations will represent abst ract dis-
course convention [6]. When specific circumstances
constrain these conventions, specialhsations are formed
and indexed by these circumstances. Consequently, the
C-MOP retrieved for a given si tuation will he the one
tha t is most predictive. 2 The expectations it represents
will be shared by other language users, including the
other conversant, and will contain ell the information
available for the specific si tuation. Since our research
is currently focused on how knowledge of discourse
structure can be used to organize goals, instead of on
elucidating those structures, JUDIS' C-MOPs and the
generai isat ion/speciai isat ion hierarchy arc hand-coded.
Our C-MOPs are derived from others ' research on dis-
course structure, where possible. Al though JUDIS does
not generalize C-MOPs from experience, we have been
careful to use a generalization/specialization hierarchy
which we believe could have been built f rom experience.

One impor tan t characteristic of the generaliza-
t ion/special isat ion hierarchy is its ability to capture
situation specific detail. This ability is especially im-
por tant given tha t computers do not think like people.
Specializations can be used to enumerate the accept-
able ways to discuss a topic. The interface can then
rely on the appropr ia te C-MOP to organize the conver-
sation instead of being dependent on the knowledge or-
ganization and problem solving methods of the domain
reasoners. The specialization can also rule out ways
of organizing the dialogue tha t follow a s tandard dis-
course convention bu t would not be expected by human
reasoners. For example, a general problem-solving con-
vention allows for a goal-subgoal ordering [5]. However,
in meal-planning some orderings seem more acceptable
than others. In JUDIS, specialisations for discussing a
meal include ta lking about the main course before the
other courses or discussing the meal in chronological or-
der, but a specialization for discussing the dessert first
is not included, s

The generalization/specialization hierarchy also al-
lows the templa te to be tuned as the si tuation changes
or new information is discovered. If the new informa-
tion is an index of a C-MOP, tha t O-MOP can be re-
placed with the indexed specialisation. This idea is im-
por tan t for adding new requests to the template. We
can think of some cases of adding a request as find-
ing a speciaiization tha t includes the current request as

~JUDIS' retrieval algorithm [15] orders the features mad pur-
sues the indices sequentially until a.n index is not found. This
is s departure from traditional implementatlorm of dynamic
memory that pttrsue indices "in pared/el" [c£, 7]. Our alSo-
rithm allows JUDIS' memory to return the Jingle C-MOP that,
accordlnJ to the ordering, best matches the current situation.
l~e~re could be fm-'ther speclallsatlona to allow the dessert to
he mentioned first, but we would expect these to arise, and be
returned, only under special clrcmnmtance*.

well an the request tha t has jus t arrived. For example,
request 6, about avocados, is added to the template
as a discussion of the ingredients in guacexnole. When
request 7, concerning onions, arrives, the dlecu~ion of
the ingredients is specialized to a list t ha t includes both
avocados and onions.

C Conversation MOPs in JUDIS

JUDIS relies on C-MOPs to represent all par ts of t h e
conversation. This includes C-MOPs for the entire
conversation, individual topics, utterances, and ques-
t ion /aaswer sequences. The C-MOPs tha t are moat
impor tan t for organizing conversation in JUDIS are
the LXST-CMOP and NARRATIVE-CMOP which can be
used to organize topics and the T O P I c - C M O P itself.
3UDIS also has a CATERER-CMOP which contains
specialiscd knowledge abou t conversations for planning
meals and organizes the overall discussion of the meal.

Some C-MOPs, such as the CXTERER-CMOP, are
represented declaratively in memory with topics s a d
their ordering given explicitly. This makes ins tsa t ia t ing
the C-MOP easy and allows the interface to be indepen-
dent of problem solving knowledge when organizing the
dialogue. However, not all C-MOPs should be repre-
sented this way. JUDIS also represents some C-MOPs,
such as the LIsT-CMOP and the NARRATIV*e-CMOP,
procedurally. Explicit representations are created from
other knowledge only when such a C-MOP is instanti-
ated. Thin allows JUDIS to create conversations tha t
have not yet been experienced but foilow conventions
tha t have been generalised from experience. It also
saves space because JUDIS builds these C-MOPs from
world knowledge tha t is shared with the problem solvers
and does not have to explicitly represent all possible C-
MOPs.

