
A New Parallel Algorithm for Generalized LR Parsing

Hiroald NUMAZAKI l[ozumi TANAKA
Department of Computer Science

Tokyo Institute of ~i~chnology
2--12-10ookayama Meguro-ku 'Ibkyo 152, Japan

A b s t r a c t

Tomita's parsing algorithm
[~Ibmita 86], which adapted the LR parsing al-
gorithm to context fl'ee grammars, makes use
of a breadth-first strategy to handle LR table
conflicts. As the breadth-first strategy is com-
patible with parallel processing, we can easily
develop a parallel generalized LR parser b~ed
on Tomita's algorithm [Tanaka 89]. However,
there is a problem in that this algorithm syn-
chronizes parsing processes on each shift a,:-
tion for the same input word to merge many
s t~ks :into Graph Structured Stacks (GSS). In
other words, a process that has completed a
shift action must wait until all other processes
have ended theirs --- a strategy that reduces
parallel performance. We have developed a
new parallel parsing algorithm that does not
need to wait for shift actions before merging
many stacks, using stream communication of a
concurrent logic programming language called
GIIC [Ueda 85]. Thus we obtain a parallel
generalized LR parser implemented in GHC.

1 I n t r o d u c t i o n

To provide an efficient parser tbr natural lan-
guage sentences, a parallel parsing algorithm
is desirable. As Tomita's algorithm is com-
patible with parallel processing, we can eas-
ily develop a parallel generalized LR parser
[Tanaka 89]. However, with respect to the per-
formance of the parallel parsing, one of the
defects of Tomita's algorithm is that it forces
many parsing processes to synchronize on each
shift action for the same input word. A pars-
ing process that has completed a shift action
must wait until all other processes have con>
pleted their shift actions as well; such a syn-

chronization strategy reduces the performance
of parallel parsing.

In this paper, we will present a new parallel
parsing algorithm which is a natural extension
of Tomita's [Tolnita 86]. Our algorithm can
achieve greater performance in parallel pars-
ing for natural language sentences.

There are two major differences between
Tomita's algorithm and ours. Initially, the
new algorithm does not make parsing pro-
cesses wait for shift actions to merge many
stacks with the same top state. The process
that has finished a 'shift N' action first can
proceed to the next actions until a reduce ac-
tion needs to pop the element 'N' from the
stack. If some other parsing processes carry
out the same 'shift N' actions, their stacks will
be merged into the position in which the first
process has placed an element by the 'shift N'
action.

Secondly, to avoid duplications of parsing
processes the new algorithm employs rl~ree
Structured Stacks (TSS) instead of Graph
Structured Stacks (GSS). The reason why we
do not use GSS is because it is rather compli-
cated to implement the GSS data structure in
the framework of a parallel logic prograrnming
language ,inch as GltC. The merge operation
of the stacks is realized by a GttC stream com-
munication mechanism.

In section 2 we explain generalized LR pars-
ing, in section 3 give a brief introduction to
GtIC, and in section 4 decribe our new parallel
generalized LR parsing algotihm. In section 5
we compare tile parallel parsing performance
of our algorithm with Tornita's.

1 3 0 5

~L

2 General ized LR Parsing Al-
gori thm

The execution of the generalized LR algorithm
is controlled by an LR parsing table generated
from predetermined grammar rules. Figure 1
shows an ambiguous English grammar struc-
ture, and Figure 2 an LR parsing table gener-
ated from Figure 1.

Action table entries are determined by a
parser's; state (the row of the table) and a
look-ahead preterminal (the column of the ta-
ble) of an input sentence. There are two kinds
of stack operations: shift and reduce opera-
tions. Some entries in the LR table contain
more than two operations and are thus in con-
flict. In such cases, a parser must conduct
more than two operations simultaneously.

The symbol 'sh N' in some entries indicates
that the generalized LR parser has to push a
look-ahead preterminal on the LR stack and
go to 'state N'. The symbol 're N' means that
the generalized LR parser has to reduce from
the top of the stack the number of elements
equivalent to that of the right-hand side of the
rule numbered 'N'. The symbol 'ace' means
that the generalized LR parser has success-
Nlly completed parsing. If an entry contains
no operation, the generalized LR parser will
detect an error.

The right-hand table entry indicates which
state the parser should enter after a reduce op-
eration. The LR ta.ble shown in Figure 2 has
two conflicts at state 11 (row no. 11) and ste~te

(1) S -+ NP, VP.
(2) S ~ S, PP.
(3) NP --. NP, PP.
(4) NP ~ det, noun.
(5) NP --* pron.
(6) VP --+ v, NP.
(7) PP --+ p, NP.

