Feature Structures Based Tree Adjoining Grammars®

K. Vijay-Shanker

A. X. Joshi

Department of Computer and Information Sciences Department of Computer and Information Science

University of Delaware
Newark, DE 19711
USA

Abstract We have embedded Tree Adjoining Grammars (TAG) in a fea-
ture structure based unification system. The resulting system, Feature
Structure based Tree Adjoining Grammars (FTAG), captures the princi-
ple of factoring dependencies and recursion, fundamental to TAG’s. We
show that F'TAG has an enhanced descriptive capacity compared to TAG
formalism. We consider some restricted versions of this system and some
possible linguistic stipulations that can be made. We briefly describe a
calculus to represent the structures used by this system, extending on
the work of Rounds, and Kasper [Rounds et al. 1986, Kasper et al. 1986)

involving the logical formulation of feature structures.

1 Introduction

Tree Adjoining Grammars (TAG) were first introduced by Joshi, Levy,
and Takahashi [Joshi et al. 1975]). The first study of this system, from
the point of view of its formal properties and linguistic applicability, was
carried out by Joshi in [sthi 1985]. TAG’s have been used in providing
linguistic analyses; a detailed study of the linguistic relevance was done
by Kroch and Joshi in [Kroch et al. 1985).

In this paper, we show how TAG’s can be embedded in a feature struc-
ture based framework. Feature structure based Tree Adjoining Grammars
(FTAG) are introduced in Section 2, and is fbllowed by a comparsion of
the descriptive capacity of FTAG and TAG. A restricted version of FTAG
is proposed and some possible linguistic stipulations are considered. In
Section 3, we introduce a calculus, which is an extension of the logical
calculus of Rounds and Kasper {Rounds et al. 1986, Kasper et al. 1986]
allowing A-abstraction and application, in order to describe the structures
used in FTAG's. Finally, in Section 4, we summarize the work pteéentgd

in this paper.

1.1 Introduction to Tree Adjoining Grammars

Tree Adjoining Grammars (TAG), unlike other grammatical systems used
in computational linguistics, is a tree rewriting system. Unlike the string
rewriting formalisms which writes recursion into the rules that generate
the phrase structure, a TAG factors recursion and dependencies into a
finite set of elementary trees. The elementary trees in a TAG correspond

to minimal linguistic structures that localize the dependencies such as

agreement, subcategorization, and filler-gap. There are two kinds of el-.

‘ementary trees: the initial trees and auziliary {rees. The initial trees
-roughly (Figure 1) correspond to simple sentences. Thus, the root of an
initial tree is labelled by the symbol S. They are required to have a

frontier made up of terminals.

The auxiliary trees (Figure 2) correspond roughly to minimal recur-
sive constructions. Thus, if the root of an auxiliary tree is labelled by a
nonterminal symbol, X, then there is a node (called the foot node) in the
frontier of this tree which is labelled by X. The rest of the nodes in the

frontier are labelled by terminal symbols.

1This work was partially supported by NSF grants MCS-82-19116-CER, DCR-84-
10413,ARO grant DAA29-84-9-0027, and DARPA grant N0014-85-1{0018

714

University of Pennsylvania
Philadelphia, PA 19104

USA
S -
S NP/ /VP
DET/ \N v \NP

/%)\ l I ! DET \N
Z the man met |

I |
3 the woman

u
1

Figure 1: Initial Trees

' \ 2 |
¢ \ footnode left

Figure 2: Auxiliary Trees

We will now define the operation of adjunction. Let y be a tree with
a node labelled by X. Let 8 be an auxiliary tree, whose root and foot
node are also labelled by X. Then, adjoining 8 at the node labelled by
X in 7y will result in the tree illustrated in Figure 3. In Figure 3, we also

S

left

Figure 3: The operation of adjoining

show the result of adjoining the auxiliary tree g; at the subject NP node
of the initial tree ;.
So far, the only restriction we have placed on the set of auxiliary trees

that can be adjoined at anode is that the label of the node must be the

same as the label of the root (and the foot) node of the auxiliary tree.
Turther restriction on this set of auxiliary trees is done by enumerating
with each node the subset of auxiliary trees which can be adjoined at that
node. This specification of a set of auxiliary trees, which can be adjoined
at a node, is called the Selective Adjoining (SA) constraints. In the case
where we specify the empty set, we say that the node has a Null Adjoining
(NA) constraints. It is possible to ingist that adjunction is mandatory at
a node. In such a case, we say that the node has an Obligatory Adjoining
(OA) constraint.

