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Abstract 
Complex categories are caracteristic of unification grammars as for 

example GPSG [Shieber86a]. They are sets of pairs of feature.s and 

values. The unification, which can be applied to two or more 

categories, is the essential operation. 

The papers of [Shieber85], [Barton85] and [Ristad86] deal with the 

influence of complex categories on the efficiency of the parsing 

algorithm. This is one problem from using complex categories, 

another one arises when using a constructive version of GPSG (see 

[Busemann/Hanensehild88] in this volume). Namely that the appli- 

cation of admissibility conditions, e.g. LP statements and FCRs 1, to 

a local tree t is prevented because particular feature values of eat- 

egories in t are not yet specified, but they will be instantiated later 

somewhere else in the complete tree. Similar problems are described 

• in [Karttunen86] for D-PATR. 

This work describes the latter problem and will present a solution 

working with computation, evaluation and propagation of 

constraints within local trees (depth 1). The constraint evaluation 

will reject local trees if the constraints of the subtrees of the 

daughters are violated. 

1 Introduction 
First of all some fundamentals of a constructive version of GPSG 

which has been developed within the projects K1T-NASEV and its 

successor KIT-FAST 2 will be described (for details see [Hanen- 

1 LP = Linear Precedence; FCR = Feature Co-oecmenee Restriction 

KIT-FAST (FAST = Functor-Argument Structure for Translation; KIT = 
Kilnstliche Intelligenz Lind Textvexsteben = Artificial Intelligence and Text 
Understanding) as well as ils predecessor KIT-NASEV (NASEV = Neue 
Analyse-und Syntheseveffahrm zur masehinellea 0bersetzang = New 
Metheds of Analysis and Synthesis fc~ Machine Translation) constitute the 
Berlin component of the complementary ~ h  project of EUROTRA-D, 
which reeeive~ gnmts by the Federal Minister for Research and Technology 
under eontra~t 1013211. 
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schild/Busemann88], [Keller87], [Busemann87] and [Weis- 

weber87]). The reader's familarity with the fundamental knowledge 

of GPSG as presented in [GKPS85] will be assumed. 

1.1 The Grammar Format 

The ID/LP format of the grammar allows the explicit formulation of 

generalizations about the partial order of the daughters of the ID 

rules via LP statements. ID rules are tuples of the form ((mother) ---) 

(daughters)), for example (S ~ {NP, VP}), where (daughters) is a 

multi-set of categories which can be dominated by the category 

(mother). Lexical rules are of the form ((mother) ---¢ (wordform)). 

LP statements are of the form '(categoryt) < (categorY2)', for 

example the LP statement NP < VP requires that the category NP 

must precede the category VP in a sequence of daughters of any 

local tree licensed by an ID rule of the grammar. 

For every grammar a set F = {f~, f2 . . . . .  fn} of syntactic features 

exists with I FI = n. The number 'n' of features can vary from 

grammar to grammar, but for a particular grammar it is constant. 

Each feature fi has its domain D(fi). A complex category C is an n- 

tuple with C ~ D(f 1) x D(f2) x ... x D(fn) and the position T of the 

tuple represents the value of the feature fi. 

Example : F = {N, Vr BAR, PER, PLU, GEN} 

position i feature fi domain D(f l) 

1 N {+,-} 

2 v {+,-} 
3 BAR 10,1,2} 

4 PER { 1,2,3 } 

5 PLU {+,-} 

6 CAS { nom,gen,dat, aec } 

The category C = [+N,-V,BAR 2,nom] will be represented as 

(+,-,2,X,_,nom). C is the category traditionally called a nominative 

NP. If  a feature Value of,a ea/tegory is not specified, like PER a~d 
/ /11 • / 

PLU in C, it will be noted as ~ variable 3. ~ e  value of ~ feature fl of 

3 A variable feature value will be noted as a capital letter (e.g. X, Y, Z) when the 
same variable value is needed at another place, otherwise it will be noted as '.. 



the category C can be expressed with C(fl), e.g. C(CAS) = n o m  or 

C(PER) = X. It is possible that a feature can have a category as its 

value, e.g. SLASH. 

