
CORPUS WORK WITH PC BETA

A Presentation

Benny Brodda,
University of Stockholm
Dept. for Comp. Ling

S-106 91 Stockholm, Sweden
benny@com.qz.se

0. Abstract.
PC Beta is a PC oriented tool for corpus work
in this term's broadest possible sense. With
PC Beta one can prepare texts for corpus
work, e.g. standardize texts in different ways
(very important when texts from different
sources together will constitute a corpus), one
can process texts, and one can analyze texts.
Making ordinary concordances and similar
things with PC Beta is, of course, very simple,
and, in fact, PC Beta give, s "concordance
making" a new dimension. One can perform
morphological analyses, one can use PC Beta
as a "tagger", i.e. provide the words with
different kinds of tags. In all, PC Beta is a
versatile program, and it is in many cases the
only program needed (together with func-
tions belonging to the MS/PC-DOS operative
system) for pursuing a complete corpus pro-
ject.

The program's main distinctive feature is
simplicity: it is rule controlled, and the rules
adhere to a format that any linguist can learn
to understand very quickly. But beware, in
spite of its innocent appearence the program
i,; a little tiger.

. The Programming System

1.1 Background.
PC Beta ihas its origin in a program called

Beta, which the author developed during the
years 1974-78. Beta was then specifically
tied to a trade mark management project, in
which it was used for morpho/phonological
parsing of trade marks at the word level. Beta

was then optimized for surface-oriented
analysis and processing, and it turned out to
be useful for morpho/phonological parsing of
that type for "ordinary" language as well (cf.
Brodda & Karlsson, 1981, and K~illgren,
1982). Even if experience has shown that Beta
can be used for much more advanced types of
analyses (of. Brodda, 1983, Kfillgren, 1984a,
Kfillgren, 1984b and Brodda, 1988), it is still
in surface oriented analysis (not necessarily
confined to the word level) that its virtues
become most apparent, although it may be
used also for traditional parsing, traditional
morphological analysis, etc.

During the years 1980-88 further
development of the program was done oll a
DEC 10 computer, and a version called
BetaText eventually emerged, which had
several features specifically aimed at facilitat-
ing "corpus work", i.e. the processing and/or
analysis of text corpora of the Brown, Lon-
don-Oslo-Bergen, l.xmdon-Lund types (cf.
Erman, 1987, and Brodda, 1988). It is ex-
periences with BetaText that lie behind the
development of PC Beta (cf. Malkior & Carl-
vik, 1990).

One very important feature of PC Beta is
that it takes ordinary text files as input and
yields ordinary text files as output; PC Beta is
a text processing system, not a database sys~
tern. When you work with PC Beta, 1 Mb text
requires 1 Mb disk space. This means that one
can work with quite susbstantial text corpora
on a standard PC/XT or AT with 20Mb disk,
and still have space for auxiliary programs,
sorting etc.; PC Beta itself and its auxiliary

1 4 0 5

files takes less than 35kb of diskspace, and
rule files are typically only a few kb each,
although they may presently be as large as 50
kb.

Now a few words on hardware require-
ments. The version of PC Beta presented here
will run on any IBM/PC compatible com-
puter, and, in fact, there is astonishingly much
you can do with PC Beta on an ordinary PC
with only two floppy disks. Working with a
hard disk is, of course, easier, and is necessary
if you need to work with larger texts than
250kb or so. PC Beta becomes more "snappy"
if you have a PC with a 286 processor, not to
mention one with a 386 processor.

During the spring of 1990 we will have a
Macintosh version ready, to begin with only
as a direct transfer from the PC version (by
simply recolnpiling the source code on a
Mac), but later we hope to get a "real" MAC-
Beta, a version that will be programmed more
in the Macintosh fashion.

1.2. What is PC Beta?
Technically speaking, PC Beta is a straightfor-
ward production system in the sense of
Rosner, 1983. Whenever PC Beta is used, its
actions are completely controlled by a set of
rules, so called productions, which the user
supplies (a production is, in short, a rewrite
rule which may be more complex than rewrite
rules of the type linguists are used to; cf. e.g.
Smullyan, 1961;). "Completely" means here
exactly what it says; there are practically no
built in actions in the program and the user
has full control over what the program should
do with the text it processes. Furthermore, the
rules conform to a format that any linguist can
learn to under stand and write in quite a short
time, thus making himself his own comput-
ational linguist.