The CATERER-CMOP organizes the discussion of the
meal. 3UDIS has very little information about the de-
tails of the conversation, but is able to identify the
broad topics that are likely to be discussed: OENEaXL-
INFOj APPETIZER, MAIN-COURSE and DESSERT. The
specialisations are indexed by specific problem solving
strategies, main-first and chronological-order, t ha t im-
pose acceptable orderings on the topics.

The T o P I c - C M O P has three scenes: CHANGE-
TOPIC, DISCUSSION, and CLOSE-TOPIC. The change-
topic and close-topic are used to mark unexpected
moves in the conversation and do not affect how we or-
gsaise requests in the template. The discussion scene
can be a TOPIc-CMOP~ an UTTERANCE-CMOP~ or a
QUESTION/ANSWER-CMOP. The sabjecL of the TOPIC-
or DISCUSSION-CMOP tells what the C-MOP will be
about . We use this term to avoid confusing the topic
of a C-MOP with the T o v l c - C M O P .

The NARRATIVE-CMOP is a simplified version of
Rumelhar t ' s [13] s tory g r a m m a r and specifies how to
build C-MOPs directly from MOPs in episodic memory.

ACRES DE COL1NG-92. NAMES, 23-28 AOI~r 1992 3 4 0 PROC. OF COLING-92, NAr,'rES, AUG. 23-28, 1992

To a large extent, the narrative-CMOP is a great deal
like the episode in memory which it will relate. All of
the scenes in the episode become scenes in the C-MOP
and keep their ordering. A setting and a conclusion
are added as mandatory scenes. Scenes that satisfy
some request of the problem solver are also marked an
mandatory, as are unusual scenes which enable them.

The LIST-CMOP converts values found in a slot of
a frame into - roPlc-CMOPs which become its scenes.
The LlST-CMOP has speclalisations which include an
ordering ~ c t i o n [11]. The predictive feature "info-
type" indexes these specialisations. For example, if
constructing a list of ingredients, which are divided
into main, secondary and spices, a list with the "main-
first" ordering function is returned. All scenes in LIST-
CMOP s used to organize requests are optional. Con-
sequently, only requests from the problem solvers will
be included in the conversation. However, there are
specializations, retrieved in the context of question an-
swering, that contain mandatory scenes.

Clearly, JUDIS is limited in the types of dialogues
that it can organise by the small number of C~MOPs
that are implemented. Most noticeably absent from our
list is a general problem-solving C-MOP. We were able
to avoid implementing this C-MOP because planning
a meal can be seen as filling in values for attributes in
a frame and captured in the LIsT-CMOP. In addition,
we expect the interface to have enough control over the
conversation to ensure that this limited type of prob-
lem solving will suffice. In other domains, or if the
user were expected to take a more active part in prob-
lem solving, a general problem-solving C-MOP would
be needed. A problem-solving C-MOP would be more
difficult to inatantinte from a procedure than the LIST-
or NARRATIVE-CMOP. The interface would have to do
a great deal of domain planning to make predictions
about topics that would be included in the dialogue.
Some of this effort could be saved by creating only ab-
stract templates and allowing the reasoning followed
by the problem solvers to link requests to the template.
Finding a procedure to create problem-solving C-MOPs
without re-creating all of the reasoning needed to solve
the problem is an important area of future research.

I I I ADDING A RI~QUEST TO TH R TEMPLATg

At the beginning of a meal-planning session, 3UDIS
retrieves n C-MOP that is instantiated to become the
template. This guides the conversation from beginning
to end. The opening and dosing follow well-established
sequences, so we are only concerned here with the mid-
dle portion of the dialogue where the meal will be dis-
cussed. One of the specializations of the CATgRgR-
C M O P will be included to predict the middle of the
conversation. The template for the example dialogue
includes the MAIN-FIRST-CMOP. Requests from the

problem solvers are organized into a coherent dialogue
by adding them to the template. A new request is
added to the template by becoming a scene in a pre-
dicted C-MOP. JUDIS first checks to see if the new
request matches a request already in the template. If
not, the new request is added by merging it into a
DISCUSSloN-CMOP already in the template.