A more detoiled description of TAG’s and their linguistic relevance

may be found in [Kroch ct al. 1985].

1.2 Feature Structure Based Grammatical Systems

Several different approaches to natural language grammars have devel-
oped the notion of feature structures to describe linguistic objects. In
order to capture certain linguistic phenomena such as agrcement, sub cat-
egorization, ete., a number of recent grammatical systems have added,
on top of a CF(G skeleton, a feature based informational element., Ex-
ample of such systems (see [Shieber 1985a]) include Generalized Phrase

Structure Grammars (GPSG), Lexical functional Grammars (LFG), and
Head-driven Phease Structure Grammars (HPSG). A feature structure

(as given below) is essentially a set of attribute-value pairs where values

may be atomic symbols or another feature structure.

cat: S

- cat: NP
. agr: (5]
cat : VP
2: agr: [=]
subject 1 [v]

The notation of the co-indexing box ([<]in this example) is nsed to ex-
press the fact that the values of two subfeatures are the same. Feature
structures with co-indexing hoxes have also been called reentrant feature
structures in the literature.

We can define a partial ordering, [=, on a set of feature structures
using the notion of subsumption (carries less information or is more gen-
eral). Unification of two feature structures (if it is defined) corresponds
to the feature structure that has all the information contained in the
original two feature structures and nothing more. We will not describe
feature structures any further (see [Shieber 1985a] for more details on fea-
turc structures and an introduction to the unification based approach to

grammars).

2 Feature Structure Based Tree Adjoining
Grammars (FTAG) .

The linguistic theory underlying TAG’s is centered around the factor-
ization of recursion and localization of dependencies into the elementary
trees. The “dependent” items usually belong to the same elementary
tree?. Thus, for example, thé predicate and its arguments will be in the
same tree, as will the filler and the gap. Our main goal in embedding
TAG’s in an unificational framework is to capture this localization of de-
pendencies. Therefore, we would like to associate feature structures with
the elementary trees (rather than break these trees into a CPG-like rule
based systems, and then use some mechanism to ensure only the trees

produced by the TAG itself are generated®), In the feature structures

2 is imes possible for “dependent” items to belong to an.elementary tree

and the immediate auxiliary tree that is adjoined in it.
3Such a scheme would be an alternate way of embedding TAG's in an unificational

framework. However, it does not capture the linguistic intuitions underlying TAG's,

and loses the attroctive feature of localizing dependencies.

associated with the elementary trees, we can state the constraints among
the dependent nodes dircctly. Hence, in an initial tree corresponding to
a simple sentence, we can state that the main verb and the subject NP
(which are part of the same initial tree) share the agreement feature.
Thus, such checking, in many cases, can be precompiled (of course only

after lexical insertion) and need not be done dynamically.

2.1 General Schema

In unification grammars, a feature structure is associated with a node
in a derivation tree in order to describe that node and its realtion to
features of other nodes in the derivation tree. In a TAG, any node in an
clementary tree is related to the otlier nodes in that tree in two ways.
Feature structures written in FTAG using the standard matrix notation,

describing a node, 7, can be made on the basis of;

1. the relation of 7 to its supertree, i.c., the view of the node from the

top. Let us call this feature structure as ¢,,.

2. the relation to its descendants, i.c., the view from below. This

feature structure is called b,.

