A POLYNOMIAL-ORDER ALGORITHM

FOR

OPTIMAL PHRASE SEQUENCE SELECTION FROM A PHRASE LATTICE
AND 1ITS PARALLEL LAYERED IMPLEMENTATION

Kazuhiko OZEKI

The University of Electro—Communications

Chofu, Tokyvo,

Abstract

This paper deals with a problem of select-
ing an optimal phrase sequence from a phrase
lattice, which is often encountered in
language processing such as word processing
and post-processing for speech recognition.
The problem is formulated as one of combina~
torial optimization, and a polynomial order
algorithm is derived. This algorithm finds
an optimal phrase sequence and its dependen-
cy structure simultaneously, and is there-
fore particularly suited for an interface
between speech recognition and various
language processing. What the algorithm does
is numerical optimization rather than sym-
bolic operation unlike conventional pars-
ers. A parallel and layered structure to
implement the algorithm is also presented.
Although the language taken up here is Japa-
nese, the algorithm can be extended to cover
a wider family of languages.

1. Introduction

In Japanese language processing related to
speech recognition and word processing, we
often encounter a problem of selecting a
phrase sequence which constitutes the most
acceptable sentence from a phrase lattice,
that is, a set of phrases with various
starting and ending positions. By solving
this problem, linguistic ambiguities and/or
uncertainties coming from the inaccuracy in
speech recognition are expected to be re-
solved.

This problem can be solved, in principle,
by enumerating all the possible combinations
of the phrases and measuring the syntactic
and semantic acceptability of each phrase
sequence as a sentence. Obviously. however,
the amount of computation in this enumera-
tive method grows exponentially with respect
to the length of the sequence and becomes in-
tractable even for a moderate problem size.

In this paper we formulate this task as a
combinatorial optimization problem and
derive a set of recurrence equations, which
leads to an algorithm of polynomial order in
time and space. We utilize the idea of
dependency grammar [Hays 64] for defining
the acceptability of a phrase sequence as a
Japanese sentence.

With a review of recent theoretical devel-
opment on this topic, a parallel and layered
implementation of the algorithm is present-
ed.

182, Japan

2. Dependency Structure of Japanese

In Japanese, words and morphemes are con-
catenated to form a linguistic unit called
"bunsetsu’, which is referred to as simply
"phrase’ here. A typical phrase consists of
a content word followed by some functional
morphemes. A Japanese sentence is a sequence
of phrases with a structure which can be de-
scribed by a diagram as in Fig.l
[Hashimoto 46]. For a sequence of phrases
X1X9...X,; to be a well-formed Japanese
sentence, it must have a structure satisfy-
ing the following constraints [Yoshida 72]:

(¢l) For any i (l1<i<n-1), there exists
unique j (i<j<n) such that x; modifies X; in
a wide sense.

(¢2) For any i,j.k.1 (1€i<j<k<i<n), it
never occurs that x; modifies Xx and X
modifies Xy-

A structure satisfying these constraints
is called a dependency structure here. More
formally we define a dependency structure as
follows [Ozeki 86a].

Definition 1
(1 It Xp is a phrase, then <(xp> is a de-
pendency structure.
2y If Xy, Xn are dependency structures
and xy is a phrase, then <Xj...X, x> is a
dependency structure.

A dependency structure 10 ST Xq>
(X;=<...X;>) implies that each x{. which is
the last phrase in Xi. modifies xg. It is
easily verified that a structure satisfying
the constraints (cl) and (c2) is a dependen-
cy structure in the sense of Definition 1
and vice versa [Ozeki 86al.

When a dependency structure X is composed
of phrases Xj,Xp.....X, We say that X is a
dependency structure on X1X9...%Xq. The set
of all the dependency structures on
X{Xg...X, is denoted as K(xyxy...x;). and
for a sequence of phrase sets Al,Az,...,An,
we define

KB(AI.AZ....,An)

={XI1XeK(xyxg... %), xjeA; (1<ign)}.

A B C D E

I

Fig.1 Example of dependency structure
in Japanese. A,B,... are phrases.

