
Lexeme-based Morphology: A Computationally Expensive Approach
Intended for a Server-Architecture

Marc Domenig
Institut ftir Informatik der Universitfit ZiJrich

Winterthurerstr. 190, CH-8057 Zi.irich
domenig@ifi.unizh.ch

Abstract : This paper presents an approach to
computational morphology which can be considered as
being derived l¥om the two-level model but differs from
this substantially. Lexemes rather than formatives are
the most important entities distinguished in this
approach. The consequence is that a new formalism for
the specification of morphological knowledge is
required. A short description of a system called Word
Manager will outline the characteristics of such a
formalistn, the most prominent of which is that
different subformalisms for inflectional rules and word-
formation rules are distinguished. These rules are
applied separately though not independently and support
the concept of lexicalization. The primary advantage of
this is that the system can build up a network of
knowledge on how formatives, lexemes, and rules
depend on each other while individual lexemes are
lexicalized. Thus, the system will know the inflectional
forms of a lexeme, the destructuring of these forms into
formatives, how the lexeme has been derived or
composed if it is a word-fommtion, etc. This requires
much memory, yet, the phik)sophy behind the approach
is that lhe system runs as a server on a local area
network, so that an entire machine can be dedicated to
the task, if necessary.

1. Introduction

In recent years computational morphology has been
dominated by the so-called finite-state approach. The
discussion about this approach was reportedly started in
1981 by a presentation of Kaplan and Kay at an LSA
meeting in New York. it gained momentum after the
publ icat ion of Koskenniemi ' s thesis (Kosken-
niemi 1983), which introduced the widely acknowledged
two-level model. This model had several advantages:
one of them was that it could be implemented on
relatively small machines, i.e. it was extremely
economical and effective from a computational point of
view. As a result of this, it could be used and tested by
a large number of research groups. The original model
was modified in different directions in the course of the
following years. Bear, for instance, proposed to increase
the model's expressiveness by replacing the finite-state
framework of the two-level model's lexicon system by a
more power fu l , un i f i c a t i on -based fo rma l i sm
(Bear 86, 88). A similar proposal was conceived by
Russell, Pulman, Ritchie, and Black (1986). Kay
(1986/87) proposed to increase the formalism's
expressiveness in order to make it suitable for noncon-
catenative morphology. These and many other efforts -
also by Koskenniemi himself; see Kataja and Kosken~
niemi (1988) - were mainly directed towards an
improvement of the model's capacity to handle different

natural languages. An alternative approach was followed
in the project which will be described in the following:
here, the intention was not to maximize the system's
capacity to handle different languages but to improve
the original model's properties from the point of view
of database theory. There were two reasons for this:
firstly, our interest was limited to a restricted set of
languages - primarily German, English, French, and
Italian. Secondly, we felt that there was a great potential
for improvements of the two-level model if it were
redesigned on a somewhat 'larger' scale, i.e. for use on
an environment of highly powered workstations linked
by a local area network, and with design criteria derived
fi'om database theory.

According to our opinion, this latter claim proved to be
correct in many respects; during the past few years, a
cyclic prototyping process showed that the kind of
system resulting fi'om the application of database design
criteria had indeed a nmnber of advantages over the
original two-level model. Naturally, these advantages
had to be paid for, primarily in terms of size and
complexity: the system which eventually emerged from
this prototyping process, Word Manager. has therefore
only remote affinity With the two-level model (as well
as with most of the successor models that focussed on
increasing the capability of handling different natural
languages, for that matter). It is no longer 'small and
beautiful ' , running on practical ly any personal
computer, but complex and above all expensive as far as
its memory requirements are concerned. The primary
reason for this is that it follows what we like to call the
lexeme-based al)proach to computational morphology,
which we consider as an alternative to the so-called
formative-based approach followed by the two-level
model.
The distinction between these approaches will be the
focus of this paper. We will argue that the lexeme-based
approach is advantageous in many respects and should
therefore be considered as an alternative to the
formative-based approach under certain conditions. The
argument will proceed as follows: first, we will give an
explanat ion of the terminology chosen for the
alternatives. Then, we will proceed with a short
description of Word Manager - an exhaustive description
will be published in (Domenig 1990). The conclusion
will point out the main differences between the two
approaches.