Before describing the rules and their func-
tions, let me mention briefly that when de-
signing the Beta rule format, I had the follow-
ing goal in mind: simple things should be
simple to do, but one should also have the
possibility to do complex things when the ap-
plication so demands. There are numerous
examples of rule systems (a "rule system" =
the actual rules plus accompanying decla-
rations and specifications) that are almost rid-

iculously simple. A rule system, for instance,
for producing a KWIC concordance of all the
words in an arbitrary text requires in principle
one rule only (plus a few specifications of the
input and output formats). A rule system for
rinsing a text from control characters can even
be of length zero. A rule system for adding
line numbers to a text needs only one speci-
fication of the type "NUM = 5", informing the
program that a line number field (of width
five in this case) is to be added in front of every
record in the output file. One can learn to
write rule systems for simple tasks like the
ones mentioned in a few hours. But using PC
Beta is like playing chess, one can learn the
rules of the game in a couple of hours, and
with some experience one can become quite
a good at it, but it still takes a lot of experience
and imagination to become a master.

Fortunately, every new user of PC Beta
does not have to "invent the wheel". In the
course of time quite substantial experience in
using the program has been made. "Brodda
(1990)", referred to several times in this ar-
ticle is, in fact, a straightforward "com-
pendium", exclusively dedicated to the use of
PC Beta in corpus work and will contain
detailed descriptions of a host of rule systems,
all useful in practical corpus work activities. It
will also provide a lot of hints on what one has
to think about when pursuing a corpus pro-
ject, both in general and with PC Beta specifi-
cally.

1.3. How does the program work?
The computational setup in PC Beta is the
following: PC Beta reads one record (cf. sec-
tion 4, below) at a time from the given input
file and places it in an internal working
storage, WS. An internal state variable is
given an initial value = 1 and a cursor is -
metaphorically - placed at the leftmost end
of WS./ks long as no rule is applicable at the
current position of the cursor, this is moved
rightwards one step at a time until, eventually,
an applicable rule is found. If this happens,
the rule is applied (the content of WS is
changed, for instance), upon which the cursor
is moved to a position defined by that rule.
From there new applicable rules are searched
for, until - hopefully - the cursor moves

406 2

outside WS to the right, and the processing of
the current record is over. The current con-
tent of WS is then sent to the chosen output
channel and a new record is brought in from
the input file, and so on until the input file is
is emptied.

The rule file that controls the actions of
PC Beta contains primarily the rules them-
selves, but also some necessary declarations,
essentially definitions of various state and
character sets, and for mat descriptions, such
as information about whether there is a line
header field in the input file and, if so, how
wide it is. ("Line header" a "line ID" in line-
initial position; cf. section 2.1). The main part
is, of course, contained in the rules section of
the program, and I shall now proceed to de-
scribe briefly how PC Beta rules are con-
structed.

Theoretically - in practice they look
differently - a PC Beta rule is a 7-tuple:

(1) < Observed string, Context
condition(s), State condition,

Resulting string, Resulting state,
Move, Resulting actions >

The first three elements in (1) define rule
conditions: "Observed string" must be an ex-
plicitely given string (cf. section 5) and the
condition is fulfilled if an instance of "Ob-
served string" is found at the current position
of the cursor. "Context condition" breaks
down to two subconditions, one left context
condition (of the ob served string) and one
right context condition (of the same string).
"State condition" is a condition on the inter-
nal state. The last four elements in (1) above
define what happens when the rule condi
tions are fulfilled. "Resulting string" is a
string that replaces (the instance of) the ob-
served sting in WS. "Resulting state" defines
the new value of the internal state. "Move" is
a directive of where in WS to put the cursor
after the application of the rule. This position
is typically defined relative to the newly in-
serted "resul ring string", but the cursor may
also be directed to other places in the string
under processing.

The component "Resulting actions" in (1)
is extremely important in corpus work appli-
cations. In PC Beta there is a possibility to
define specific sets of states with reserved
names, and a specific action is tied to each
such set; whenever the internal state happens
to become a member of such a set, the corre-
sponding action is in voked. Such internal
states are collectively referred to as "action
states" (cf. Brodda, 1988). Now, some of the
actions that can be invoked in this way are
typical "things" one wants to do in typical
corpus applications: move an observed string
out to a KWOC-field, print the current record
when something interesting has been found
-- this is excerption - and perhaps format
the output in such a way that the position of
the cursor always appears in a predefined
print posi t ion - this is how KWIC concor-
dances are obtained - and so on.