Note that both the ¢, and b, feature structure hold of the node 5. In
a derivation tree of a CFG based unification system, we associate one
feature structure with a node (the unification of these two structures)
since both the statements, ¢ and b, together hold for the node, and no
further nodes are introduced between the node'’s supertree and subtrec.
This property is not true in a TAG. On adjunction, at a node there is
no longer a single node; rather an auxiliary tree replaces the node. We
believe that this approach of associating two statements with a node in
the auxiliary tree is in the spirit of TAG's because of the OA constraints
in TAG’s. A node with OA constraints cannot be viewed as a single
node and must be considered as something that has to be replaced by
an auxiliary tree. ¢ and b are restrictions about the auxiliary tree that
must be adjoined at this node. Note that if the node does not have OA
constraint then we should expect ¢ and b to be compatible. For example,
in the final sentential tree, this node will be viewed as a single entity.
Thus, in general, with every internal node, %, (i.e., where adjunction
could take place), we associate two structures, ¢, and b,. With each

terminal node, we would associate only one structure®.

K

Tigure 4: Feature structures and adjunction

41t is ible to allow adjuncti at nodes ding to pre-lexical items.

Tor example, we may wish to obtain verb-clusters by adjunctions at nodes which are
labelled as verbs., In such a case, we will have to associate two feature structures with

pre-lexical nodes too.

715

Let us now consider the case when adjoining takes place as shown in
the figure 4. The notation we use is to write alongside each node, the
t and b statements, with the ¢ statement written above the b statement.
Let us say that tyo01,0r00t 80d t100t,b100: are the ¢ and b statements of
the root and foot nodes of the auxiliary tree used for adjunction at the
node 7. Based on what ¢ and b stand for, it is obvious that on adjunction
the statements t, and ¢,.40¢ hold of the node corresponding to the root of
the auxiliary tree. Similarly, the statements b, and b7o0r hold of the node
corresponding to the foot of the auxiliary tree. Thus, on adjunction, we
unify 2, with tyoer, and by with by,oe. In fact, this adjunction is permissible
only if t,05¢ and 1, are compatible as are bsoor and by,. If we do not adjoin
at the node, n, then we unify ¢, with by. At the end of a derivation, the
tree generated must not have any nodes with OA constraints. We check
that by unifying the ¢ and b feature structures of every node.. More details
of the definition of FTAG may be found in [Vijayashanker 1987)].

We now give an example of an initial tree and an auxiliary tree. We
would like to note that, just as in a TAG, the elementary trees which
are the domain of co-occurence restrictions is available as a single unit
during each step of the derivation. Thus, most of these co-occurence
constraints can be checked even before the tree is used in ‘a derivation,
and this checking need not be linked to the derivation process.

2.2 Unification and Constraints

Since we expect that there are linguistic reasons determining why some
auxiliary tree can be adjoined at a tree and why some cannot, or why some
nodes have OA constraint, we would like to express these constraints in
the feature structures associated with nodes. TFurther, as described in
Section 2.1, adjunctions will be allowed only if the appropriate feature
structures can be unified. Thus, we expect to implement the adjolning
constraints of TAG’s simply by making declarative statements made in
the feature structures associated with the nodes to ensure that only the
appropriate trees get adjoined at a node. '

The adjoining constraints are implemented in FTAG as follows. No-
tice, from Figure 4, t, and #,00t, and b, and b;,,; must be compatible for
adjunction to occur. We hope to specify some feature-values in these ¢, b

statements to specify the local constraints so that

1. if some auxiliary tree should not adjoined at a node (because of its
S A constraint) then some unification involved (t, with tys0¢, or byoo

with b,) in our attempt to adjoin this auxiliary tree will fail, and

2. if a node has OA constraint, we should ensure that an appropriate
auxiliary tree does get adjoined at that node. This is ensured if ¢,

is incompatible with b,.

The example, given in Figure 7, illustrates the implementation of both
the OA and SA constraint. The view of the root node of « from below
suggests that b statement for this node makes the assertion that the value

" of the tens;z attribute is — (or untensed). However, the ¢ statement should

assert tense : + (since every complete sentence must be tensed)®. Thus,
an auxiliary tree whose root node will correspond to a tensed sentence and

whose foot node will dominate an untensed sentence can be adjoined at

this node. Therefore, only those auxiliary trees whose main verb subcate-

5¢ statement is more complicated than just “view from the top”. ¢ statement is
a statement about the node while viewing the node from the top, and hence is a
statement concerning the entire subtree below this node (i-¢., including the part due
to an auxiliary tree adjoined at the node), and how it constrains the derivation of
the nodes which are its siblings and ancestors. b remains the same as before, and
is the statement about_lhis node and the subtree below it, without considering the

adjunction at this node.