2. Terminology

The two-level model is a typical representative of what
we call the formative-based approach to comptttational
morphology. In this approach, formatives are the basic
entities managed by the system. By formative we mean

1 7 7

a distributional segment of a word-form, independent of
whether or not it is also a morph. Essential ly, the
format ive-based approach considers computa t ional
morphology as a parsing problem, where the formatives
are the terminals of some kind of grammar formalism.
In contras t , the l e x e m e - b a s e d approach t reats
computational morphology not only as a parsing but
also as a database management and a knowledge
representation problem. Here, the basic entities managed
by the system are (morphological) lexemes, though the
not ion of f o r m a t i v e is known as wel l . A
(morpho log i ca l) l exeme roughly compr i s e s the
morphological knowledge represented by a traditional
dictionary entry: firstly, the knowledge which is directly
specified in the entry - which usually is an indication of
an inflectional class as well as information about
e tymology and der ivat ions based on the entry - ,
secondly, the knowledge that can be inferred from this
information by the interpretat ion of rules specif ied
elsewhere in the dictionary (usually in the introduction).
The latter typica l ly includes knowledge how the
lexeme's inflectional paradigms can be generated, and
how derivat ions and compounds can be built. The
objective of the lexeme-based approach, then, is to
provide,' a formalism which allows the formalization of
the morphological knowledge represented by dictionary
entries. This implies that the formal ism has to be
expressive enough to represent morphological lexemes
in the above sense. More specifically, it means that the
formalism must have the following capabilities:

• It must provide the means to formalize inflection in
a way which records

for formatives bow they have been or can
(potentially) be combined into word-forms,

for word-forms how they have been or can
(potentially) be structured into sequences, and
how these sequences have been or can be
associated with lexemes in such a way that the
system will know the ci tat ion form(s) and
inflectional paradigm(s) for each individual
lexeme.

• It must provide the means to formal ize word-
formation in a way which records for formatives
whether and how they

have been created by word-formations,

have been used in word-formations (in order to
create other formatives/lexemes),

can (potentially) be used in word-formations.

Undoubtedly, formalisms following the formative-based
approach do have some of these capabilities. Since they
lack the notion of a lexeme in the sense we have defined
it, however, they are not able to deal with all of them.
How 'the full funct ional i ty proposed here can be
provided will be outlined in the following description of
Word Mmmger.

3 . Word Manager

Word Manager d i s t ingu ishes two phases in the
knowledge specification process: a first phase where so-
called lexeme classes are specified and a second phase
where instances of these classes are specified. By
convention, the class specifications have to be processed
by the system (compiled) before the instances can be

made. Therefore, the fornmlism supported by Word
Manager can be considered to be split in two parts, a
notion which is supported by the fact that the system
distinguishes separate interfaces for the specification of
the c lasses and the instances. The first of these
interfaces is an interactive specification environment,
the second is an interprocess communication protocol
provided by an application which runs as a server on a
local area network (compare with Figure 5 shown
below). Both interfaces are described elsewhere in some
detail (Domenig 1988, 1990). Here, we will focus the
description on the formalism for the specification of the
lexeme classes. This formal ism is split into several
subformalisms, where these serve for the specification
of rules on the one hand, of formatives on tim other
hand. The fundamental types of rules are spelling rules,
inflectional rules, and word-formation rules. The
fundamenta l types of format ives are inflectional
foJwatives and word-fi)rmation formatives.

Spelling rules

The function of the spelling rules is similar to that of
the two-level rules in Koskenniemi 's two-level model.
They allow the formatives used for the construction of
word-forms to be defined as l inguistically motivated
abstract ions, so that the rules ensure that they are
mapped onto correct orthographic representations of
word-forms. The rules themselves are similar to those
in the two-level model as well, though not identical.
The main difference is that the rules in Word Manager
are applied when entries are made into the database - at
compile time, as it were - while the rules in the two-
level model are appl ied at run-time (by a finite-state
transducer). Thus, the analysis of word-forms is (at least
conceptually) faster in Word Manager than in the two-
level model, at the cost of increased space requirements
for the storage of the surface strings corresponding to
the lexical strings.