In the following some predicates on feature values are used. They 

are 'spec', 'atom' and 'cat'. The semantics of them is as follows: 

spec(C(f)) ¢~ C(f) is specified either with an atom or a category 

atom(C(t)) ¢~ C(f)  is specified with an atom 

cat(C(f)) ¢:~ C(f) is specified with a category 

1.2 Fea tu re  lns t an t i a t ion  

The Feature Instantiation Principles 4 are not the subject of this 

paper. Only one thing needs to be said at this point, that is that the 

FIPs are not only regarded as filters for local trees as in [GKPS85], 

but in the constructive version of  GPSG they propagate values of 

features within a local tree from the mother  to the daughters and 

vice versa, or from one daughter to another if  this feature value is 

affected by one of the FIPs (i.e. it is a HEAD, FOOT or agreement 

feature; a brief outline of  the work which is done by the AP is given 

in section 2.1). In this case the FIPs are construction principles 

which propagate information from one point of a local tree to 

possibly many other points which require this information. In cases 

where a value is not specified (i.e. it is a variable), the variable is 

propagated. The FIPs are also filters for local trees and will reject 

local trees which have categories where the values of one of the 

features are not consistent. 

Before  discussing the Feature Co-occurrence Restrictions (FCRs) 

two definitions are necessary to be able to define legal categories. 

Definition: extension 

A category E is the extension of a category C (C ~ E) iff 

(i) V f e F: atom(C(f)) ~ atom(E(f)) A C(f) = E(f) 5 and 

(ii) V f e F: cat(C(f)) ::¢. cat(E(f)) ^ C(f) ~_ E(f) 

Definition: unifiable 

Two categories A and B are unifiable (A II B) ¢:~ 

V f ~ F: ~spec(A(f))  v ~spec(B(f))  v 

((atom(A(f)) A atom(B(t))) ~ (Aft) = B(f))) v 

((cat(A(f)) A cat(B(f))) ~ (Aft) ld B(f))) 

The FCRs in the constructive version of GPSG are not only 

predicates on categories, they are also modified to become more 

functional by instantiating variable feature values if necessary. FCRs 

are implications of  the form (n, A D B). 'n' is the number  of this 

FCR, 'A' is the condition category for the application of this FCR 

4 Ia the following they.are called FIPs. 1"he FIPs are the Foot Feature Principle 
(FFP), the Agreement,Principle (AP) and the Head Feature Convention (I-IFC). 
For detailed discussion of the FIPs see [Busemanng7], [Hauenschild/ 
Busemann881 and [Weisweber87]. 

5 ',,', 'v'. '-4, '~ '  and '~ '  are the logical operators 'and', 'or', 'not', 'equivalence' 
and 'implicatioff, respectively, 

and 'B' is the consequence category. This FCR is applicable to a 

category C if C is an extension of  A and, if so, C has to be unifiable 

with B. If  C and B are not unifiable the category C is not legal. 

Definition: legal 

A category C is legal ¢:~ 

V (n,A ~ B) E FCR: (A ~ C) v (A _E C A B 13 C) 

If  the FCRs are applied to the category C and an FCR (n, A D B) is 

applicable to C and the consequence category B is unifiable with C 

and at least one feature f exists where ~spec(C(f))  and spec(B(f)) 

(B ~ C), then all those values C(f) are instantiated with B(f) 

(C(f) := B(f)). The FCRs have to be applied to a category C until no 

feature values of C are instantiated by them any longer, because the 

instantiation may cause other FCRs to be applicable. 

1.3 The Admissibility of Trees  

To generate syntactic structures (trees) during analysis or synthesis, 

ID rules are mapped into local trees in which all categories are legal. 