A Finding Potential Topics

The first step of adding a new request to a DISGUS$ION-
C M O P is finding a C-MOP where the request can be
added. A request can be added to a diectmaion when
their ,ubjeetl match, when the subject of the refttest
is an attribute or value of the subject in the template,
or when the new request is associated Ioith the same
knowledge structure as the request in the template. In-
stead of searching semantic memory to find the po~i-
ble connections between requests [cf. I 4], JUDIS uses
knowledge from the reasoners' problem solving. The
problem solvers send the interface two pieces of infor-
mation with each request. The chain of reasoning from
the meal being planned to the attributes that the prob-
lem solver wan considering when this goal was created
is used to find the subject of the request. If a value
appears at the end of the path it is the subject. Oth-
erwise the request asks for a value for the attribute. In
this cane, the attribute will be the subject for the pur-
pose of adding the request to the template. The chain
of reasoning also allows a request to be linked with any
attribute on the chain. The problem solvers also send
information about the knowledge structure that was be-
ing examined when the goal was created. If the request
is associated with a frame, a slot can also be sent. If the
request is associated with an episode, the episode and
any episodes that contain it, if the problem solver has
examined them in association with thin request, are sent
to the interface. For example, when a reasoner sends
a goal to find out if guacnmole would be appropriate
for the appetiser, it also sends g u a c a m o l e 0 , the frame
representing guacamole in semantic memory, and (meal
appetizer main-dich) an the chain of reasoning. 4

We use information from the problem solvers for two
reasons. Most importantly, this assures that the con-
section between the utterances will be acceptable in the
context of the current conversation. Also, thin informa-
tion reduces JUDIS' processing effort and can be easily
collected as the problem solvers perform the domain
task. Using it, JUDIS can simply match information
from the problem solvers instead of searching the se-
mantic memory for all possible connections.

To rely on information from problem solving, that
information must be Ucognitively plausible" in some
sense. Information from the same data structures must

4 Guaceanole is placed in the represent Jttlon of the meal as soon
as it is cot~sidered by a problem solver and would be the subject
of this requeat.

AcrEs DE COLING-92, NANTES, 23-28 ̂ o~t' 1992 3 4 1 PROC. O~: COLING-92, N^NrEs, AO(;. 23-28, 1992

appear to h u m a n users to be linked. Chains of rea-
soning followed by the problem solvers must appear to
be coherent. If this is not the case for problem solvers
used by an interface, it must rely on other knowledge
structures to provide it with acceptable links between
topics. Also, if the problem solvers do not share seman-
tic memory, there must be a way to match knowledge
structures tha t should be considered the same.

B Merging Requests into DiJcussiont

All requests can he merged into the template for conver-
sation at some level. If no predicted topic could include
the request, it can be added to the maintenance phase
where it will be handled as a true interruption [5]. If
a topic which could have included this request has al-
ready been dosed, the change-topic scene will mark the
return to a previous topic [15]. Utterance 14 in Fig-
ure 1 is an example of JUDIS returning to a previous
topic.

If problem solver goals on the same subject arrive
a t the interface sufficiently near each other, they will
be grouped together in the template. If not, the topic
will be closed before all of the requests tha t should be
associated with it have arrived. JUDIS can return to
such topics, so, in the worse case, the conversation is
no worse than conversation without the template. If
there are not long delays between requests on the same
topic, most requests will be merged into the dialogue
through a DISCUSSIOH-CMOP.

JUDIS examines each DISCUSSlON-CMOP in the
template until it finds one tha t can be merged with the
new request. It looks at the most specific subjects first
so that subjects that are most closely connected will be
joined. New requests can be merged with DISCUSSION-
CMOPs in several ways:

R e p l a c e a d i s c u s s i o n s c e n e t h a t h a s n o re -
q u e s t s a s s c e n e s . The simplest form of a DISCUSSION-
CMOP is an UTTERANCE o r QUESTION/ANSWER-
CMOP. These are the forms of a request. If no
other requests have been associated with a subject, the
discussion-CMOP can be replaced by the new request.

Extend the reasoning to add a new topic.
Sometimes the subject of a new request is a very specific
aspect of an expected topic. If the request were sim-
ply added, the connection between it and the expected
topic could be lost. This would cause the dialogue to
appear incoherent. It is also difficult for JUDIS to add
other requests to a topic which has been filled by a
too-specific subject.