In./lectional rules

The inflectional rules serve the purpose of defining the
way in which inflectional formatives may be combined
into word-forms and how these word-forms may be
grouped into sequences defining what we have called
morphological lexemes. Each inflectional rule defines
one lexeme class where each class is distinguished by a
particular sequence of word-forms that will be defined
for each lexeme belonging to this class (the sequence of
word-forms of each lexeme class is part i t ioned into
subsequences of citation forms and paradigms). Thus,
the rule shown in Figure 1 will define the inflectional
forms "Massage" and "Massagen" for the lexeme with
the citation form "Massage", for instance.

Entries into the database may be considered as instances
of lexeme classes, i.e. each entry is an instance of one
particular lexeme class. Entries are made by thefiring of
inflectional rules in a particular mode. Notice that this
is the only way how entries can be made, which means
that the system controls that there are no individual
format ives or word- forms ' f loat ing around' in the
database. Instead, each format ive and word-form is
associated with at least one lexeme.

78 2

~D{ german:inflection:(RIRule NO-UMLAUT.+O/+[E]N)
c i t ~ J t i o n - f o r m s

(ICat NO-UMLAUT.M-ROOT)

perq~digms

(I C a t MO-UMLAUT.M-ROOT)

(l O a f MO-UML£UT.M-ROOT)

(I C a t MO-UMLFIUT,M-EMDIMG)

(ICat MO-UMLAUT.M-EMDIMG)

(ICat MO-UMLAUT.M-EMDIMG)

(I C a t M-SUFFIX)(Mum SG)(ICat SG+O)(Case MOM)

(I C a t M-SUFFIX)(Mum SG)(ICat SG+O)

(I C a t M-SUFFIX)(Num P L) (I C o t PL+[EIM)

Figure 1: hfftectional rule for a German class of nouns

--=D~ german:word-formation:(RIVFRule SUFFIII.AI-I'ACH-TO-ROOT) ~-FI-
productivity 20

~our 'ee

2 (WFCat SUFFIX)

t e r g e l a d d e d - f e a t u r e s (Gender M)
(RIRule MO-UMLAUT.+[E]S/+E)

I (I C a t M-ROOT)
2 (I C a t M-ENDI MG)

iiiiii@!!iiiii!iiJ

Figure 2: Word-formation rule for German noun derivations

Figure 3: Underspecified formatives representing noun stems

~ [- I ~ german:inflection:(Cat N):(ICat N-SUFFIX):(Num SG):(ICat SG+O)~-P- I =
fully specified IFornatives

"+" (Case MOM)
"4." (Case GEM)
"+" (Case DAT)
" + " (Case ACC)

.... @ @ i l i i i i i ,

german:inflection:(Cat N):(ICaI N-SUFFIX):(Num PL):(ICaI PL+[EIN) _
fully s p e c i f i e d IFormatives

"+en" (Case MOM)
"+en" (Case GEM)
"+en" (Case DAT)
"+an" (Case ACC)

Figure 4: Fully specified formativcs representing inflectional affixes

3 79

Word formation rules

The word-formation rules serve the purpose of defining
the way in which inflectional formatives of existing
lexemes and word- fo rmat ion format ives may be
combined into inflectional formatives of new lexemes.
When word-formation rules are fired, they will fire
inflect ional rules, thus instantiat ing new lexemes.
Figure 2 shows a rule which could be used to derive the
German noun "Masseur" from "Massage" . The
assumption made by this rule is ' that "Mass" is defined
as root, "age" and "eur" as ending and derivational affix,
respectively. A further, similar rule could be used for
the derivation of the verb "massieren" from "Massage".
Notice that the rule shown in Figure 2 is not realistic
in the sense that it is too simplistic, i.e. it does not
make use of the poss ib i l i t ies for genera l iza t ions
provided by the formalism. A descr ipt ion of these
features would require too milch space, though.

hflectional formatives

Inflectional formatives are lexical strings which are
associated with feature sets (sets of attribute value
pairs). They can be added to the database in two different
ways: either they can be 'hard-coded' into the system as
so-called fully specifiedformatives, or they can be added
by the instant iat ion of so-cal led underspecif ied
formatives. Underspecif ied formatives are formative
specifications where the strings are missing. If the user
wants to make an instance of such a formative, he has
to provide a string. This he can do in either of two
ways: by a direct specification or by the firing of a
word-formation rule.