311

3. Acceptability of a Dependency Structure

For a pair of phrases xj and x3, we can
think of a penalty imposed on a modifier-
modificant relation between x, and xg. This
non-negative value is denoted as pen(xlzxo).
The smaller value of pen(xl;xo) represents
the more natural linguistic relation. Al-
though it is very important to establish a
way of computing pen(xl;xo), we will not go
into that problem in this paper. Based on
the 'local' penalty, a 'global’ penalty P(X)
of a dependency structure X is defined
recursively as follows [0Ozeki 86a].

Definition 2
(1) For X=<x>, P(X)=0.

(2) For X=<Xy...X, xg>, where X;=<...x;>
(1<i<n) is a dependency structure,
P(X)= P(X1)+‘..+P(Xn)
+pen(x1;x0)+...+pen(xn;x0).

Note that P(X) is the sum of the penalty
of all the phrase pairs which are supposed
to be in modifier-modificant relation in the
dependency structure X. This function is
invariant under permutation of Xl Xn in
accordance with the characteristic of Japa-
nese.

4. Formulation of the Problen

For simplicity, let us begin with a
special type of phrase lattice composed of a
sequence of phrase sets By ,By,..., BN as
shown in Fig.2, which we call phrase ma-
trix. Suppose we are given a phrase matrix
and a reliability function

s: B1UByY.. . UBy --> R,
where R, denotes the set of non-negative
real numbers. The smaller value of s(x)
represents the higher reliability of x. We
encounter this special type of phrase lat-
tice in isolated phrase speech recognition.
In that case B; is the set of output candi-
dates for the ith utterance, and s(x) is the
recognition score for a candidate phrase x.

For a dependency structure X on a phrase
sequence XqXg...Xy., the total reliability
of X is defined as

S(X)= s(xpt. . . +s(xy).
Combining the acceptability and the reli-
ability, we define an objective function
F(X) as

F(X)= P(X)Y+S(X).

Bl Bz - L) . BN
*11| *¥21| - - -| ®XN1
X12 X22 |- - - XNZ2
X131 ¥23 - - | N3
Fig.2 Phrase matrix. Bl,...,BN are

phrase sets.

312

Then the central problem here is formulat-
ed as the following combinatorial optimiza-
tion problem [Matsunaga 86, Ozeki 86al.

Problem Find a dependency structure

XeKB(By. By, ..., By)
which minimizes the objective function F(X).

By solving this problem, we can obtain the
optimal phrase sequence and the optimal
dependency structure on the sequence simul-
taneously.

When |Bl|=|B2i=...=|BNl= M,
we have

|KB(By. By, ..., By) | = (2(N~1)C(N-1%)/N)MN-
where C denotes combination. This becomes a
huge number even for a moderate problem
size, rendering an enumerative method prac-
tically impossible.
5. Recurrence equations and a resulting
algorithm

Combining two dependency structures X and
Y=Yy, Yp.¥>, & new dependency structure
1090 ST Y. y> is obtained which is denoted
as X ® Y. Conversely, any dependency struc-
ture Z with length greater than | can be
decomposed as Z= X B Y, where X is the top
dependency structure in Z. Moreover, it is
easily verified from the definition of the
objective function that

F(Z)= F(X) + F(Y) + pen(x:y).
where x and y are the last phrases in X and
Y, respectively. The following argument is
based on this fact.

We denote elements in B; as XjpXjg. -0 -
For 1¢i¢j<N and 1<p<iB;|. ‘where '|B;| denotes
the number of elements in Bj. we define

opt(i,j.p)
=min{F(X)|XeKB(Bi...‘.Bj_l{ij))}
and
opts(i.j:p)

=argmin (F(X) [XeKB(Bj.Bj_p{xjpl)).

Then the following recurrence equations
hold for opt(i,j;p) and opts(i,j.p), respec-
tively [Ozeki 86al.

Proposition 1 For 1<i¢j<N and 1<p<IB;l.
(1) if i=j, then opt(i,j:p)=s(xjp).

(2) and if i<j, then
opt(i.j:p)
=min{f(k,q)ligkgj—l,lgqngkl},
where
f(k,q)=opt(i.k;q)topt(k+l,j;p)
tpen(xy X).

Proposition 1’ Por YgigjgN and 1<p<|Bjl.