We avoid these problems by adding C-MOPs to the
template that extend a discussion from a general sub-
ject to a more specific one. We have added a ATTR-
VAL-CMOP that links the predicted topic to the more
specific request. Each attribute in the chain of rea-
soning and its value are added to the discussion. Fig-
ure 2a shows a request concerning Uavocado" being
added to the template by this method. Because it is

connected to the appetiser TOPIC-CMOP through spe-
cific at tr ibutes, another request, 9, can be easily added
through the "presentation" a t t r ibute . If a specific at-
t r ibute will be mentioned, the a t t r ibutes which connect
it to the topic can be mentioned first.

C o n n e c t s cenes t h r o u g h k n o w l e d g e s t r u c -
t u r e s . Two requests can also be connected because
they are par t of the same knowledge structure. If both
are values in the aarne slot of a frame or are values of
the same at t r ibute of the meal being plannedj a LIST-
C M O P is used to connect them. If both are scenes
in the same episode, a NARRATIVE-CMOP connects
them. Here the requests do not have to have the same
subject, but are linked to a discussion through one of its
scenes. When the type of connection is found, JUDIS
searches memory to find the best C-MOP to instan-
tiate. This is done to make sure tha t any speciailsa-
tions appropriate for the current si tuation are found.
For example, the LIsT-CMOP is specialised to have a
main-first ordering when ingredients are connected.

IV" EXECUTING THE TEMPLATE

In conversation new problem solving goals arise as the
conversation is being conducted. It is impossible to
know all of the goals in advance and then arrange them
into the best conversation. Instead, the template must
be built and executed simulatneously. This means tha t
the template must reflect a coherent conversation at all
times. JUDIS achieves this because each goal is added
to the template through C-MOPs.

The template is only used an a guide to organise con-
versation. When JUDIS is to take its turn in conver-
sation, it combines information about the priorities of
the requests and how those requests lit into the tem-
plate to choose its next utterance (see [15] for details).
Sometimes the priorities help determine decisions that
are not specified by the template, such ms chosing the
scene to execute first in a partially ordered C-MOP.
Other times a goal is so urgent that the template is
overridden.

V ORGANIZING A DIALOGUE WITH JUDIS: AN
EXAMPLE

Consider utterances 10a-10d in the example dialogue.
As the arrows indicate, the goals which motivated these
requests are rc~organised to make the dialogue coher-
ent. When the initial template in built, JUDIS pre-
dicts that the GENERAL-INFO I MAIN-COURSE l APP I~-
TIZER and DZSSZRT topics will be included in the dia-
logue. At this point, JUDIS knows only that the ap-
petiser will be discussed but knows none of the details.
Then a request to tell the user about a possible fail-
ure with avocados comes from the case-based reasoner.
Since the subject of the request is not the appetiser
but one of the ingredients of the appetiser, a path is

ACTES DE COLING.92, NANTES, 23-28 AoLrr 1992 3 4 2 PROC. OF COLING-92, NAIXrFES, AUG. 23-28, 1992

Figure 2: A d d i n g reques ts to the t emlpa te .

formed of values and their a t t r ibutes from the appe-
tizer " r o P I c - C M O P to the avocados, as shown in Fig-
ure 2a. Next, the from-scratch reasoner discovers tha t
red onions can make guacamole sweeter and decides to
send a goal to $UDIS to inform the user. The subject
of this reques L "onion", is also an ingredient in gua-
camole. When JUDIS tries to insert the request as a
value of the ingredient a t t r ibute , it must find a struc-
ture tha t will incorporate both the avocado-request, al-
ready associated with the ingredients, and the onion-
request which is to be added. JUDIS relies on the infor-
mat ion about how the two requests are connected, that
they are both values of the same slot of a frame, to be-
gin its search of memory for a C-MOP that can contain
both requests. It finds the LIST-CMOP for ingredients
and adds a list of all of the ingredients of guacamole
to the template (see Figure 2b). The onion and avo~
cado request become the discussions of the onion and
avocado ToPIc-CMOPs that are scenes of the new list.

Next, the request about enchiladas comes from the
case-based reasoner. Because this request is associated
with the same episode as the avocado request, 3UDIS
makes these requests into a narrat ive (see Figure 2c).
This narrat ive contains not only the goal-achieving re-
quests (last part of utterance 10a and utterance 10b),
but also the mandatory setting (first half of utterance
10a) and conclusion scenes (utterance 10c).
The organisation given by the template and the pri-

orities of the requests determine how this portion of the
template will be executed. Though not requested by a
problem solver, utterance 8 is included in the dialogue
to link the ingredients to the expected appetiser topic.
The narrative containing the avocado and enchilada re-
quest has a higher goal priority than the onion request,
so it is said first. After the narrative, the onion request
is executed to finish the list.