Before leaving this topic I think there is a
theoretical point calling for a remark here. As
anybody with some minimum knowledge of
mathematical linguistics can see, the rule for-
mat (1) is a kind of generalization of Turing
machine rules, which implies that the PC Beta
programming system in principle is a general
Turing machine. Thus, it is a trivial con-
sequence that with PC Beta one can achieve
whatever text warping one can ever dream up.
There is no other limit than imagination and
computer space. Thus, when I claim that one
can do complex things with PC Beta it is, sort
of, a very trivial remark.

What I mean is that one can do quite many
things, some rather complex, under the head-
ing "Computational Linguistics" in a natural
way. The rule format (as well as the whole
setup) is tuned to be efficient for typical applio
cations in that area, and with special attention
to surface oriented analysis. This format has
been arrived at after years of experimenting
and actual testing in true situations; in win-
ciple I began with a system that was much
more ambitiuos than the present and then I
primarily sacrified features that turned out to
be unnecessary and/or never used. Some
other features have been modified and a few
other added (but very conservatively). What
is left is a kind of basic tool for computational
linguistics.

3 407

1.4. What is a record?

As mentioned above, PC Beta is record-
oriented: it reads in and processes one record
at a time. Now, what is a re cord? In computer
connections text lines usually constitute the
basic physical records when a text is
processed, but, with the exception of poetry,
text lines do not constitute very natural lin-
guistic units, and therefore one has to have
means to overrule this default record defini-
tion. In PC Beta we have adopted a simple,
yet very effective, way to accomplish this. The
logical records one can define are typically
words, sentences or paragraphs; larger
chunks than normal paragraphs can usually
not be kept in the working storage of the
present version of PC Beta. (The limit is
around 3500 characters.)

When line headers are present, each re-
cord is associated with the line header of the
line where the record begins, and this line
header is then the one that usually appears
when the record is output.

As I mentioned earlier, the internal state
is by default reset to 1 whenever a new record
is brought into WS. This implies that each
logical record is processed as if in isolation.
This default is, how ever, easily overruled, and
then the value of the internal state is kept as
it was from the preceding record, when a new
record is brought in. In some sense, PC Beta
considers the whole text as one logical record
when run in this mode.

1.5. More on PC Beta rules.

In section 3, above, I described PC Beta rules
from an abstract point of view. Now, PC Beta
rules are not abstract entities, they are very
concrete: they contain an ordinary rewrite
component of the type "X - Y" where X and
Y denote strings ("X is rewritten as Y"), and
these strings must be explicit. Thus, an alleged
phonological rule of the type: "V -
+ (back)/..." is meaningless unless the symbol
"V" itself (and not only objects classified as
"V"s) appears in the text. Furthermore, in this
case a letter V appearing in the right environ-
ments is simply rewritten as the string
" + (back)", which perhaps is not exactly what
a phonological rule of the type mentioned
would mean.

The "concretism" is not a shortcoming of
PC Beta, it is a deliberately chosen feature.
One reason for this choice is that all such
built-in properties delimit generality (other-
wise: which action is the program supposed to
take if you actually want to rewrite "V" as
" + (back)"?). Another reason is efficiency: if
the program in all situations has to check
whether the user actually means what a rule
says, or whether there is an implicit category
involved that is going to be changed in some
abstract way, then it will take time. A third
-and the m a i n - reason is that I am per-
sonally a concrete linguist, I simply think that
rules in linguistics should be concrete as far as
possible.

Of course I have to admit that there are
instances when it would be conver6ent to
refer to, say, any vowel simply as "V" in the re
write part of a rule. Are there ways to achieve
this in PC Beta? Yes, there are. In Brodda &
Karlsson 1981 it is shown that such abstrac
tions are easily taken care of by meta rules,
Beta-rules that expand abstract categories
like the ones mentioned and also modify rules
in other ways. A slightly more complex ex-
ample of this type will be described below
(section 2.3).

1.6. Rule conditions and the internal
state.

Each rule contains two context conditions,
one for the left context and one for tile right
context, plus one condition on the current
internal state. All these three conditions are
evaluated in a similar way, and all three must
be fulfilled for the rule to be applicable; a
superordinate condition is, of course, that the
"observed string" actually is located at the
current position of the cursor.