The underspecif ied formatives are the key to how
lexemes can be entered into the database, because their
instantiation is the prerequisite for the inflectional rules
to be firable. More specifically: the strings needed for
the instantiat ion of the underspeci f ied format ives
matched by an inflectional rule are the knowledge that
has to be specified in order to make an instance of a
lexeme class. Thus, it is evident that the underspecified
fonnatives will typically be used for the representation
of stems of lexemes (see Figure 3), while the fully
specified formatives will typical ly be used for the
representation of inflectional affixes (see Figure 4).

Word-formation.lbrmatives

Word- format ion format ives are - like inf lect ional
formatives - lexical strings which are associated with
feature sets. Their typ ica l role is to represen t
derivational affixes (like the suffix "eur" in the example
above which is used for a noun to noun derivation).

Rule application

The application of the rules will take place at different
times and some of the rules can be applied in different
modes. The spelling rules are only fired when entries are
added to the database, i.e. when instances of lexeme
classes are created. This means that lexical strings will
be converted into surface strings, so that the system
will not have to apply the rules when entries are
retrieved by the analysis of orthographic representations
of word-forms; then, the system will parse on surface
strings only.

The inflectional rules are applied both when lexemes are
added to the database and when they - or parts thereof --
are retrieved. When lexemes are added, the rules are
applied in a generative mode which computes all the
word-forms which belong to an individual lexeme (this
is the point where the spelling rules are applied in order
to compute the surface strings corresponding to the
lexical strings). When lexemes are retrieved, the rules
can be applied in an analytical mode which allows the
iden t i f i ca t ion of l exemes on the bas is of .the
orthographic representation of individual word-forms.
Notice that once a lexeme has been identif ied, the
inflectional rule which is associated with it can be fired
in generative mode again in order to compute all the
word-forms which belong to the texeme (this can be
useful for i l lustrat ive purposes in a lex icographer
interface, for instance).

Like the inflectional rules, word-format ion rules are
both applied when lexemes are added to the database and
when they are retrieved. The modes for their application
are more d i f fe ren t ia ted , though: Word Manager
distinguishes two modes for their generative, and one
mode for their analytical application. The first of the
genera t ive modes is used for what we call the
lexicalization of complex lexemes. Such a lexicalization
will instantiate a new lexeme, where this instantiation
will have the effect that a future retrieval of the lexeme
will not require the firing of the word-formation rule
any more (but only the con'esponding inflectional rule).
The second of the generative modes is used for what we
call the generat ion of tentative entries, i.e. the
generation of lexemes which are licensed by the word-
formation rules. Since tile number of these tentative
entries is typica l ly infinite (because the rtdes will
typically be defined in a way which allows them to be
appl ied recurs ively) , this mode is used rarely and
primarily for illustrative purposes.

The firing of word-formation rules in analytical mode
allows the analysis of word-forms of tentatiw~ entries.
"]['his is not only useful for the ident i f ica t ion of
'unknown' (not lexical ized) lexemes but also for the
construction of a database, because tentative entries are
the ideal basis R)r the lexicalizat ion process: once a
tentative entry has been identif ied, the rule which
licenses the entry is known. This means that all we
have to do in order to lexicalize it is to fire that rule in
the first of the generative modes mentioned. Thus, it is
easy , for ins tance , to cons t ruc t a d e d i c a t e d
terminological dictionary while scantling through a text
corpus.