VI D i s c u s s i o n

JUDIS is an implemented system which embodies our
approach for merging goals into an existing conver-
sational structure. JUDIS relies on its knowledge of
conventional discourse structure as a tool for achieving
the goals of the system. JUDIS' selection of discourse
structures to guide the conversation and options taken
within those structures are mot ivated by the goals of
the system. This in in contrast to McKeown's TEXT
system [10] which relies on heuristics based on features
of the lmxguage to select options to pursue within a dis-
course structure. JUDIS is able to re-organise its goals
to fit into the global organisation of the conversation
because it relies on predictions and commitments for
the whole conversation, an represented in the template.
Other methods of generating language from discourse
structure [e.g., 10; 12] do not use expectations about
the dialogue but rely only on information about the
current state of the world and the structure of the dis-
course to this point.

One of the most impor tan t advantages of our ap-
proach is tha t it allows an incoherent stream of goals
to be organised to produce a coherent dialogue. There
may be cases where ma occasional ut terance still must
be marked with a clue word, but s by forcing the goals
to hc moderated by the template, we give them a deep
structure tha t provides coherence jus t as the underlying
processing in humans supports their dialogueg' conven-
tional structure. Our approach also has two impor tan t
advantages tha t are side-effects of using the template
to guide the generation of conversation:

T h e d i a l o g u e a d d r e s s e s t h e n e e d s o f t h e p r o h -
lena so lvers . JUDIS' dialogue is motivated by the
communicat ion goals tha t it is sent from the problem
solvers. The requests which achieve these goals dic-
tate the details of the template. Only requests and the
mandatory scenes of the C-MOPs that connect them
are included in the dialogue. This assures that the con-
versation will be coherent without including optional
scenes of a schema tha t are chosen by language-based
heuristics which may have little to do with the current
domain task [cf, 10].

Utterances w h i c h fo l low c o n v e n t i o n a r e in-
c l u d e d in t h e d i a l o g u e w i t h o u t b e i n g m o t i v a t e d
b y a n e x p l i c i t goa l . When manda to ry scenes are
needed to connect two requests in a coherent dialogue
they are included when a new request is merged into
the tamp|ate . For example, when two requests are con-
nected by a narrative, the setting, conclusion and en-
abling scenes are added to the template when the narra-
tive is created. In speech act based approaches [e.g., 1;
5; 8], such conventional utterances would be motivated
by a speaker's intention. By including these utterances
as part of the discourse structure which will achieve
the problem solving goals, JUDIS avoids the cost of
generating discourse goals and t rying to achieve them,

Acids DE COLING-92, NANTES. 23-28 AOI~q' 1992 3 4 3 Paoc. OF COLING-92. NANTES, AUG. 23-28, 1992

and it can easily distinguish between utterances that
are motivated by goals and those that are mandated
by convention.

The technique for organisation described above was
used successfully to organise the dialogue shown in the
example and several others from similar goals. JUDIS
was also able to interrupt the organization prescribed
by the template to handle urgent goals and was able to
add requests to the dialogue that did not correspond to
topics that were given by the caterer's-CMOP.

The success of JUDIS depends, in part, on several
characteristics of the problem solving domain and the
reasoners. Most importantly, JUDIS is an interface to
an advisory system. Although JUDIS was designed
to allow the user to take more initiative than is of-
ten expected in natural language interfaces [15; 16],
JUDIS' method of organising dialogue is most success-
ful if JUDIS controls the conversation to a large extent.
To allow more user involvemen L more C-MOPs would
be needed so that JUDIS could build a template for
any organization known to the user. JUDIS would also
need to handle failure of the template - to identify fail-
ure and recover when the template no longer predicts
the conversation. This is an important area for future
research.