This mapping is called a projection. 

Definition: projection 

The projection • ~ ID × LT is a relation from the set ID of ID rules 

to the set LT of local trees. A tuple (r,t) is an element of • ((r,t) e 

~ )  where r = (r', C0 --> {Cl ..... Cn}) and 

_/?\ 
iff it meets the condition ~(C i) = ~ with 0 _< i,j ~ n where the total 

one-to-one, onto function ~ maps the set {C o ... . .  C,~} of  categories 

of the ID rule r' into the set {C~ .. . . .  C, t } of categories of the local 

tree t: 

0: {Co ..... c . } - ~ { C 6  ..... c~} 
The function ¢p meets the following conditions: 

¢(C0) = C~ A ¢p(Ct) = q A 1 < i,j < n A 

V ~(Ck): 0 < k < n A ¢~(C k) is legal a (C k E_ O(Ck) ) 

When a local tree has been proved to be a projection of an ID rule, 

the FIPs are applied to it. Despite the fact that the projection already 

includes the application of the FCRs to the categories of a local tree, 

they still have to be applied everytime one of the FIPs (FFP, AP, 

HFC) has been applied to the local tree, because each of them may 

instantiate a feature value of a category of  the local tree and 

therefore another FCR may be applicable to that category. The l a s t  

check for admissibility is the application of the LP statements. The 

sequence of  the daughters of the local tree must not conflict with 

any LP statement of the grammar (it has to be LP-consistent). 

Before 'LP-consistency' can be defined, the transitive LP-relation 

(LP +) has to be defined. 

Definition: transitive LP.relation 

1) (Ci < Ca) ¢ LP =~ (121 ~ C2) E LP + 

2) (C 1 ~ C2) ¢ LP + A (C~ ~ C~) E LP ÷ A C~ ~_ C2 =* 

(C1 t C3) ¢ LP + 
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With the help of this definition we are able to define LP- 

consistenc~'. 

Deflnitloni LP.consistency 

A local tree t is LP-consistent with respect to a grammar with the 

transitive LP-relation ~ iff 

V CI,C]: 1 < ij < n ̂  ~ precedes ~ 

-~3 C[,Cj: C i ~ C[ A Cj ~_ q A (Cj ~: C I) e LP + 

In other words, when a category C[ precedes a category Oj in a local 

tree t, they must not conflict with the transitive LP-relation (C], and 

must not be extensions of two categories C I and Cj, respectively, 

where Cj must precede CI). 
Now the definition of the admissibility of trees can be given. 

Definition: admissibility of trees 

A tree is admissible iff all of its local trees are admissible. A local 

tree is admissible iff it is a projection of a lexical rule or iff it 

- is the projection of an ID rule and 

- satisfies all of the FIPs and 

- is LP-consistent. 

2 LP-Consistency and Legality 
The first chapter of this paper illustrates how to build up the 

syntactic structure (a tree) in the constructive version of GPSG, but 

it also sketches roughly the way this can generally be done in 

, unification grammars. First of all complex categories are assembled 

to form a local tree and subsequently the feature values of the 

categories are instantiated by different procedures (for example in 

GPSG by the FIPs and in the Lexical Functional Grammar (LFG) 

described in [Bresnan/Kaplan82] by the evaluation of the f- 

descriptions). The admissibility of those local trees is determined by 

some predicates (in GPSG by the LP statements and the FCRs and 

in LFG by existential constraints with the operator '=c' and the 

negative existential constraints with the special value 'none'). These 

predicates can only be applied when particular feature values are 

specified. But when the admissibility of a local tree is to be proved, 

it cannot be guaranteed that all feature values have been locally 

instantiated. In some cases it is possible that. a feature value is not 

locally instantiated rather that it is instantiated somewhere else in 

another local tree belonging to the complete tree and therefore the 

admissibility of a local tree is not a local matter anymore. 