4. Word Manager databases

Knowledge represented in Word Manager databases is
accessed via the so-called database management system
(DBMS) over the local area network. The DBMS is a
stand-alone application intended to run as a server. A
typical usage of Word Manager in an NLP environment
is shown in Figure 5. This illustration shows that the
system is meant to be used by client applicat ions of
varied nature. The intention is that each of these clients
will manage its own database, where this contains the
knowledge the applicat ion requires in addition to the
knowledge provided by Word Manager. Given this

8 0 4

. . . . c I German French

/ specification of
lexeme instances

specification of / / ,a~
lexeme classes / i

I

F interactive / t *"
t.i specification : l DBMS i::i~:i ~ 1

environment (network server) }:~iii}ii~F~'" ~ ~ _.
i i :::i! i::ii~i ! ili ii::i ii:I ili::il; ii:Iii:I[:iiii:II \ ,,

I . . . ~ \ ""

compilation -I / \ \ "" \ ",

/ \ \
\

\

German French

lexicographer
interface

spelling
checker

~ hyphenation
program

" ~ text-to-speeChprogram

\

\ f machine
translation

program

t _ Y"

Word Manager: manages morphological
knowledge only

client applications: manage
non-morphological knowledge

themselves

Figure 5: Word Manager in an NLP environment

framework, the importance of lexemes is evident,
because the lexemes are the entities with which the
clients will associate their applicat ion-specif ic
knowledge: for every lexeme of a Word Manager
database, a client will have a corresponding entry
storing whatever it requires for its specific purposes.
In order to make such associations possible, Word
Manager provides so-called lexeme identll/i'ers in the
DBMS interface (where each of these identifies one
lexeme unequivocally).
The actual knowledge of a Word Manager database
comprises primarily the knowledge about a set of
lexemes. Of each lexeme, the system knows

• all inflectional forms, whereas it can identify the
lexeme on the basis of o r t hog raph i c
representations of its word-forms as well as
generate the citation form(s) and inflectional
paradigm(s) on the basis of an identified lexeme,

• the destructuring of word-forms into formatives,
, all word-formations which have been built on the

basis of the lexeme and all word formations which
can (potentially) be built on the basis of the
lexeme. If the lexeme is itself a word-formation
which has been instantiated by the firing of a rule
(lexicalized), the system knows that rule and the
lexeme(s) from which it has been derived.

This is not the whole story, of course. As pointed out
at the beginning of section three, Word Manager
distinguishes separate interfaces/'or the specification of
lexeme classes and instances. In Figure 5, the
interface for the specification of classes is represented

by the box cal led ' in teract ive speci f ica t ion
environment. ' The interface for the specification of
instances is represented by two boxes called 'DBMS'
and 'lexicographer interface,' respectively. The former
of these provides the interprocess communication
protocol on the network, the latter is an end-user
interface which technically is not a part of Word
Manager, but a client application. This means that a
Word Manager database not only knows a set of
lexemes but also how new instances of lexemes can be
created, and how existing lexemes can be modified or
deleted. The interface provided by the DBMS must
therefore not only offer functions for the analysis and
generation of word-forms, etc., but also the possibility
to view the formatives and rules, and the possibility to
fi're the rules for the creation of new entries.
The internal representation of a Word Manager
database is a large network which links all entities that
depend on each other - rules, lexeme class
specifications, instances of lexeme classes, formatives,
etc. Since entries are created by the firing of rules, the
system can indeed keep track of all dependencies. This
provides the possibility of creating an arbitrary
number of views on the knowledge (the interprocess
protocol allowing the computation of such views),
because the entities linked by references can be
combined in various ways. Thus, the knowledge can
be presented to the user in different ways, in arbitrary
levels of detail, for instance.

5 8 1

6. The prototype

The project which resulted in the design of Word
Manager was started at the beginning of 1986. Since
then, several prototypes were made, most of which
implemented parsers for various parts and versions of
the formalism, and the user interface for the
'interactive specification environment' shown in
Figure 5. In the earlier phases of the project, three
different machines were employed: the first was a
Sun 3/50, which was primarily used in conjunction
with the parser generator tools LEX and YACC. The
second was a Lisp machine of the Texas Instruments
Explorer family, which was used to prototype user
interfaces. The third was an Apple Macintosh II. This
machine became available towards the end of 1987,
when the design of both the formalism and the
'specification environment' were in a state which
suggested their full implementation. The following
two years were spent on this task, which resulted in a
prototype that includes about 16,000 lines of code
(most of it written in Object Lisp (ALLEGRO 1987),
an extension of Common Lisp). Notice that this
prototype does not include the DBMS, though it
provides the full functionality of the 'specification
environment;' since the operating system did not
provide., interprocess communication, it was impossi-
ble to realize the network architecture proposed in
Figure 5. In order to complete the system, we have
therefore switched back to a UNIX environment, i.e.
we are currently porting the prototype produced on
Macintosh IIs to Sun SPARCstations.