The context and state conditions appear in
the rules as the names of three sets, two char-
acter sets and one "state" set. The context
conditions are fulfilled if the character to the
left of (the in stance of) the observed string
belongs to the set denoted by the left-context
condition, and, similarly, the character to the
right of the observed string belongs to the set
denoted by the right-context condition, these
sets being defined under the heading CHAR-
SET ("character sets") in the actual rule file.

408 4

The internal state, IS, is an internal variable
that can take arbitrary positive integers as
values. The internal state is intitialized to 1
when the processing begins, and usually again
when a new record is brought into the working
storage. From there on the internal state is
successively updated through the applications
of rules, and by having a condition on this
internal state in each rule one can achieve
logical chaining of whole sets of rules.
Roughly one can say that the context condi-
tions take care of the immediate environment
whereas the internal state condition embo-
dies more abstract and arbitrarily complex
conditions on the structure in which the ob-
served string appears.

The state condition in a rule is again just
a name, now referring to a set of positive
integers (i.e. possible states) defined under
the heading STATESET ("state sets") in the
rule file, and the condition is fulfilled if the
current internal state is a member of that set.
To understand this way of evaluating state
conditions is the whole key to understanding
PC Beta programming.

A critic may wonder why we do not allow
more complex (near) context conditions than
just conditions on the immediate left and right
characters. The reason is efficiency. Testing a
character for membership in a character set
(or a state for membership in a state set) is
done in a very fast and simple way, whereas
testing a string for membership in a string set
v:equires some sort of lexicon lookup proce-
dure, which is, generally speaking, a compara-
tively more complex operation. - OK, but if a
rule actually requires specific strings in its
context conditions, how do you handle that?
L_ Simple, move the cursor around a little and
establish the context conditions as specific
changes in the internal state via the applica-
tions of rules.- But isn't that just a makeshift?
Don't you need lexicon lookups for estab-
lishing certain contexts as "observed strings"?

Undoubtedly there is a point there, so in the
next release of PC Beta (due to appear, about
a year or st) from now) we will probably allow
a third heading, STRINGSET, under which
arbitrary sets of strings may be defined, the
name of which may then be used as left or

right hand conditions in rules as alternatives
to character conditions. The reason why this
is not implemented already is, primarily, that
in most cases character contexts are perfectly
sufficient, and, besides, it is not entirely clear
to us what conventions this string set feature
should follow in all details, technically or
theoretically; it will take some experimenting
to decide that.

REFERENCES
Brodda, B. & Karlsson, F. "An Experiment with Auto-

matic Morphological Analysis of Finnish", PubL
No. 7, Department of Linguistics, University of
Helsinki, 1981.

Brodda,B. "Problems with tagging - and a solution",
Nord. Journal of Linguistics, 5, 1982, pp. 93-116.

Brodda, B. "An Experiment with Heuristic Parsing of
Swedish" in Karlsson, F. (ed.) Papers from the 7th
Scandinavian Conference of Linguistics, University
of Helsinld, 1983.

Brodda,B. "Tracing Turns in the London-Lund Corpus
with BetaText" in Literary and Linguistic Comput-
ing, Vol. 3, No. 2, 1988.

Brodda,B. "Corpus Work with PC Beta", Inst. of Linguis-
tics, University of Stockholm, 1990, forthcoming.

Erman,B. "Pragmatic Expressions in English" (disser-
tation), Stockholm Studies in English, Acta Univ.
Stockholmiensis, 1987.

Kiillgren,G. "FINVX - a System for the Bakwards Ap-
plication of Finnish Consonant Gradation Rules",
P1LUS No. 42, Inst. of Linguistics, University of
Stockholm, 1982.

K/illgren,G. "Automatisk Excerpering av substantiv ur
16pande text", IRI-rapport 1984.'1, Inst. f6r Riittsin-
formatik, University of Stockholm, 1984(a).

Khllgren,G. "HP, a Heuristic Finite State Parser based
on Morphology", in Shgvall-Hein (ed.) "De Nord.
Datalingvistikdagama 1983", Uppsala University,
Uppsala, 1984(b).

Malkior, S. & Carlvik, M. PC Beta Reference. Institute
of Linguistics, University of Stockholm, 1990.

Rosner,M. "Production Systems" in "Parsing Natural
Languages", M. King (ed.), Academic Press, 1983

Smullyan, R.M. "Theory of Formal Systems", Annals of
Math. Studies, New York, 1961.

5 409