In this chapter the problems which arise from checking the LP- 

consistency and the legality in the constructive version of GPSG are 

described in the sections 2.2 and 2.3 respectively. Section 2.4 briefly 

outlines the two possible solutions proposed by [Keller87]. But first 

of all a sample grammar is given to be used for examples. 

2.1 A Sample  G r a m m a r  

To illustrate the problems arising from checking the LP-consistency 

of a sequence of complex daughter categories and from ehecldng the 

legality of complex categories of a local tree, a sample grammar is 

given here. 
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The set of syntactic features is F = {fl, f2, f3}. A category is a triple 

C e D(f I) x D(f2) x D(f3). 

Features: f, D(f,) = {a,b,c,d,e} 

f2 D(f2) = {+'"* } 

f3 D(f3) = { 1,2,3} 

ID = { ((a,X,l) --~ {Co,Y,1), (c,Z,2)}), (I) 

((b,X,_) ~ {(d,Y,3), (e,*,1)}) } (2) 

Lexical rules: { ((e,_,_) --~ e), ((d~_,_) --~ d), 

((c,-,_) --~ cm), ((e,+J --~ cp) } 

LP = { (_,*,_) < (_,+,_), LP + = { (--,*,-) ~ (-,+~),. (1) 

(_,-,_3 < (_:,_) } (_,-,_) ~ C,*,-3, (2) 

C,-,_) ~ C,+,_) } (3) 

FCR = { (1, Co,-,_.) D (_,_,l)), (2, (d,+,_) D (_,_,2)) } 

Suppose that the feature f2 is an agreement feature and that a local 

tree t which is a projection of this ID rule has been constructed, then 

the Agreement Principle (AP) forces X = Y = Z and therefore the 

AP has to consider three cases 6: 

1) If at least two values are instantiated with different values then 

the AP has to reject t (thepredicative view of the F1Ps which is 

still preserved in the constructive version of GPSG). 

2) If at least one value is instantiated then the other variable values 

are instantiated with that value by the AP (propagation of 

instantiated feature values). 

3) If all values are not specified, i.e. they are variables, then the AP 

will identify all values with one variable (propagation of variable 

feature values). 

Whenever an admissible local tree t is a projection of ID rule (1), the 

values of the feature f2 (X, Y, Z) have to be identical and we can 

apply case (3) to the local tree t. 

2.2 ID/LP Specific Problems 

In this section only LP-consistency is considered and the legality of 

categories is ignored. In some cases there are categories of local 

trees which have feature values not yet specified when the LP- 

consistency has to be checked, and this possibly means that one or 

more (transitive) LP statements cannot be applied to the given 

sequence of daughters. 

There axe two strategies for processing natural language with ID/LP 

grammars ODLPG): 

1) The indirect method, where an IDLPG is translated into an equiv- 

alent context-free grammar (CFG) (see [Kilbury84]). 

2) The direct method, where the ID rules and LP statements are used 

directly during processing (see [Shieber84], [Kilbury84], [Dtrre/ 
Momma85], [Busemann87] and [Weisweber87]). 

No matter which method is used some problems arise. Firstly the 

6 For the sake of simplicity the AP of the constructive version of GPSG is not 
described in detail here (see footnote 4), 



problems in using the indirect method are described. Suppose ID 

rule (2) is to be translated into equivalent context-free rules. In order 

to do that, all permutations of the daughters have to be computed 

and the LP-consisteney of the resulting sequences has to be proved. 