(1) if i=j, then opts(i,j;p)=<xjp>,
(2) and if i<j, then
opts(i,j;p)
=opts(i,kk;%q) ® opts(kk+1,j;p).
where %k is the best segmentation point and
%q is the best phrase number in B*k:
(kk,*q)=argmin{f(k,q) | ig¢k<j-1,1<a<|Byl}.

According to Proposition 1, if the values
of opt(i.k;q) and opt(k+l,j;p) are known for
1<k<j-1 and 1<q<|IBy|, it is possible to
calculate the value of opt(i,j;p) by search-
ing the best segmentation point and the best
phrase number at the segmentation point.
This fact enables us to calculate the value

of opt(l,N;p) recursively, starting with
opt(i,i:q) (1<i¢N,1<q¢|B;|). This is the
principle of dynamic programming [Bell-
man 57].

Let %p= argmin{opt(1,N;p)|1<p<IByl),
then we have the final solution

opt (1. N;kp)=min {F(X) [XeKB(By, ..., By))
and

opts(1,N ;%p)

zargmin {F(X) [XeKB(By, ..., Byt
The opts(l,N;%p) can be calculated recur-
sively using Proposition 2. Fig.3 illus-
trates an algorithm translated from these
recurrence equations [0Ozeki 86a). This
algorithm uses two tables, tablel and
table?, of upper triangular matrix form as
shown in Fig.4. The (i,j) element of the
matrix has |B;| ‘'pigeon-holes’. The value
of opt(i,j;p) 1s stored in tablel and the
pair of the best segmentation point and the
best phrase number is stored in table?. It
should be noted that there is much freedom
in the order of scanning i,j and p, which
will be utilized when we discuss a parallel
implementation of the algorithn.

Optimal_Dependency_Structure;
begin
/% Analysis Phase %/
for j:=1 to N do
for i:=j downto 1 do
for p:=1 to lle do
if i=j then
tablel (i, jip)i=s(xjp):
else
begin
tablet (i, j:p)
c=min{tablel(i,k;q)+tablel(k+1,j;p)
tpen(XyqiXiy)
1ckei-1. 16882
table2(i,j;p)
c=zargmin{tablel (i, k;q)
ttablel(k+1,j;p)

tpen(Xyq:Xip)
Ilgk5j~1,1gqg¥§klf?
end;
/% Composition Phase %/
p:=argmin{tablel (1,N;p)
[1<p< | By}

result:=opts(1,N;%p);
end.

function opts(i,j;p):char string;
begin
if i=j then
op'ts::’<xjp
else
begin
(kk,%q):=table?2(i,j;p);
opts:=opts(i,*k:%q) @ opts(xktl,j:p):
end;
end.

>

Fig.3 Algorithm to select an optimal
dependency structure from a phrase
matrix.

TR PRI —-————

[EPPUSSPI (VIR TSPV (U U (SO

e mw e] e e e

[PURNIRS R I [T

Fig.4 Triangular matrix tablef—~—1~—-1
for tablel and tablel. kil

In this exauple, N=7 and 770
=, .= = b =
IBll‘“““B'[I 3. L.(ZLZ.'?_)
(7, 7:3)
[character position]
123 4 56 78 9101112131415
B(1,4) B(5,8) |[B(3,10) B(11,15)
B(1,2) | B(3,5) B(6,8) B(9,13) 8(14,15)
Fig.5 Example of phrase lattice.
When [Byl=...=|Byl=M, the number of opera-

tions(additions and comparisons) necessary
to fill tablel is O(MZN®).

These recurrence equations and algorithm
can be easily extended so that they can
handle a general phrase lattice. A Phrase
lattice is a set of phrase sets, which looks
like Fig.5. B(i,j) denotes the set of
phrases beginning at character position i
and ending at j. A phrase lattice is ob-
tained, for example, as the output of a con-
tinuous speech recognition system, and also
as the result of a morphological analysis of
non-segmented Japanese text spelled in kana
characters only. We denote the elements of
B(i,j) as Xij1-¥ij2. - - and in parallel
with the definition of opt and opts, we
define opt’ and opts’ as follows.