716

S /S\@e.w]
/\ NP VP
NP VP l
| j n v gl tense:-]

PRO to leave John tries

Figure 6: Ilustration of implementation of SA and QA constraints
gorizes for an untensed sentence (or an infinitival clause) can be adjoined
at the root node of this initial tree. This shows why only auxiliary tree
such as B can be adjoined, whereas an auxiliary tree corresponding to
John thinks S can not be adjoined since the verb thinks subcategories for
a tensed sentellcé. The example also serves to illustrate the implementa-
tion of OA constraint at the root of «, since the ¢ and b feature structures

for this node are not unifiable.

2.2.1 Comments on the Implementation of Constraints in FTAG

In the TAG formalism, local constraints are specified by enumeration.
However, specification by enumeration is not a linguistically attractive
solution. In FTAG we associate with each node two feature structures
which are declarations of linguistic facts about the node. The fact that
only appropriate trees get adjoined is a corollary of the fact that only
trees consistent with these declarations are acceptable trees in FTAG. As
a result, in a FTAG, constraints are dynamically instantiated and are
not pre-specified as in a TAG. This can be advantageous and useful for
economy of grammar specification. For example, consider the derivation
of the sentence
What do you think Mary thought John sew

In the TAG formalism, we are forced to replicate some auxiliary trees.
Consider the auxiliary tree 8; in the TAG fragment in Pigure 7. Since
the intermediate phrase what Mary thought John saw is not a complete
sentence, we will have to use OA constraints at the root of the auxiliary
tree B;. However, this root node should not have OA constraints when it

is used in some other context; as in the case of the derivation of
Mary thought John saw Peler

We will need another auxiliary tree, f2, with exactly the same tree struc-
ture as (; except that the root of B, will not have an OA constraint.
Further, the root nodes in «; and az have SA constraints that allow
for adjunction only by 8 and f; respectively. As seen in the Figure 8,
corresponding to the FTAG fragment, we can make use of the fact that
constraints are dynamically instantiated and give only one specification
of B1. When used in the derivation of
What do you think Mary thought John saw

troot inherits the feature inverted : 4- which it otherwise does not have,
and by,o; inherits the feature inverted : —. Thus, the node which corre-
sponds to root of 81, by the dynamic instantiation of the feature structure,
gets an OA constraint. Note that there will not be any OA constraint in

nodes of the final tree corresponding to

What do you think Mary thought John saw.

Also, the root of the auxiliary tree, corresponding to Mary thought S,
does not get OA constraint, when this tree is used in the derivation of

the sentence

Mary thought John saw Peter.

s 5¢83)
I NR Ne

Mary. \ g

| S
caw @ thaught
AUX /,S\\
s do NlP /V“\ 8(83}
/\\\
NP up 'i v NP VP
think
Jo‘hn v NP ™ Mary v 8
ET: 10 Patar thavght
Figure 7: A TAG fragment
/5\\ 8 ¢ inverted:+)
~ i .
comp \S[Iﬂllﬂl'tﬂd.f] ALY s
invertad:-]
P Lo
wh NP \'2:] ‘ /\
you v s[Invano«i:-]
Jdahn v NP
l I think
saw a s
NP e

Mary v 8

|

t haught
Figure 8: An FTAG fragment

9.3 Some Possible Linguistic Stipulations in FTAG

In this section, we will discuss some possible stipulations for a FTAG
grammar. However, at this stage, we do not want to consider these stip-
ulations as a part of the formalism of FTAG. First, some of the linguistic
jssues pertaining to t.hf:se stipulations have not yet been settled. Bec-
ondly, our pﬁmary coﬁcem is'to ap;}cify/ the FTA(/; fom>alism. Further,
if the formdlista has td}p incorporate (thede d‘ltip‘(ulatii\)ns, it{ can be done so,
without ;ilté‘ring the n&‘echa,nism sigkiﬁint\y.

