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Overview 

It is generally recognized that interpreting 
natural language input may require access to 
detailed knowledge of the domain involved. This 
is particularly tree for multi-sentence discourse, 
where we must not only analyze the individual 
sentences but also establish the connections 
between them. Simple semantic constraints - -  an 
object classification hierarchy, a catalog of mean- 
ingful semantic relations - -  are not sufficient. 
However, the appropriate structure for integrating 
a language analyzer with a complex dynamic 
(time-dependent) model --- one which can scale up 
beyond 'toy' domains - -  is not yet well under- 
stood. 

To explore these design issues, we have 
developed a system which uses a rich model of a 
real, nontrivial piece of equipment in order to 
analyze, in depth, reports of  the failure of this 
equipment. This system has been fully imple- 
mented and demonstrated on actual failure reports. 
In outlining this system over the next few pages, 
we focus particularly on the language analysis 
components which require detailed domain 
knowledge, and how these requirements have 
affected the design of the domain model. 

The Domain 

The texts we are analyzing are CASREPs: 
reports of equipment failure on board U.S.Navy 
ships. We have restricted ourselves to one subsys- 
tem, the starting air system, which generates 
compressed air for starting gas turbines. With 
nearly 200 functional components, it is complex 
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enough to raise many of the problems of real sys- 
tems, yet still remain within the range of explora- 
tory model-building efforts. We have collected 36 
reports concerning this subsystem. A typical 
report is 

While diesel was operating with SAC 
[starting air compressor] disengaged, the 
SAC LO [lubricating off] alarm sounded. 
Believe the coupling from diesel to SAC 
lube oil pump to be sheared. Pump will 
not turn when engine jacks over. 

A central task of text analysis is to determine 
(as best one can fl'om the report) the cause-effect 
relation between events. This infonnation is rarely 
stated explicitly; rather, it is assumed that it can be 
inferred from a reader's background knowledge. 
We can illustrate this with a simple example from 
a more familiar domain - -  car repair. If we com- 
pare the reports 

Battery low. 
Engine won't start. 

and 

Battery low. 
Generator won't start. 

we recognize that, although the texts are very simi- 
lar, in the first case "Battery low" causes "Engine 
won't  start.", whereas in file second, "Battery low" 
is the result of  "Generator won't start." We make 
these inferences quite naturally based on our 
knowledge of how cars work. The challenge is to 
organize our system so that it can effectively make 
similar inferences using complex domain models. 

Analyzing these causal relations helps us in 
turn to understand the temporal structure of the 
text. This is important because the narrative order 
in these reports typically reflects the order in which 
events were discovered rather than the order in 
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which they occurred. 

The Language Analyzer 
The language analyzer has three top-level como 

ponents: syntactic analysis, semantic analysis, and 
discourse analysis. Syntactic and semantic 
analysis are applied to each sentence in turn; 
discouese analysis is applied to the entire report at 
the end of processing. 

Syntax analysis is pertbrmed using an aug- 
mented context-fi'ee grammar based on linguistic 
string theory. Tim parse tree is regularized (pri- 
marily transforming "all clause structures into a 
standard torm) by a set of translation rules associ- 
ated with the grammar productions and applied 
compositionally. 

Semantic analysis is split into predicate seman- 
tics (which handles clauses and nominalizations) 
and noun phrase semantics (for references to 
domain objects). Predicate semantics performs a 
mapping from verbs and syntactic relations to 
domain-.specific predicates and relations. Noun 
phrase semantics maps noun phrases into refer- 
ences to components of the domain model. 

Noun phrase semantics has to cope with the 
long compound nominals which occur frequently 
in this and other technical text. Our reports con- 
tain phrases such as 

starting air temperature regulating valve 
SAC [starting air compressor] spline input drive shaft 

Syntactic constraints offer ahnost no help in 
resolving the ambiguity of such phrases, ~md 
semantic constraints, as described by Finin [2], are 
in many cases not suflicient. We instead adopt a 
two-stage approach to analyzing these phrases, 
described in more detail in [3], [4], and [5]. The 
noun phrase is first parsed with a grammar based 
on broad semantic categories appropriate to the 
domain; this may produce several alternate 
analysis trees. These analyses are then submitted 
to a compositional procedure which determines for 
each subtree, and finally the whole tree, the 
referents in the model. By eliminating analyses 
which yield troll referents, we resolve much of the 
ambiguity in these noun phrases. 