Another assumption in our implementation of JUDIS
is that the problem solvers will use problem solving
strategies and knowledge structures which correspond
to those used by humans. Although the combined
stream of goals from the problem solvers may not be
organized in a way that would seem coherent to peo-
ple, JUDIS can rely on information from the problem
solvers to help it build the connections that lead to a
coherent conversation. We feel that the method of or-
ganization described here could also benefit individual
problem solvers that do not produce a coherent stream
of communication goals and problem solvers that do not
have such well-organised knowledge. In these cases, the
interface must keep a separate knowledge base or rely
on declaratively represented C-MOPs. This also means
that we would loose the advantages of using problem
solving information as a basis for organizing the dia-
logue.

JUDIS is also helped because very few of its goals are
urgent. In a system that very often needs to get addi-
tional information from the user in order to continue,
it may be difficult to make full use of the template. I t
would be overridden often or it would delay problem
solving.

JUDIS has begun to address the problem of organiz-
ing dialogue so that even conversation motivated by an
incoherent stream of goals can be easy to understand.
Most important to our method is the ability to form
partial predictions about the dialogue that can be ex-
panded as goals arrive from the problem solver. In this
way, 3UDIS can group utterances together to form a

coherent whole.

R E F E R E N C E S

i] Sandra Mary Carberry. Pragmatic modeling in
nformation system interfaces. Technical Report

86-07, Department of Computer Science, Univer-
sity of Delaware, 1988. Ph.D. thesis.
[2] Richard E. Cullingford. Natural Language
Processing: A Knowledge Engineering Approach.
Rowan and Littlefield, To,own, New Jersey, 1986.
[3] Richard E. Cullingford and Janet L. Kolod-
her. Interactive advice giving. In Proeesdinys of
the 1986 IBBE International Conference on Sys-
tenw, Man and Cybernetics, pages 709-714, At-
lanta, Georgia, 1986.
[4] Barbara J. Gross. The representation and rose
of focus in a system for understanding dialogs. In
Proceedings of the Fifth International Conference
on Arti]icial Intelligence, pages 67-76, Los Altos,
California, 1977. Will iam Kanfmann, Inc.
[5] Barbara J. Gross and Candace L. Sidner. At-
tention, intention, and the structure of discourse.
Computational Linguistics, 12(3):175-204, 1986.
~] Kathy Kellermann, Scott Broetsmann, Tae-

sop Lira, and Kenji Kitao. The conversation
MOP: Scenes in the stream of discourse. Discourse
Proee#scs~ 12(1):27-61, 1989.
[7] J.L. Kolodner. Retrieral and Organizational
Strategies in Conceptual Memory. Lawrence Erl-
bantu Associates, Publishers, Hillsdale, New Jer-
sey~ 1984.
[8] Diane J. Litman and James F. Allen. A plan
recognition model for subdialogues in conversa-
tion. Cognitive Science, 11:163-200, 1987.
[9] Will iam C. Mann. Discourse structures for
text generation. In Proceedings of the Tenth In-
ternational Conference on Computational Linguis-
tics, pages 367-375, 1984.

[10] Kathleen R. McKeown. Tezt Generation: Us-
ing Discourse Strategies and Focus Con4traintm to
Generate Natural Languauge Tezt. Cambridge
University Press, New York, 1985.

[11] L. Polanyi and R. Scha. A syntactic approach
to discourse semantics. In Proceedings of the Tenth
International Conference on Computational Lin-
guiztics, pages 413-419, 1984.

[12] Rachel Reichman. Getting Compatera to Talk
Like You and Me: Discourse Contezt, Focus, and
Semantics (An A TN Model). The MIT Pre~,
Cambridge, Mass, 1985.

[13] David E. Rumelhart. Notes on a schema for
stories. In Daniel G. Bobrow and Allan Collins,
editors, Representation and Understanding. Aca-
demic Press, New York, 1975.

[14] R.C. Schank. Dynamic Memory. Cambridge
University Press, New York, 1982.

[15] Elias H. Turner. Integrating intention and
convention to organise problem solving dialogues.
Technical Report GIT-ICS-9O/02, School of Infor-
mation and Computer Science, Georgia Institute
of Technology, 1990. Ph.D. thesis.

[16] Elise H. Turner and Richard E. Cultingford.
Using conversation MOPs in natural language in-
terfaces. Discourse Processes, 12(1):63-90, 1989.

ACRES DE COLING-92, NANTES, 23-28 AOUT 1992 3 4 4 PROC. Or COLING-92, NhrcrEs, AUG. 23-28, 1992