For }§§5m§J5N and Xpip.

opt (i, j.m;p)
=the minimum value of [P(X)+S(X)] as X
runs over all the dependency structures
on all the possible phrase sequences
beginning at i and ending at j with the
last phrase being fixed as Xmip
and
opts'(i,j.m;p)

=the dependency structure which gives the

above minimum.

Then recurrence equations similar to
Proposition 1 and Proposition 1° hold for
opt’ and opts’'[0zeki 86b]:

Proposition 2 For 1<i<m<j<N and
1<p<|B(m, i),

(1) if i=m, then opt'(i,j,m;p)=s(xmjp),

313

(2) and if i<m, then
opt' (i,j.m;p)
=min{f’ (k,n.q)}ign<k<m-1,1<q<|B(n k) |)
where
f'(k.n,q)= opt’ (i,k,n; q)+opt‘(k+1,j,m;p)
tpen(xpy
Proposition 2' For ?<1<m<J<N and
1<p<iBm,)1,
(1) if i=m, then opts’' (i, j.mip)=<xpjp>.
(2) and if i<m, then
opts' (i,j.m;p)
=opts’ (i,%k, %n;%q) @ opts' (kktl,j,m;p},
where ¥k is the best segmentation point, *¥n
is the top position of the best phrase at
the segmentation point and %q is the best
phrase number in B(¥n, %k):
(%k,%n,%q)
=argmin (f(k,n,q)|i<n<k<m-1,1<q<|B(n, k) |}
The minimum is searched on 3 variables in
this case. It is a straight forward matter
to translate these recurrence equations into
an algorithm similar to Fig.3 [Ozeki 86D,
Kohda 86]. In this case, the order of
amount of computation is 0M2ND), where
M=|B(i,j)! and N is the number of starting
and ending positions of phrases in the

(.fz_' node(1,7)
top layer

node(l 1) bottom layer

node(7,7)

Fig.6 2-dimensional array of computing
elements.

lattice.

Also, we can modify the algorithm in such
a way that up to kth optimal solutions are
obtained.

6. Parallel and Layered Implementation

When only one processor is available, the
amount of computation dominates the proc-
essing time. On the other hand, when there
is no limit as to the number of processors,
the processing time depends on how much of
the computation can be executed in parallel.
There exists a tidy parallel and layered
structure to implement the above algorithm.

For simplicity, let us confine ourselves
to a phrase matrix case here. Furthermore,
let us first consider the case where there
is only one element x; in each of the
phrase set Bj. If we define

opt’ ' (i, J) =min P(X)IXeK(xl.....xj)]
then Proposition 1 is reduced to the follow-
ing simpler form.

Proposition 3 For I<i{j<N,

(1) if i=j, then opt’''(i,j)=0,
(2) and if i<j, then
opt"(i.j)
=min{opt’’ (i,k)+topt' ' (k+l,}j)
tpen(xyix; D 1ickgi-1},

It is easy to see that opt''(i,j) and
opt’ ' (it+m, j+m) (m%0) can be calculated inde-
pendently of each other. This motivates us
to devise a parallel and layered computa-
tion structure in which processing elements
are arranged in a 2-dimensional aryray as
shown in Fig.6. There are N(N+1)/2 process-
ing elements in total. The node(i,j) has an
internal structure as shown in Fig.7, and is
connected with node(i.k) and node(k+l,j)
(1<k<j-1) as in Fig.8. The bottom elements,
node(i,i)'s (1<i<N), hold value 0 and do
nothing else. The node(i,j) calculates the
value of opt''(i,j) and holds the result in
memory 1 together with the optimal segmenta-
tion point in memory 2. Within a layer all
the nodes work independently in parallel and
the computation proceeds from the lower to
upper layer. An upper node receives informa-
tion about a longer sub-sequence than a
lower node: an upper node processes more
global information than a lower node. When

memory 1 F——0
min output 1
minimi i
mization — memory 2 ~
» . T; & — output 2

computation of
pen(xiix;)

computation of
pen(xjy1ix;) z

computation of
pen(x;_y:x;)

node(itl,j)

node(i,1) node(i,itl)

node (i+2,j)

node(j,j)

node(i, j-1)

Fig.7 Internal structure of node(i,j).