The curfent linguidtic theory uﬁ_derl\ying' TAG’s assumes that every
foot, node has 1 NA constraint. The justification of this stipulation is

isimilar to the projection principle in Chomsky’s' transformation theory.
't is appealing to state that the adjunction operation does not alter the
:grammatical relations defined by the intérmediate tree structures. For

Ipxample, consider the following derivation of the sentence

Mary thought John saw Bill hit Jill.
If the derivation results in the intermediate tree corresponding to Mary
thought Bill hit Jill, then we would expect to obtain ‘the relation of Mary
thinking that ”Bill hit Jill”. This relation is altered by the adjunction at
the node corresponding to the foot node of the.auxiliary tree correspond-
ing to Mary thought §.
If we wish to implement this stipulation, one solution is to insist that

only one F-V statement is made with the foot node, i.e., the £y, and

bsoot are combined. The definition of adjunction can be suitably altered.

The second stipulation involves the complexity of the feature structure
associated with thc.nodes. So far, we have not placed any restrictions on
the growth of these feature structures. One of the possible stipulations
that are being considered from the point of view of linguistic relevance
is to put a bound on the information content in these feature structures.
This results in a bound on the size of feature structures and hence on
the number of possible feature structures that can be associated with a
node. An I'TAG grammar, which incorporates this stipulation, will be
equivalent to a TAG from the point of view of generative capacity but
one with an enhanced descriptive capacity.

Unbounded feature structures have been used to capture the subcat-
‘egorization phenomenon by having feature structures that act like stacks
(and hence unbounded in size). However, in TAG’s, the clementary trees
give the subcategorization domain. As noted earlier, the elements sub-
categorized by the main verb in an elementary tree are part of the same
elementary trce. Thus, with the feature structures associated with the
elementary trecs we can just point to the subcategorized elements and do
not need any further devices. Note, that any stack based mechanism that
might be needed for subcategorization is provided by the TAG formalism
itself, in which the tree sets generated by TAG’s have context free paths
(unlike CFG’s which have regular paths). This additional power provided
by the TAG formalism has been used to an advantage in giving an account

of West Germanic verb-raising [Santorini 1986).

3 A Calculus to Represent FTAG Gram-

mars

‘We will now consider a calculus to represent FTAG’s by extending on the
lfogical formulation of feature structures given by Rounds and Kasper [Rou
Kasper et al. 1986]. Feature structures in this logic (henceforth called R-
'K Jogic) are represented as formulae. The set of well-formed formulae in

this logic is recursively defined as follows.

ex= NIL
Tor
a
l:ey
ey ANeg
e Vey

{plawwpn}

where a is an atomic value, ¢1,€z are well-formed formulae. NIL and
iITOP cf)nvey “no in{ormation" and “nconsistent information” respec-
gi{wely. Each pi represents. a path of the form iy : L2t ..t bin; 1€~
,spectivel'y. This formula is interpreted as py = ... = Pn, and is used to
iexpress reentrancy.

Our representation of feature structures similar to the R-K logic’s
representation of feature structures and differs only in the clause for reen-
itrancy. Given that we want to represent the grammar itself in our calcu-
Jus, we can not represent reentrancy by a finite set of paths. For example,
suppose we wish to state that agreement features of a verb matches with
that of its subject (note in a TAG the verb and its subject are in the same
elementary tree), the two paths to be identified can not be stated until
we obtain the final derived tree. To avoid this problem, we use a set of
equations to specify the reentrancy. The set of equations have the form
&given by &; = ¢ for 1 < i < n, where zy,...,%n 2re variables, e1,...,&n

jare formulae which could involve these variables.