When semantic analysis is complete, it will 
have transformed the report into a set of proposi- 
tions (predicate-argument structures). Discourse 
analysis now has the task of interrelating these pro- 
positions. 

Discourse Analysis 

The central data structure of the discourse 
analyzer is the time graph. The time graph con- 
tains a set of directed edges which correspond to 
time intervals over which a certain state holds or a 
certain activity is taking place (we call such states 
and activities elementary facts). In addition, the 
time graph has directed edges which represent the 
relative time ordering of the elementary facts and 
the causal relationships between them. This graph 
is created in throe phrases: creation of elementary 
facts; analysis of explicit temporal relations; and 
causal analysis. Our approach to temporal 
analysis, which is described in more fully in [31] 
and [4], has been influenced by earlier work by 
Dowty [ 1] ,'rod Passonneau [6]. 

The first phase creates the elementary facts 
from the propositions generated by semantic 
analysis. For propositions representing a continu- 
ing state or activity, the mapping is, in general, 
one-to-one. For propositions representing a 
change of state, however, we generate several 
facts: in general, one for the prior state, one tbr the 
transition interval, and one lbr the final state. 
Higher-order predicates (those which take one or 
more propositional arguments, such as "began to 

", "unable to . . . .  ") do not map directly into 
elementary facts; rather, they modify or augment 
the constellation of elementary facts crealed for 
their arguments. 

For example, for the (shnplified) report 

Starting air temperature regulating valve failed. 
Was unable to start nr. 1 A turbine. 

we would create the elementary facts shown in Fig. 
1. valve-14 is the internal name for the 'starting 
air temperature regulating valve', while lurbine-1 
is the internal name of the 'nr. 1A turbine' (these 
retcrences are identified by the noun phrase 
analyze0. The failure predication in the first sen- 
tence is translated into three elementary facts: the 
state when the valve was OK (between time points 
1 and 2), the process of failing (between 2 and 3), 
and the failed state (between 3 and 4). A predica- 
tion of 'starting' by itself would be similarly 
translated into three elementary facts. The adjec- 
tive 'unable to' introduces an additional elemen- 
tary fact EF5 - -  the operator perRmning the start- 
ing act ion---  and modilies the facts representing 
the change of state of the turbine (EF4, EF6, EF7) 
so that the turbine is not running in the final stale 
(EF7). 

The second phase introduces edges correspond- 
ing to temporal relations explicitly mentioned in 
the text. For example, for the text "While diesel 
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(a) O-- EF, * ,q)--  EFe,,rrl- E ~ 3 . ®  

(b) 

ell: ( S t a t i c - S L a t e  equip-unit: v a l v e - 1 4  aspect: 
FUNCTIONAL CONDITION vaZue: OK) 

el2: (Transltlon-State equgp-un~t: v a l v e - 1 4  asoect :  
FDHCTIOHAL CONDITION u~Zue:  BECOAIXG NDLFUACTIOHIHO 
transition-type: UNDESIRED) 

e l 3 :  ( S t a t i c - S t a t e  equip-~nit: v a | v e - 1 4  a~pact: 
FUHCTIOHAL CONOITIOH value:  BROKEN) 

e f4 :  (Dynamic -S ta te  e q u g p - u n ~ t :  t u r b i n e - I  aspect :  OPERATION 
veZue:  STANDSTILL ~ode: ROUTINE) 

efS:  (Oc t i on  ac to r :  OPERATOR aspect :  ROUTINE v~lue:  STARTING 
equip-unit: tuPbine-[ type: IHITIHTION) 

efG: ( T r a n ~ i t l o n - S t a t e  equ ip -un i t :  t o r b i n a - I  aspect= OPERATION 
v~lu#: 5TRRTINO tran~itlon-type: IHITIATEO) 

e fT :  (Oynae l c -S te te  equ ip -un i t :  t u r b i n e - |  aspect :  OPERDTIOH 
v~Zue: NOT RUNNING ~ode:  ROUTINE) 

Figure 1. Discourse analysis: creation of elementary facts. 
(a) Starting air temperature regulating valve failed. 
(b) Was unable to start nr. 1A turbine. 