Fig.l: An Ambiguous English Grammar

12 for the 'p' column. Each of the conflicting
two entries contains a shift and a reduce opera-
tion and is called a shift-reduce conflict. When

parser encounters a conflict, it cannot deter-
mine which operation should be carried out
first. In our parser, conflicts will be resolved
using a parallel processing technique such that
the order of the operations in conflict is; of no
concern.

3 Brief Introduct ion to G H C

Before explaining the details of our algorithm,
we will give a brief introduction to GHC, typ-
ical statements of which are given in Figure 3.
Roughly speaking, the vertical }::~ar i,l a. GttC
statement (Fig.3) functions as a cut symbol of
Prolog. When goal 'a' is executed, a process
of statement (1) is activated and the body be-
comes a new goal in which 'b(Stream)' and
'c(Stream)' are executed simultaneously. In
GHC, this is cMled AND-parallel execution.
In other words, subprocesses 'b(Stream)' and

5
6
7
8
9
10
11
12

det noun pron v
shl sh2

sh5

shl sh2

shl sh2

p $ NP PP VP S
4 3

re5 re5 re5
sh6 acc

sh8 sh6
re4 re4 re4

re2 re2

re1 re1
re3 re3 re3
re7 sh6/re7 re7

sh6/re6 re6

11

12

7
I0 9

10
10

Fig.2: A LR Parsing Table obtained from Fig.1 Grammar

306 2

' c (S t rea ,m) ' are c r e a t e d by a p a r e n t process
'a' and they run in parallel. Note that the
definition of process 'c' in statement (3) is
going to instantiate the variable 'Stream' in
'c(Stre~m)' with '[a [Streaml]'. In such a
case the execution of process 'c' will be sus-
pended until 'Stream' has been instantiated by
process 'b(Stream)'. By the recursive process
,:'all in the body of definition (2), process 'b'
continues to produce the atom 'x' and places it
on stream. The atom 'x' is sent to process 'c'
by the GIIC stream communication; process
)c' continues to consume a tom 'x' on stream.

(1) a : - t r u e I
b (S t r e a m) ,

c (S t r e a m) .

(2) b (S t r e a m) : - t rue [
Stream=[x l R e s t],

b (Rest) .

(3) c([A[Streaml]):- true [
c (Streaml) .

Fig.3: TypicM Statement of GHC

tured Stacks (TSS) instead of Tomita's Graph
Structured Stacks (GSS). An example of TSS
is given in the form of a list data structure
in GHC. Consider the following generalized
LR parsing, using for the input sentence, the
grammar and the table in Figure 1 and Figure
2 respectively. After the parser has shifted the
word 'with', the following two stacks with the
same top state '6' will be obtained:

S e n t e n c e :

" I open the door with a key "

(1) top < [3 , s , 0]
(2) top < [6 , p , 1 2 , n p , 8 , v , 4 , n p , 0]

Fig.4: Two Stacks to be Merged

We will merge these two stacks and get the
following TSS:

(3) [6,p, [12,np,8,v,4,np,O],

[3 ,s ,0]]

Figure 5 shows an image of the TSS above.

4 N e w P a r a l l e l G e n e r a l i z e d L R

P a r s i n g A l g o r i t h m

q'he new parallel parsing algorithm is a.
~a.tural extension of Tomita's algorithm

_oml~.a 86] and enables us to achieve greater
paral]el performance. In our algorithm, if a
parsing sentence contains syntactic ambigui-
ties, two or more parsing processes will run in
parallel.

4:.1 Tree Structured Stacks

' lb avoid tile duplication of parsing processes,
the new algorithm makes use of Tree Struc-

4.2 Stack Operations on Stream

In order to merge the stacks, Tomita's algo-
rithm must synchronize the parsing processes
for shift operations, thereby reducing paral-
lel performance. "ib solve this problem, we
have developed an improved parallel general-
ized LR algorithm that involves no waiting for
shift operations before merging many stacks.
The new algorithm is made possible by a GHC
stream communication mechanism.

Through this stream communication mech-
anism, a process that has completed a 'shift
N' first has the privilege of proceeding to sub-
sequent actions and continuing to do so until
a reduce action pops an element with state 'N'

top
12 np 8 v - - - - ~ n P ~) - - (- 0 ~ b o t t o m ~ ~ - - ~

Fig.5 : A qYee Structured Stack

3 307

into the stack. If other parsing processes carry
out the same 'shift N' actions, their stacks will
be merged into the position in which the "priv-
ileged" process had, by the 'shift N' action,
inserted an element. The merging of stacks
is tlhus greatly facilitated by the GHC stream
communication mechanism.