717

For example, the reentrant feature structure used in Section 1.2, is

represented by the set of equations

z=cat :SAL:yA2:(cat: VP Aagr: zAsubject:y)
‘y=cal: NPAagr:z

We represent a set of equations, #; = ¢; for 1 <i<n as
TeC < Ly oy Ty DL €1y ,80 >

Let us now consider the representation of trees in FTAG and the
feature structures that are associated with the nodes. The elementary
feature structure associated with each elementary tree encodes certain
relationships between the nodes. Included among these relationships are
the sibling and ancestor/descendent relationships; in short, the actual
structure of the tree. Thus, associated with each node is a feature struc-
ture which encodes the subtree below it. We use the attributes { € A to
denote the ¥ child of a node.

To understand the representation of the adjunction process, consider
the trees given in Figure 4, and in particular, the node 1. The feature
structure associated with the node where adjunction takes place should
reflect the feature structure after adjunction and as well ag without ad-

_junction (if the constraint is not obligatory). Further, the feature struc-
ture {corresponding to the tree structure below it) to be associated with

the foot node is not known but gets specified upon adjunction. Thus, the
bottom feature structure associated with the foot node, which is by,e¢ be-
fore adjunction, is instantiated on adjunction by unifying it with a feature
structure for the tree that will finally appear below this node. Prior to
adjunction, since t'.his. feature structure is not known, we will treat it as,
a variable (that gets instantiated on adjunction). This treatment can be;
obtained if we think of the auxiliary tree as corresponding to functions
over feature structures (by A-abstracting the variable corresponding toj
the feature structure for the tree that will appear below the foot node).
Adjunction correponds to applying this function to the feature structure
corresponding to the subtree below the node where takes place.

We will formalize representation of FTAG as follows. If we do not|

consider adjoining at the node n, the formula for ¥ will be of the form
(tpgAbyALL)
Suppose the formula for the auxiliary tree 3 is of the form

(troot Al bjoot)

the tree obtained after adjunction at the node n will then be represented

by the formula
(o ty Altroot A bpoot) Aby A L)

We would like to specify one formula with the tree v, and use appropri-
ate operation corresponding to adjunction by 8 or the case where we do
not adjoin at 1. Imagining adjunction as function application where we
‘consider auxiliary trees as functions, the representation of 4 is a function,
say fg, of the form

A.f'(tlrmn Ao (bfobt A !))

To allow the adjunction of 3 at the node n, we have to represent y by

(o ty ASp(Bp)A..)

Then, corresponding to adjunction, we use function application to obtain
the required formula. But note that if we do not adjoin at », we would

like to represent ¢ by the formula
CotaAbg AL
which can be obtained by representing v by

718

’ (- ty AL ALY
where I is the identity function. Similarly, we may have to attempt ad-

junction at 7 by any auxiliary tree (SA constraints are handled by success
or failure of unification). Thus, if f1,.. ., f, form the set of auxiliary tree,

we have a function, F, given by

F=Mfo (V. V fo (VI = A0 (F)V ..V fo,(DV)

and represent v by
(... ty AF(y)A..)

In this way, we can represent the elementary trees (and hence the gram-
mar) in an extended version of R-K logic (to which we add A-abstraction

and application).
3.1 Representing Tree Adjoining Grammars

We will now turn our attention to the actual representation of an FTAG
grammar, having considered how the individual elementary trees are rep-
resented. According to our discussion in the previous section, the auxiliary
trees are represented as functions of the form Az.e where ¢ is a term in
FSTR which involves the variable z. If 81,...,8, are the auxiliary trees
of a FTAG, G, then we have equations of the form

fi=Az.ey
fn = ,\x.e,.
€1,...,€y, are encodings of auxiliary trees fy,..., 3, as discussed above.

These expressions obey the syntax which is defined recursively as follows.
e u= NIL
n= TOP
HER
u= l:e
u= erAeg
= e Vey
b= f(e)

W . R . . .
here x s a variable over feature structures and f is a function variable.