6. C o n c l u s i o n

Experience with the prototype of Word Manager has
shown that the lexeme-based approach to morphology
has advantages as well as disadvantages in comparison
to the formative-based approach. On the side of the
advantages, we claim that it is better suited for the
implementation of application independent repositories
of morphological knowledge, because a database
realized with Word Manager knows more about its
entries than a corresponding database realized with the
two-level model, for instance. Moreover, the fact that
entries are always made by the instantiation of lexeme
classes has the effect that the system can execute a
tight control over the consistency of the data. On the
side of the disadvantages, we must admit that a system
like Word Manager requires a much more powerful
machinery than a system like the two-level model. In
particular the storage requirements are quite formi-
dable. A second disadvantage concerns the system's
capability of handling different natural languages,
though this is probably a shortcoming of Word
Manager and not the lexeme-based approach in general.
In any case, Word Manager's formalism is certainly
not powerful enough to handle Finnish or Hungarian
adequately - not to speak of Semitic languages. It
might well be that some of the advantages of the
approach must be sacrificed if we were to design a
lexeme-based system which covers as many languages
as the two-level model.

To sum up: we believe that the lexeme-based approach
to computational morphology will be useful for many
NLP applications. In view of the computers available

today - and the future development to be expected on
the hardware market -, the drawback concerning the
powerful machinery required seems to be quite
unimportant. Finally, further research might even lead
to lexeme-based systems with formalisms that are
powerful enough to handle as many natural languages
as the systems following the formative-based
approach.

7. References

ALLEGRO (1987): Allegro Common Lisp for the
Macintosh, User Manual. Coral Software
Corp., Cambridge, MA, 1987.

Bear John (1986): "A Morphological Recognizer
with Syntactic and Phonological Rules." In
Proceedings of the l l th International
Conference on Computational Linguistics,
COLING-86, Bonn, August 25-29.

Bear John (1988): "Morphology with Two-Level
Rules and Negative Rule Features." In
Proceedings of the 12th International
Conference on Computational Linguistics,
COLING-88, Budapest, August 22-27.

Domenig Marc (1988): 'Word Manager: A System
for the Definition, Access and Maintenance of
Lexical Databases.' In Proceedings of the
12th International Conference on
Computational Linguistics, COL1NG-88,
Budapest, August 22-27.

Domenig Marc (1990): Word Manager: A System for
the Specification, Use, and Maintenance of
Morphological Knowledge. To be published
(probably by Springer).

Kataja Laura, Koskenniemi Kimmo (1988): "Finite-
state Description of Semitic Morphology: A
Case Study of Ancient Akkadian." In
Proceedings of the 12th International
Conference on Computational Linguistics,
COLING-88, Budapest, August 22-27.

Kay Martin (1986): Two-Level Morphology with
Tiers. Unpublished research paper, Xerox
Paid Alto Research Center.

Kay Martin (1987): "Nonconcatenative Finite-State
Morphology." In Proceedings of the Third
Conference of the European Chapter of the
Association ./br Computational Linguistics,
Copenhagen, April 1-3.

Koskenniemi Kimmo (1983): Two-Level Morpholo-
gy: A General Computational Model jor
Word-Form Recognition and Production.
Doctoral thesis at the University of Helsinki,
Department of General Linguistics, Publica-
tions No. 11.

Russell G. J., Ritchie G, D., Puhnan S. G., Black A.
W. (1986): "A Dictionary and Morphological
Analyser for English." In Proceedings of the
l l th International Conference on
Computational Linguistics, COI,1NG-86,
Bonn, August 25-29.

8 2 6