To begin parsing, we will create a sequence
of !goal processes, namely p l , p 2 , . . . ,pn,p$,
each of which corresponds to a look-ahead
preterminal of an input sentence (referred to
hereafter as a parent process). The stack in-
formation is sent from process pl to process
p$ using the GtIC communication mechanism.
Each parsing process receives the TSS from its
input stream, changes the TSS in parallel ac-
cording to the LR table entry, and sends the
results as the output stream - - which in turn
becomes the input stream of the adjacent pro-
cess. The stream structure is as follows:

[Stackl,Stack2,...,Stackn] Stream]

where Stacki is a TSS like (3) o1" a simple
stack like (1).

Consider the case where a shift-reduce con-
flict occurs and the parent process produces
two subprocesses which create stacks (1) and
(2) (Fig.4). In order to merge both stacks,
Tornita's parser forces the parent process to
wait until the two subprocesses have returned
the stacks (1) and (2). Our algorithm at-
tempts to avoid such synchronization: even
though only one subprocess has returned stack
(2), the parent process does not wait for stack
(1), but generates the following stack struc-
ture and sends it on to the output stream
(which in turn becomes the input stream of

the adjacent process). The adjacent process
can then perform its own operations for the
top of stack (2) on the input stream. Thus the
new algorithm achieves greater parallel perfor-
mance than its predecessor.

Output Stream of Parent Process :

[[6,p I Tail] I Stream]

where '6,p' are the top two elements of the
stack (2).

Note that 'Tail' and 'Stream' remain unde-
fined until the other subprocess returns stack
(1). If the adjacent process wants to retrieve
'Tail' and 'Stream' after processing the top of
stack (2), the process will be suspended until
'Tail' and 'Stream' have been instantiated by
the rest of stacks (2) and (1).

This kind of synchronization is supported by
GItC. Let's suppose the adjacent process re-
ceives the above output stream from the pa.r-
ent process. Before the parent process has
generated stack (1), the adjacent process can
execute 5 steps for the top two elements of
stack (2) (see Figure 6). During the execu-
tion of the adjacent process, the parent pro-
cess will be able to run in parallel.

As soon as the parent process receives stack
(1) with the same top elements '6,p' of stack
(2), it instantiates the variables 'Tail' and
'Stream' and merges '6,p', getting the same
TSS shown in Figure 5:

T a i l : [[: t2 ,np ,8 ,v ,4 ,np ,O "1,
[3,s,O]]

Stream : []

We need to consider the case where the top
element of stack (1) is different from that of
stack (2). For example, suppose that stack (1)

State Symbol Action Stream

6
1
5
6

10

det
noun

$

np
$

sh 1

sh 5

re 4

goto ii

re 7

[[l,det,6,p I Tail] I Stream]
[[5,noun,l,det,6,p I Tail] I Stream]
[[6,p I Tail] I Stream]
[[ll,np,6,P I Tail] I Stream]
[Tail I Stream]

Fig.6 The Parsing Process with an Incomplete Stack

L - -

308 4

is [8 , p , 3 , s , o], then the variables ' T a i l '
and 'S t ream' will be instantiated as follows:

Tail = [12,np,8,v,4,np,O]
Stre~a = [[8,p,3,s,O]]

In this case, we have two simple stacks in the
stream.

5 C o m p a r i s o n o f P a r a l l e l P a r s -

i n g P e r f o r m a n c e

In this section, we will show by way of a simple
example that our algorithm has greater paral-
lel parsing performance than Tomita's origi-
nal algorithm. Consider the parallel parsing
of the input sentence " I open the door with
a key ", using a grammar in Figure 1 and a
table in Figure 2. As the input sentence has
two syntactic ambiguities, the parsing process
encounters a shift-reduce conflict of tile LR ta-
ble and is broken down into two subprocesses.
Figure 7 shows the state of the parsing process
and grammatical symbols which are put into
a stack. When the process has the state 12
and tile look-aheM preterminal 'p', the pro-
cess encounters a 'sh 6/re 6' conflict. Then it

is broken down into two subprocesses: the first
process performs the 'sh 6' operation and goes
to state 6, and the other performs the 're 6'
operation. The second process also goes to the
state 6 after performing 'goto 9','re l ' , 'goto 3',
and 'sh 6' operations. 'File processes that run
according to the simple parallel LR parsing
algorithm are shown in Figure 7(a).