In addition, as discussed above, we have another equation given by
fo=Az.fi(z) V...V fu(e)

The initial trees are represented by a set of equations of the form

/

1 =€
Ty = ei,,
where e}, ..., e areexpressions which describe the initial trees oy, . .., oy,

Note that in the expressions ey,...,eq,¢€),..., €, wherever adjunction is
possible, we use the function variable fo as described above. The gram-
mar is characterized by the structures derivable from any one of the initial

trees. Therefore, we add
o= V...Vigpy

Assuming that we specify reentrancy using the variables #,...,y: and
equations y; = ¢ for 1 < i < k, an FTAG grammar is thus represented
by the set of equations of the form

firﬁt(rec(-”o,@l.-u.-’Bmyylw (X} yyk)fﬂl.flw “,fﬂ)

7 ! ' H
{eo,). . emiel, . el 1y .. 00))

3.2 Semantics of FTAG

So far, we have only considered only the syntax of the calculus nsed for

representing feature structures and F'LAG grammars. In this section, we
consider the mathematical modelling of the calculus. This can be used to

show that the set of equations describing a grammar will always have a
solution, which we can consider as the denotation of the grammar.

The model that we present here is based on the work by Rounds and
Kasper [Round: et al. 1986] and in particular their notion of satisfiability
of formulae. Let I" be the space of partial functions (with the pariial
ordering L, the standard ordering on partial functions) defined by /' =
(L~ F) + A where A is set of atoms and L is set of labels. This space
has been characterized by Pereira and Sheiber {Pereiva ct al. 1984]. Any
expression e (which is not a function) can be thought as upward closed
subset of F (the set of partial functions which satisfy the description
e). Note that if a partial function satisfies a description then so will
any function above it. We let U(F) stand for the collection of upward
closed subsets of F. Expressions are interpreted relative to an cuvironment
(since we have variables as expressions, we need to consider environments
which map variables to a member of U(F)). Functions get interpreted as
continnous functions in the space U(F) — U(F), with the environment
mapping function variables to functions on U(I'). Notc that the ordering
on U(F) is the inverse of set inclusion, since more Tunctions satisfy the
description of a more gencral feature structure.

Because of space limitations, we cannot go into the details of the
interpretations function. Roughly, the interpretation is as follows. We
interpret the expression a as the set containing just the atom “a”; the
expression | @ ¢ is interpreted as the set of functions which map I to an
elerment in the set denoted by e; conjunction and disjunction ave treated
as intersection and union respectively except that we bave to ensure that
any value assigned to a variable in one of the conjuncts is the same as the
value assigned to the same variable in the other conjunct.

Since the grammar is given by a set of equations, the denotakion is
given by the least solution. This is obtained by considering the function
corresponding Lo the set of equations in the standard way, and obtaining
its least fixpoint. Details of these issues may be found in [Vijayashauker 19

In [Vijayashanker 1987), we have shown that any set of equations has
a solution. Thus, we can give suinantics for recursive set of equations
which may be used to describe cyclic feature structure. For example, we
give the solution for equations such ag

e=f:raAg:a
As shown in [Vijayashanker 1987], we can obtain the least fixed-point by
assumning the least value for & (which is the entire set of partial functions,
or the interpretation of NIL) and obtaining better and better approxima-

tions, The least upper bound of these approximations (which will give the

least fixed-point) corresponds to the required cyclic structure, os desived.
4 Conclusions and Future Work

We have shown a method of embedding TAG’s in a feature structure
based frainework. This system takes advantage of the extended domain
of locality of TAG’s and allows lingusitic statements about cooccurence
of features of dependent items to be stated within clementary trees. We
have shown that we can make a clearer staterment of adjoining constraints
in PTYAQ’s than in TAG’s. The specification of local constraints in a 'IAG
is by enumeration, which is not satisfactory from the linguistic point of
view. We show that in ¥FAG, we can avoid such specifications, instead
the declarative statements made about nodes are sufficient to ensure that

only the appropriate trees get udjoined at a node. Furthermore, we also

ilustrate how duplication of information can be aveided in [“TACHs in
comparison with TAG%. Tt can be shown that analyses that require ox
tensions of TAC s using mnlti-cornponent adjoining (simultancous adjunc-
tion of a set of trees in distinet nodes of an elementary tree) as defined
in [Joshi 1987, Kroch 1987], can be casily stated in FTAG's.