Tiros the possible candidates for context-free rules are the following: 

(2a) ((b,X,_) ---> (e,*,l)(d,X,3)) and (2b) ((b,X,_) ---) (d,X,3)(e,*,l)) 

To prove the LP-consisteucy of (2a), (C 1 ~ Ca) must not be an 

element of LP +, where C1 ~ (d,X,3) and C a E (e,*,l). If such an 

element exists, the sequence of daughters in (2a) is not LP- 

consistent and has to be rejected. The only candidate from LP + is 

(2), but it cannot be applied because (_,~,_) ~ (d,X,3), and so (2a) is 

a valid context-free rule. But when X is instantiated with '-' later on 

during processing, the local tree tl which is licensed by (2a) has to 

be rejected because it violates the transitive LP statement (2). 

tl: /(b,-,_)....>.. 
(e,]el) (d=3) 

The same problem arises when the direct method is used. Suppose 

the string 'e d cm' is to be analysed, After the terminal symbol 'e' has 

been read, it .is reduced to (e,~,_). This category can be dominated in 

ID rule (2) b~canse (e,_,_) and (e,*,l) are unifiable. Then 'd' is read 

and reduced to (d,_,_) which can also be dominated in ID role (2) 

and it is unifiable with (d,X,3). Now tile daughters of ID rule (2) are 

complete and before they can be reduced to the mother category 

(b,X,1), the l,P-consistency of the sequence '(e,*,l)(d,X~) ' as above 

has to be proved. For the above mentioned reason ",his sequence is 

LP-consistent and is reduced to (b,X,1). This category can be 

dominated in ID rule (1) and up to this point the following partial 

tree t2 can be constructed. 

t'2: / ( b , X , ~ (  a'X' 1) (c--~c,X,2) (d ,ld,3) 
Every local tree in the partial tree t 2 is LP-consistent. Now the 

telxninal symbol 'era' is read and reduced to (c,-,_). This category is 

unifiable with (c,X,2) in t 2 and the local tree licensed by a lexical 

rule can be added to t a. Wlmn the two categories are unified 7 the 

variable X is instantiated with '-' everywhere in t 2. The result is that 

the sequence of daughters '(e,*,l)(d,-,3)' is not LP-eonsistent 

anymore, beeanse now it violates the transitive LP statement (2). If 

instead the next input symbol after the string 'e d' is 'cp', no 

problems with the LP-consistency arise. 

2°3 FCR Specific Problems 

Similar problems like those with the LP..consistency appear when 

the FCRs are applied to the categories of a local tree. Suppose that 

In the constructive version of GPSG, unification is used for tree formation. In 
the version of [GKPS85] the root category R of a subtree has to be identical 
with a &mghter category C of a local tree (i.e. R __. C and C ~ R). 

the partial tree t 2 has already teen constructed. All of its categories 

are legal. 

Suppose that the next input symbol after the string 'e d' is 'cp'. This 

terminal symbol is reduced to (c,+,_) which can be unified with 

(c,X,2) in t. 2 and the variable X is instantiated with '+'. Thus all 

variables X in t~ have to be replaced by '+' and the category (d,X,3) 

becomes (d,+,3). Now FCR 2 is applicable because (d,+,3) is an 

extension of the condition category (d,+,_) ((d,+,_) c (d,+,3)), but it 

is not unifiable with the consequence category (_,_,2) (-~((d,+,3) [J 

( . . . .  2))) and thus it is not legal and has to be rejected. 

2.4 Two Possible Solutions 

According to [Keller87], the problems described in the sections 2.2 

and 2.3 can be solved in two ways. One way would be to check the 

LP-consistency of all local trees and the legality of all categories 

after the entire tree for the input string has been constructed. The 

other way would be to restrict the grammar format and/or the FIPs. 

The disadvantage of the former solution is its inefficency. The 

checks have to be done in addition after the processing of the input 

string is terminated because some trees have not already been 

rejected, although it would have been possible to do so. 

The disadvantage of the latter solution is made obvious by two 

examples. The format of the categories, for example, can be 

restricted by assuring that the mother category in a local tree is fully 

specified, i.e. a feature must not have a variable as its value. This 

would involve a loss of the grammar's descriptive power. Another 

way would be to restrict the FIPs by assuring that they don't 

propagate variable feature values, which would involve GPSG 

losing some of its generality. 