314

node (i, j)

node(i,j-1) node(it+l,j)
/7 "\
/
/ AN
/ \

o e

node (i,i+l) node (j~1,j)

(zg/node(i.i) node(j.j)\}:)

Fig.8 Nodes connected to node(i,j).

(1,6:8)
tog, 790
/ Y, D JQYer

/ 4 P
/ /
0\;{ N
/;KZHd layer” ™

[eBR of

bottom layer

1) (6,6:1)
Fig.9 3-dimendional array of computing
elements.

the top element, node(l,N), finishes its
job, each node holds information which is
necessary to compose the optimal dependency
structure on Xyxg...xy. This computation
structure, having many simple inter-related
computing elements, might be reminiscent of
a connectionist model or a neural network.

This result can be easily extended, based
on Proposition 1, to the case in which each
phrase set has more than one elements. In
ihis case processing elements are arranged
in a 3~dimensional array as shown in Fig.9.
The bottom elements, node(i,i;p)’s, hold the
value of s(xj,). The node(i,j:p) calculates
the value of opt(i,j;p). The computation
rroceeds from the lower to upper layer just
as In the previous simpler case. Further
oxtension of this structure is also possible
50 that it can handle a general phrase lat-
Lice.

{. Related Works

The problem of selecting an appropriate
phrase sequence from a phrase lattice has
been treated in the field of Japanese word
vrocessing, where a non-segmented Japanese
lext spelled in kana character must be

converted into an orthographic style spelled
in kana and kanji. Several practical methods
have been devised so far. Among them, the
approach in [Oshima 86] is close in idea to
the present one in that it utilizes the
Japanese case grammar in order to disambi-
guate a phrase lattice. However, their
method is enumeration-oriented and some
kind of heuristic process is necessary to
reduce the size of the phrase lattice before
syntactic analysis is performed.

In order to disambiguate the result of
speech recognition, an application of de-
pendency analysis was attempted [Matsunaga
86, Matsunaga 87]. The algorithm used is a
bottom-up, depth-first search, and it is
reported that it takes considerable process-
ing time. By introducing a beam search
technique, computing time can be very much
reduced [Nakagawa 87], but with loss of
global optimality.

Perhaps the most closely related algo-
rithm will be (extended)CYK algorithm with
probabilistic rewriting rules [Levinson 85,
Ney 87, Nakagawa 87). In spite of the dif-
ference in the initial ideas and the formu-
lations, both approaches lead to similar
bottom-up, breadth-first algorithms based on
the principle of dynamic programming.

In Fig.2, if each phrase set has only one
phrase, and the value of between-phrase
penalty is 0 or 1, then the algorithm re-
duces to the conventional Japanese dependen-
cy analvzer [Hitaka 80J. Thus, the algorithm
presented here is a twofold externision of the
conventional Japanese dependency analyzer:
the value of between-phrase penalty can
take an arbitrary real number and it can
analyze not only a phrase sequence but a
phrase matrix and a phrase lattice in poly-
nomial time.

We have considered a special type of de-
pendency structure in this paper, in which a
modificant never precedes the modifier as is
normally the case in Japanese. It has been
shown that the algorithm can be extended to
cover & more general dependency structure
[Katoh 897.

The fundamental algorithm presented here
has been modified and extended, and utilized
for speech recognition [Matsunaga 88J.

8. Concluding Remarks
In the method presented here, the linguis-
tic data and the algorithm are completely

separated. The linguistic data are condensed
in the penalty function which measures the
naturalness of modifier-modificant relation
between two phrases. No heuristics has
slipped into the algorithm. This makes the
whole procedure very transparent.

The essential part of the algorithm is
execution of numerical optimization rather
than symbolic matching unlike conventional
parsers. Therefore it can be easily imple-
mented on an arithmetic processor such as
DSP (Digital Signal Processor). The parallel

315

and layered structure will fit LSI imple-
mentation.

An obvious limitation of this method is
that it takes account of only pair-wise
relation between phrases. Because of this,
the class of sentences which have a low
penalty in the present criterion tends to be
broader than the class of sentences which we
normally consider acceptable. Nevertheless,
this method is useful in reducing the
number of candidates so that a more sophis-
ticated linguistic analysis becomes possible
within realistic computing time in a later
stage.