We can see t h a t the two processes pe r fo rm

the same operations after performing the 'sh
6' operations. If we do not merge these kinds
of processes, we will face an explosion in the
number of processes. Tomita's algorithm (
shown in Figure 7(b)) can avoid the duplica-
tion of parsing processes by merging them into
one process. However, tile algorithm needs
a synchronization that decreases the number
of processes which are able to run in parallel.
On the other tiand, our algorithm (shown in
Figure 7(c)) does not require such synchro-
nization as long as these processes do not try
to reduce the incomplete part of a stack. In
this example, two processes run in parallel af-
ter a 'sh 6/re 6' conflict has occurred. Then,
an incomplete stack like [6 , p l T a i l] is cre-
ated, with tile upper process in Figure 7(c)

0 Shift Action ~_~ Reduce & Goto Action

Fig.7(a): A Simple P~allel LR Parsing

Fig.7(b): A Parallel Parsing Guided by Tomita's Algorithm

v% f<j
Fig.7(c): Our Parallel Parsing

5 309

performing the 'sh 1', 'sh 5', and 're 4' stack
operations while the lower process calculates
its incomplete part. After finishing the 'sh 6'
operation of the lower process, the incomplete
part ' T a i l ' will be instantiated and thus we
obtain the following tree structured stack:

[6,p, [12 ,np,8 ,v ,4 ,np ,0] ,
[3 , s , o]]

It is remarkable that our algorithm takes less
time to than either the simple algorithm or
Tomita's to generate the first result of parsing.
The reason is that our algorithm can analyze
two or more positions of an input sentence in
parallel, which is a merit when parsing with
incomplete stacks.

The complexity of our algorithm is identical
to that of Tomita's [Johnson 89]. The only
difference between the two is the number of
processes that run in parallel. So if we sim-
ulate the parsing of our algorithm and that
of Tomita's on a single processor, the time of
parsing will be exactly the same.

6 C o n c l u s i o n

We have described a new parallel general-
ized LR parsing algorithm which enables us to
achieve greater performance of parallel pars-
ing than Tomita's algorithm. Simulations in-
dicate that most processes run in parallel and
that the number of suspended processes is very
small, but the experiment must be carried out
using many processors. Fortunately, ICOT
(heMqua.rters of the Japanese fifth generation
project) has offered us the possibility of using
the Multi-PSI machine composed of 64 proces-
sors. We are now preparing to conduct such an
experiment to put our new parsing algorithm
to the test.

R e f e r e n c e s

[Aho '72] Aho,A.V.and Ulman,J.D.: The The-
ory o] Parsing, Translation, and Compiling,
Prentice-Hall,Englewood Cliffs,New Jersey
(1972)

[Knuth 65] Knuth,D.E.: On the translation o]
languages]rom left to right,Information and
Control 8:6,pp.607-639

[Johnson 89] Mark Johnson :The Computa-
tional Complexity of Tomita's Algorithm In-
ternational Workshop on Parsing Technolo-
gies, pp.203-208 (1989)

[Matsumoto 87] Matsumoto,Y.:A
Parallel Parsing System for Natural Lan-
guage Analysis, New Generation Comput-
ing, 1/ol.5, No. 1, pp.63-78 (1987)

[Matsumoto 89] Matsumoto,Y.:Natural Lan-
guage Parsing Systems based on Logic Pro-
gramming, Ph.D thesis of Kyoto University,
(June 1989)

[Mellish 85] Mellish,C.S.:Computer Interpre-
tation of Natural Language Descriptions,
Ellis Horwood Limited (1985)

[Nilsson 86] Nilsson,U.: AID:An Alternative
Implementation of DCGs, New Generation
Computing, 4, pp.383-399 (1986)

[Tanaka 89] Tanaka, H. and Numazaki,H.
:Parallel Generalized LR Parsing based on
Logic Programming International Workshop
on Parsing Technologies, pp. 329-338 (1989)

[Pereira 80] Pereira,F.and War-
ren,D.: Definite Clause Grammar for Lan-
guage Analysis-A Survey of the Formalism
and a Comparison with Augmented Tran-
sition Networks, Arti]. Intell, Vol.13, No.3,
pp.231-278 (1980)

[Tanaka 89] Tanaka, H. Numazaki,H.:Parallel
Generalized LR Parser (PGLR) based
on Logic Programming, Proc. of First
Australia-Japan joint Symposium on Natu-
ral Language Processing, pp. 201-211 (1989)

[Tonfita 86] Tomita,M.:Effieient Parsing]or
Natural Language, Kluwer Academic Pub-
lishers (1986)

[Tomita 87] Tomita,M.:
An EJ:ficien Augmented-Context-Free Pars-
ing Algorithm, Computational Linguistics,
Vol.13, Numbers 1-2, pp.31-46 (1987)

[Ueda 85] Ueda,K.:Guarded Horn Clauses,
Proc. The Logic Programming Conference,
Lecture Notes in Computer Science, 221
(1985)

310 6