3 Constraints 
In both cases (LP-consistency and legality) the problems are caused 

by categories of local trees which are not extensions of tile 

categories in the LP statements o1" of the condition categories in the 

FCRs, but which have been unifiable with them. This is the case 

when a feature of a category of the local tree has a variable as its 

value and the same feature value is specified in the corresponding 

category of the LP statements or the FCRs. 

This fact means that the LP statements or the FCRs are not locally 

applicable in some cases, and so the admissibility of the local trees 

can only be assured with certain constraints which can be fulfilled 

later on, when the variable is instantiated during processing. 

3.1 Computing Constraints from LP 

To compute the constraints resulting from the LP statements, the 

above mentioned cases have to be first identified. Suppose that the 

sequence 'A B' of categories is to be checked for LP-consisteney and 

an LP statement B":< A' exists where B [J B' and B' [~ B and A' ~_ A. 

This LP statement is not applicable to 'A B' because B' ~ B, though 

B' H B. This means that at least one feature f exists, where 

spec(B'(f))and --,spec(B(f)). Thus the sequence 'A B' is LP- 
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consistent under the constraint that B ( f i ) ,  B'(fi) for all features fi 

with the above mentioned condition, and since all values B(fl) for 

those features fl are variables (~spec(B(fi))) , they must not be 

instantiated with the values B'(fi) which are already specified. When 

the values B(fi) are instantiated by the FIPs or by the FCRs in the 

local tree, there is no problem in determining the admissibility. But 

when the variable feature values B(fi) are propagated to the mother 

by the FIPs, they can possibly be instantiated in another local tree 

and those variable values B(fi) have to be constrained. 

Computing the set of constrqints LP c 

When the LP-consistency of a sequence of daughters in a local tree t 

is checked for every pair of daughters Q, q ,  where 1 < i < j < n, the 

set LPc(i, j) of LP constraints is computed as follows: 

1) ~ (Cj ~ Ci) E LP+: Cj ~ ~jj A C i ~ C[ ~ t is not LP-consistent 

2) V (Cj ~: C i) ~ LP+: (CjLJ q A Cj ~ q) v (C~L] o, ̂ c~ ~ Cl) 
t is LP-consistent with the LP constraints: 

LPc(i,j) = { (Oj(f),Cj(f))l spec(Cj(f)) and ~spec(Oj(f)) } u 

{(Q(0,Ci(f))l spec(Ci(f)) and ~spec(~(f))} 

3) --~=I (Cj ~: C) ELF+: (Cj L] C} ̂  C~ IJ q) 
t is LP-consistent with LPc(i,j) = { } 

LPc(i,j) is a set of tuples (Vt,Vp) of feature values. V t is the variable 

feature ~,alue of a category o f  a local tree. Vp is the specified feature 

value of the LP statement which will become applicable to the 

corresponding daughters of the subtree if the values V t of all tuples 

in LPc(id) are specified and equal to their corresponding values Vp. 

In this case the subtree has to be rejected. 

The set of all LP constraints LPc(0) for the'local tree in which C~ is 

the mother category is 
¢1 

LPc(0) = {LPc(i,j)[ 1 < i < j < n} u ;L.) 4 eval_lp(LPc(i)) 

where eval_lp(LPc(i)) is the evaluation of the LP constraints of the 

subtree in which the daughter ~ is the root category. The set of LP 

constraints o f  a projection of a lexical rule is LPc(0) = {}, since 

lexical rules have only one daughter (a wordform). 

The evaluation 'eval_lp' 

The evaluation 'eval lp' is either defined or undefined (.1.). If it is 

undefined, the corresponding local tree is rejected, because one of 

the subtrees of the daughters of that local tree is not LP-consistent. 