It is possible to parse an F'TAG graminar using the Barley-style parsex
given by [Schabes ct of. 1988]. ‘[his Barley-style parser can extended
in the same way that Sheiber extended the ¥arley parser for PATR-
11 [Shieber 1985b]. "The reason this extension of the TAG parser to one for
ITAG is possible follows romy the fact that the treatment of having the
¢ and b feature structures for every node in ¥PAG is compatible with the
‘chamct(:rimtion, adopted in the parsing algorithm in [Schabes et al. 1988},
of a node in terms of two substrings.

In [Vijayashanker 1987], we have proposed a restricted version of 1'PAG
Tn a roanucy similar to GPSG, we place & bound on the information con-
tent of feature structures associated with the nodes of frees wsed in the
grammar. The resulting system, RI'TAG, generates the same language as
TAG’s, and yet retains an increased deseriptive and generative capacity
due to the extended domain of locality of TAGs.

Finally, in this paper, we have briefly discussed a calenlus to represent
PIAG grawunars, ‘This calculns is an extention of the Rounds-Kasper

logic lor feature structures. The extentions deal with A-abstraction over
feature structures and funciion application, which is used to chavacterizé
auxiliary trees and the adjunction operalion. [Vijayashanker 1087) gives

a detailed description of this calculus and its semaniics.

References

Joghi, A. K. 1985. Ylow Much Cout.ex»t—-Smlsitivii._y is Necessary for Chai-
acterizing Structural Descriptions - Tree Adjoining Grannnars. i n.
Dowly, L. Karttunen, and A. Zwicky, fids., Naturel Language Processing
== Theoreticel, Compulaiional und Psychologicel Perspective. Cambridpe
University Press, New Yook, NY.

Joshi, A. K. 1987. An Introduction to Tree Adjoining Grammars, jn:
A. Manaster-Ramer, Bd., Mathematics of Language. John Benjamins,
Amsterdan,

Jeshi, ALK Levy, LS., and Takahashi, M. 1975, Tree Adjunct Gram
wars, J. Comput. Syst. Sei., 10(1).

Kasper, R. and Rounds, W. C. 1986. A Logical Semantics (e Yealwre
Structures. In: 24 meeting Assoc. Compul. Ling.

Kroch, A. 1987. Subjacency in a 'I'tee Adjoining Grammar. Tn: A,
Manaster-Raunter, ¥id., Mathematics of Languege. John Benjuning, Arm
sterdam.

Kroch, A. and Joshi, A. K. 1985, Linguistic Relevance of Trec Adjoining
Grammars, ‘Technical Report, MS-CI5-85-18, Departinent of Conputer
and Inforination Science, University of Pennsylvania, Philadeiphia.

Yereira, ¥. C. N. and Shicber; 5. 1984. The Semantics of Cranumnar for-
malisms Seen as Computer Languages. In: 10 udernational Conference
on Computational Linguistics,

Rounds, W. C. and Kasper, R. 1986, A complete Logical Caleulus for
Record Structures Representing Linguistic Inlormation. Tn: [EEE Syin-
posiuin on Logic and Computer Science.

Santorini, B. 1986. The West Germanic Verb-Raising Conslruclion: A
Tree Adjoining Grammar Analysis. Master’s thesis, University ol Pean-
sylvania, Philadelphia, PA.

Schabes, Y. and Joshi, A. K. 1988. An Larley-Type Darsiug Algarithia
for Tree Adjoining Grammars. In: 26™ meeting Assoc. Comput. Ling.

Shicber, S. M. An Introduction to Unfication-Bused Approaches to Gram-
’ !
maer. Presented as a Tutorial Session 234 mecting Assoc Compui. Livg.

1985.

s

Shicber, 8. M. 1985. Using Restriction to Txtend Parsing Algorithme
for Complex-feature-bascd Formalisis, In: 23 mecting Assoc. Comput.
Ling.address and pages82-93,

Vijayashanker, K. 1987. A Study of Tee Adjoining Grammars. PLhly
thesis, University of Penunsylvania, Philadelphia, 1a.
719