(b) 

(~--EF!-I~(~'-EF24D,~ E!3  " - - -~ (~  

® -  ~ ~ E r ,  - - - - - - - - - - * ~ ® - -  E F 6 *  ,(9--" E ~) 

Figure 2. Discourse analysis: causal analysis of a failure report. 
(a) Situations S 1 and $2. 
(b) Adding causal and temporal links between situations. 
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was operating, alarm sounded." we would indicate 
that the transition interval when the alarm began to 
sound is contained in tile interval in which the 
diesel was operating. For the simple example just 
above, no edges would be added. 

The third phase uses causal inference to deter- 
mine the causal relation between elementary facts, 
and to obtain therefrom additional temporal rela- 
tions. When this phase begins, the time graph con- 
sists of  several connected subgraphs, which we call 
situations. In essence, we consider each pair of 
situations, <situationp situation2>, and use the 

model to determine wheti~er situation I is a plausi- 
ble cause of situation 2. We take the domain model 

without the conditions of situation 1 and test 

whether situation 2 is true or false; we then alter the 

state of the model to reflect the conditions of situa- 
tion~ and again test whether situation 2 is true or 

false. If it is false in the first case and true in the 
second, we record a plausible causal link from 
situation 1 to situation, z. In/',act, we need not test all 

pairs of  situations; we can restt5ct ourselves to 
abnormal situations (those which are not true in 
the case o1' normal operation of the equipment). 

The example above consists of two situations, 
S1 and $2 (Fig. 2(a)), both of which are abnormal, 
so we perform the tests just described. We deter- 
mine that S1 is a plausible cause of $2. We there- 
:fore establish a causal link (shown as the dotted 
line from EF3 to EF6), and deduce l.herefrom a 
temporal link from the start of  EF3 to tbe start of 
EF6. These are shown in Figure 2(b). 

The Domain Model 

The detailed equipment model is required pri- 
marily at two points in our analysis: for noun 
phrase semantics and for causal reasoning as a part 
of discourse analysis. Each imposes particular 

requirements on the model. 

Noun phrase analysis requires a static hierarchi- 
cal model of the equipment which captures the 
properties and relations which are used in noun 
phrases to identify particular components: contain- 
tnent, adjacency, function, parameter values ("high 
speed"). 

* In addition, the entire system, and particularly seman- 
tic analysis, make use of more conventional domain informa- 
tion structures: a hierarchical classification of objects and 
predicates, attd a map from verbs and nominalizations to 
predicates. 

There arc two conventional approaches to 
cause-effect reasoning: a "shallow" approach in 
which causally related events are recorded directly, 
typically in a production system, and a "deeper" 
model-based approach in which effects are pro- 
pagated through components as they would be in 
the actual equipment. We have elected to use a 
model-based simulation, in part because a static 
model (which provides the framework for the 
simulation model) was reequired for semantic 
analysis, and in part because it offers a more sys- 
tematic approach to assuring adequate coverage of 
the cause-effect relations. We have found that a 
qualitative simulation, in which parameters take on 
only a few values, was adequate for verifying tile 
causal relations mentioned in the reports; correct 
understanding rarely depended on knowing the 
correct numerical values of parameters. 

Certain cause-effect relations, such as those 
involving a single system component (e.g., that 
corrosion of an element might lead to its malfunc- 
tioning), cannot be directly captured by the simula- 
tion model; we use production roles to express the 
relation in such cases. 

In order to isolate the language analyzer from 
the particular choices of representation made in the 
domain model, we have introduced a Model Query 
Processor as an interface between the analyzer and 
model. The resulting system structure is shown in 
Figure 3. The Model Query Processor accepts 
queries about the static model, either testing a 
parameter of a component or a relation (adjacency, 
containment, etc.) between two components. It 
also accepts queries about the interaction of events, 
stated in terms of asserting or testing particular ele- 
mentary facts; these are translated into simulation 
operations. 

Discussion 

We have demonstrated a feasible approach to 
utilizing a complex, dynamic domain model for 
the analysis of technical text. The hierarchical 
nature of the model and the simple interface 
between the model and the language analyzer 
should allow this approach to scale up to substan- 
tially larger domains. The simulation-based 
approach is suitable primarily for domains where 
behavior is largely predictable, but this includes a 
substantial variety of applications. 

The chief hurdle to applying this approach is 
the large amount of domain information which is 
required. At present, each new piece of equipment 
requires a new model. We have begun to explore 
tools, such as graphical editors, to ease the acquisio 
tion of new models. In addition, we believe it will 
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Figure 3. The principal components and data flow of the system. 
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be necessary to incorporate more general models, 
which will cover whole classes of equipment. 
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