1) eval_lp(LPc(i)) = .L ¢:~ 

3 C ¢ LPc(i): (V (Vt,V2) E C: spec(V 1) A spec(V 2) ^ V 1 = V2) 

2) eval_lp(LPc(i)) = LPc(i) - 

{C ~ LPc(i)l 3(V1,V 2) ~ C: spec(V 0 A spec(V2) A V 1 ~ V2} 

3) eval lp(LPc(i)) = {CI (C = C' - M) ^ C" ~ LPc(i) ^ C ¢ { } } 

where M = {(Vl,V2) [ spec(V 1) ^ spec(V 2) A V 1 = V2} 

The first case (1) means that if one set C of tuples exists in the set 

LPc(i) of one daughter of the local tree, where all values of all tuples 

are specified and equal, then an LP statement will be applicable 

somewhere in the subtree of this daughter, and it will reject the 

subtree because some sister categories in the subtree are not LP- 

consistent anymore. 
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The second case (2) removes all sets S of tuples from LPc(i ) of one 

daughter which include one tuple with two different specified 

values. This means that the LP statement which has caused the 

computation of S will not be applicable anymore. 

The third case (3) removes all tuples with two equally specified 

values from all sets of tuples in LPc(i) of one daughter, because they 

need not be evaluated for a second time. 

3.2 Computing Constraints from FCRs 

To compute constraints resulting from FCRs, the categories have to 

be identified which are not an extension of a condition category of 

an FCR, but unifiable with it. Suppose that the FCRs are to be 

applied to the category C, and that an FCR (n, A ~ B) exists 

where A [3 C and A ~ C. The FCR 'n' is not applicable to C. This 

may change if a feature value is instantiated. It is the same situation 

as in section 3.1, but here the computing of constraints is somewhat 

different, because the application of an FCR to a category may cause 

that another FCR will become applicable to that category. FCR 

constaaints only have to be computed when ~(B L] C), or B l_J C and 

B ~ C (the case ~(B H C) means that if the FCR will be applicable 

to C, it will reject C, and the second case means that if the FCR will 

become applicable to C, it will instantiate one or more features in C, 

but the category always remains legal with respect to this FCR). The 

case ~(B II C) is the crucial one, because the legality of the category 

C can only be assured with the constraint that the set of possibly 

applicable FCRs, with the above mentioned conditions on the 

consequence category, still have to be checked for applicability. 

Computing the set of  constraints FCR c 

For all categories C[ where 0 < i < n in a local tree t the set APP(i) of 

all numbers of FCRs which may still be applicable to Q is computed 

as follows: 

1) 3 (k,A D B) ~ FCR: A E Q A -~(B [3 C D =~ C I not legal 

2~V (k)A ~ B) ~ FCR: A L J q  ^ A ~  q A  

(-~(B L] q )  v ((B LJ CD ^ (B ~ q))) ~ q legal and k ~ AFP(i) 

3) V (k,A ~ B) ~ FCR: ~(A LJ q )  v (A _E C) ^ B II q )  

q is legal and APP(i) = { } 

The set of all FCR constraints FCRc(0) for the local tree in which C8 

is the mother category is 
11 

FCRc(0) = { (C8) APP(0)) } u .L) eval fcr(FCRc(i)) 

where eval fcr(FCRc(1)) is the evaluation of the FCR constraints 

from the subtree in which the daughter q is the root category. 

FCRc(0) is a set of tuples (Ci, APP(i)). Ci is a copy of a category of 

the subtree in which C 8 is the root category and APP(i) includes the 

numbers of all FCRs which may still be applied to C i if particular 

feature values of this category are going to be instantiated. The only 

new set APP in a local tree is computed from the mother) because 

the evaluation of the FCR constraints on the subtre~s of the 

daughters includes the application of the applicable FCRs to the 

daughter categories (because they are the root categories of the 

subtrees). Thus the remaining tuples of the daughters and their 

subtrees will be computed by the evaluation. The set of FCR 



constraints on a projection of a lexical rule is FCRc(0 ) = {(C~, 

APP(O))}. 