A reasonable way of computing the penalty
for a phrase pair is yet to be established.
There seems to be two approaches to this
problem: a deterministic approach taking
syntactic and semantic relation between two
phrases into consideration, and a statisti-
cal one based on the frequency of co-occu-
rence of two phrases.

Acknowledgement
The author is grateful to the support of
Hoso Bunka Foundation for this work.

References

(Bellman 57] Bellman,R.: 'Dynamic Program-
ming', Princeton Univ. Press, 1957.

[Hashimoto 46] Hashimoto,S.: ‘'Kokugo-gaku

Gairon’, Iwanami, 1946.

(Hays 64] Hays.D.G.: 'Dependency Theory: A
Formalism and Some Observations’', Lan-
guage, Vol.40, No.4, pp.511-525, 1964.

[Hitaka 80] Hitaka,T. and Yoshida,S.: "4
Syntax Parser Based on the Case Dependency
and [ts Efficiency’, Proc. COLING'80,
pp.15-20, 1980.

[Katoh 89]) Katoh,N. and Ehara,T. "A fast
algorithm for dependency structure analy-
sis’, Proc. 39th Annual Convention IPS
Japan, 1989.

[Kohda 86] Kohda,M.: "An algorithm for
optimum selection of phrase sequence from
phrase lattice’ , Paper Tech. Group, IECE
Japan, SP86-72, pp.9-16, 1986.

[Levinson 85] Levinson,S.E.. ’'Structural
Methods in Automatic Speech Recognition’,
Proc. of IEEE, Vol.73, No.ll, pp.1625-
1649, 1985.

[Matsunaga 86] Matsunaga.S. and Kohda M.:
"Post-processing using dependency struc-
ture of inter-phrases for speech recogni-
tion', Proc. Acoust. Soc. Jpn. Spring
Meeting, pp.45-46, 1986,

[(Matsunaga 87] Matsunaga,S. and Kohda,M.:
"Speech Recognition, of Minimal Phrase Se-
quence Taking Account of Dependency Rela-
tionships between Minimal Phrases',
Trans.1EICE Vol.J70-D,No.11, pp.2102-2107,
1987.

[Matsunaga 88] Matsunaga,S. and Kohda M.:
"Linguistic processing using a dependency
structure grammar for speech recognition
and understanding', Proc. COLING'88,
pp.402-407, 1988.

316

[(Nakagawa 87] Nakagawa,S. and [Ito,T.
"Recognition of Spoken Japanese Sentences
Using Mono-Syllable Units and Backward
Kakari-Uke Parsing Algorithm’, Trans.
IEICE Vol.J70-D,No.12, pp.2469-2478, 1987.

[Nakagawa 87] Nakagawa.S "Unification of
Kakari-Uke Analysis and Context-Free
Parsing by CYK Algorithm for Continuous
Speech Recognition’', Proc. Acoust. Soc.
Jpn. Spring Meeting, pp.131-132, 1987.

[Ney 87] Ney,H.: 'Dynamic Programming Speech
Recognition Using a Context-Free Grammar’,
Proc. ICASSP'87, pp.69-72, 1987.

[Oshima 86] Oshima,Y., Abe, M., Yuura K. and
Takeichi,N. "A Disambiguation Method in
Kana-Kanji Conversion Using Case Frame
Grammar', Trans. IPSJ, Vol.27, No.T,
pp.679-687, 1986.

[Ozeki 86a] Ozeki,K.: 'A multi-stage deci-
sion algorithm for optimum bunsetsu se-
quence selection’, Paper Tech. Group, IECE
Japan, SP86-32, pp.41-48, 1986.

[0zeki 86b] Ozeki K.: 'A multi-stage deci-
sion algorithm for optimum bunsetsu se-
quence selection from bunsetsu lattice’,
Paper Tech. Group, IECE Japan, COMP86-47,
pp.47-5T7, 1986.

[Yoshida 72] Yoshida,S.: 'Syntax analysis of
Japanese sentence based on kakariuke rela-
tion between two bunsetsu’, Trans. IECE
Japan, Vol.J55-D, No.4, 1§72.