The evaluatim~ 'evaljcr' 

The evaluation 'eval for' is either defined or undefined (.L). If it is 

undefined, the con'esponding local tree is rejected, because one or 

more categories of  the subtrees of  the daughters of that local tree are 

not legal. 

1) eval fcr(FCRc(i)) = .L ¢=:, 3 (C,APP) ~ FCRc(i): k e APP ^ 

(k,A ~ B) e FCR ^ A c C ^ -,(B [J C) 

2) eval fcr(FCRc(i)) = {(C,M) I (M = APP - S) ^ 

(C,APP) e FCRc(i ) ^ M e { } } where 

S = {k[ (k,A ~ B) e FCR ^ (-~(AH C) v(A c_ C ^ B [J C))} 

The first case (1) means that if the set FCRc(i) of  a subtree of one 

daughter C[ includes one tuple (C,APP) in which the category C is 

not legal with respect to the FCR (k,A ~ B) where 'k' is in the set 

APP of  numbers of  FCRs, then the subtree has to be rejected, 

because the category C in this subtree is no longer legal. 

The second case (2) removes all the numbers 'k' o f  FCRs from the 

set APP of  all tuples in FCRc(i), where the FCR (k,A D B) is no 

longer applicable to the category C or where it has been successfully 

applied to the corresponding category. 

3.3 Evaluat ion and Propagat ion 

After a local nee t has been proved to be a projection of  an ID rule, 

all F1Ps are applied to t, the FCRs to its mother, and the set APP(0) 

of  the numbers of  all FCRs which possibly will be applicable to the 

mother, is computed. After that the FCR constraints on the subtrees 

of the daughters are evaluated, which means that all applicable 

FCRs are applied to the daughters and to all other categories of their 

stthtrecs. The remaining FCR constraints from the evaluation, and 

the FCR con:;traint (C~, APP(0)) on the mother, will then be 

combined to form the new FCR constraint set FCRc(0) on the 

gubtree in which C~ is the root category. The new FCR constraint set 

is propagated to the mother. 

Next the LP-.consistency of  the daughters has to be checked, and 

during this check the new LP constraints on the daughters are 

computed. These constraints are combined with the LP constraints 

resulting fl'om the evaluation of  the LP constraints on the subtrees of  

the daughters, to form the entire set of  LP constraints LPc(0) on the 

subtree in which C/~ is the root category which is then also 

propagated to the mother. 

4 Conclusion 
With this method of  constraint computation, evaluation and 

propagation," a new definition of  the admissibility of  trees is 

necessary. 

Definition: admissibility of trees 

A tree is adndssible iff all of its local trees are admissible and the 

evaluations 'eval fcr' and 'eval lp' of  constraints of  theroot  category 

are defined and both are the empty set {}. A local tree t is 

admissible iff it is a projection of a lexical rule or iff it 

- is a projection of  an ID rule with the FCR constraint (C~, APP(0)) 

on the mother C/~ and 

- satisfies all of  the FlPs and 

- is LP-consistent with the LP constraints LPc(i,j) on all daughters C[ 

and ~ which ,are propagated to the mother where 1 _< i < j < n and 

- the evaluation 'eval_fcr(FCRc(i))' of  every daughter C[ i sdef ined  

where 1 ~ i < n and their results are propagated to the mother and 

- the evaluation 'eval_lp(LPc(i))' of  every daughter C i is defined 

where 1 ~ i ~ n and their results are propagated to the mother. 

The consequence for the root category R of  an entire tree of  one 

input string of  a natural language will be the fact that all features fi 

of R, where ~spec(R(fi)), and where fl is needed for the evaluation 

of the constraints o f  the tree, have to be instantiated according to 

their domain D(fi) because such a tree represents a class of  

ambiguous solutions. After that the constraints on every tree of this 

class are evaluated and only the trees where FCRc(0 ) and LPc(0 ) are 

defined and their evaluation is { } are admissible. 
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