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Abstract 

We describe a linguistically expressive and easy to implement 
parallel semantics for quasi-deterministic finite state transducers 
(FSTS) used as acceptors. Algorithms are given for detemain- 
ing acceptance of pairs of phoneme strings given a parallel 
suite of such transducers and for constructing the equivalent 
single transducer by parallel intersection. An algorithm for 
constructing the serial composition of a sequence of such trans- 
ducers is also given. This algorithm can produce generally non- 
detemlinislic FSTS and an algorithm is presented for eliminat- 
ing the unacceptable nondeterminism. Finally, the work is dis- 
cussed in the context of other work on finite state transducers. 

1. In t roduc t ion  

Finite state transducers (FSTS) have been shown to be useful 
for modelling morphophonemic processes in an efficient way in 
(Karttunen 1983), (Kay 1983), (Kaplan and Kay 1985), (Kart- 
tunen, Koskenniemi and Kaplan 1987) and (Koskenniemi 1983) 
(but cf. (Barton 1986b), (Barton 1986a)). This paper presents a 
linguistically expressive parallel semantics for quasi- 
deterministic FSTS used as receptors and algorithms for taking 
the parallel intersection and serial composition of such FSTS. 
The intersection and composition algorithms generate composite 
FSTS from sets of FSTS with the same semantics as the paral- 
lel semantics of the set. §2 presents the parallel semantics; §3 
discusses the parallel intersection algorithm. §4 discusses the 
serial composition algorithm. §5 discusses the elimination of 
unacceptable general nondete~rninism which can arise fi'om the 
composition algorithm. §6 discusses the implementation of the 
interpreter which is based on the semantics presented here and 
the three algorithms. §7 discusses this research in the context 
of other work in this area and draws some conclusions. 

2. A Paraflel Semantics for Finite State Transducers 

In the discussion that follows, we assume that the reader is 
familiar with the work of Karttunen and Koskenniemi on FSTS 
and with finite state automata (FSA) generally. The notation 
used is slightly different than that usually used to describe FSA 

but is more convenient for our purposes. Also, rather than dis- 
cuss the algorithms directly, we give their semantics. In con- 
trast to Karttuuen and Koskenniemi 's  work, no higher level rule 
formalism is used. FSTS are stated directly. 

An FST, M, is a pair <NC~,Z> where N ~ is a set of start state 
urines and Z is a set of states. A state Z i ~ Z is a triple 

<N,T,A> where N is the name of the  state, T is an ordered 
sequence of transitions Ti, l<i<n, n = ITI and A is the truth 
value T if the state is au accepting state and the troth value F if 
it is a nonaceepting state. (The notion of final state is not 
relevant here. Only the accepting/nonaccepting distinction is 
important.) A transition T i ~ T is a pair <~i,Ni> where q5 i is a 
transition pair <~x,~0~>. An element of a transition pair is 
either a phoneme, a phoneme class name, the symbol = or the 
empty string e. A phoneme is a character and is a member of 
the alphabet set. A phoneme class is a set of phonemes. We 
will refer to phoneme classes and their names interchangeably. 
N i is the new state, cI) i = <O~,~0P~> subsumes ~t  = <~xt,t)of> if 

o~i subsumes O x, and ~0 i subsumes ~I~0,. qbi subsutnes (Pt if ~i = ~t 

or (~i = = or (~i is a phoneme class and ~t ~ q~i' 

The transition type or type a:(~) of a transition pair fi5 = 

<@,~P> is (x.x)' if both ~;~ and 0 o are phoneme classes and is 
x(@).,~(~o) otherwise where x(~) is the phoneme type of q~. (x 
is not a variable in this and the following definitions.) 

I !  if ~ = 
"~(~) = if ~ = = 

otherwise 

The set of types, TYP, and tile set of final types, TYP0~, arc 
defined below. 

TYP = {=.= x.= =.x x.E E.x 
x.x =.e e.= (x.e)' (e.x)' (x.x)'} 

TYP~ = {(x.x)' x.x . . . . .  x x.= x.e c.x e.e} 

Some examples should clarify the definitions. <s,s> is of type 
x.x. <s,z> is of type x.x. <sih,sih> is of type (x.x)' if sib is a 
phoneme class name. <=,=> is of type =.=. <=,e.> is of type 
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The type intersection of a set of transition pairs {~i I l<i<n} is 
n 

O'ff¢,~) where n x is a partial function from pairs of u'ansition 
i = I  

types to transition types as defined below. 

"q n '  "t 2 if x~ n , '  x 2 e TYP 
"~a n "~ = undefined otherwise 

n,~' is defined as follows. 

(1) oc-  n x' =:13 = (a.[3)' 
(2) ~.= n . / ( & . ~ ) '  = (a .~) '  

(3) =.f~ % '  (cc[~)' = (a.D' 
(4) tx.D n,~' (a.[3)' = a .~  
(5) a.[~ %' c~.l~ = a.~ 
(6) =.= nx '  a.L3 = ot.13 
(7) c~.= n.~' a.l~ = a.I 3 

(8) =.1~ %' c~.~ = a.l~ 
(9) a.~ c~'  ~i.~, = 5.~/c~" a.[~ 

An unprimed type "c indicates that the transition type is sup- 
ported. A primed type q:' indicates that the transition type is 
unsupported. That is, there have been no e.x, x.e or x.x types in 
tim set of intersected types that produced the primed type. (1) is 
the origin of unsupported types. (2) and (3) state that neither 
ct.= nor =.ct can support a transition. (4) states that an unprimed 
type supports the corresponding primed type. (5) states that the 
intm'section of two identical .types is the same type. (6) States 
that the intersection of =.= and any type is that type. (7) and (8) 
state that the intersection of either =.o~ or co.= and a supported 
type is a supported type. (9) states that n ,  c' is commutative and 

that the commutative closure of (1)-(8) also holds. 

A set of transition pairs {cI)i} which subsmne (1"5 t is licensed 

w.r.t. (I) t if LICENSED({Oi},Ot) holds. 

LICENSED({Oi},O t) if 
n,t'ffOi) e TYP and 
(nx'c(Oi) e {x.x x.e e.x} or 

n,~x(Oi) e {(x.x)', =.=, = . x  x.=} and 

Ot = <¢'¢> ) 

This definition implements the "daisywheel". That  is, although a 
set of transition pairs {Oi} is excluded in the general case if the 
type intersection of {O i} ~ {(x.x)', =.=, =.x x.=} we make an 
exception if qb t is a pair of identical phonemes. So, for exam- 

ple, if the type intersection of  {O i} is =.x and ~t  = <s,s> then 

{~i} is licensed. In practical terms, this means that the user 

does not need to encode a large set of "default" transition pairs 
of the foma <0,¢> for each state. This effect is usually 
achieved, in other FST fomaalisms in the rule compiler. How- 
ever, such a compilation depends on the existence of an alpha- 
bet declaration. As we do not use a rule compiler, we have 
found it more convenient to build the effect into the parallel 
semantics. 

A machine, M in state N accepts a phoneme pair • t with 

accepting transition pair • and new state N'  if 
ACCEPTS (M,N,~t ,~ ,N' )  holds. 

ACCEPTS(M,N,Ot,O,N'  ) if 

M = <Net,Z> and 
Z i = <N,T,A> e Z and 

3T k = <Ok,Nk> e~ P(T) ) 
Ok subsumes Ot and 

= <,I,j,Nj> P(r)  
1Sj<k and ~j  subsumes • r 

(ACCEPTS replaces the more usual state transition function ft.) 

P(T) is a total function that takes the transition sequence T as 
argument and returns a transition sequence T' containing the 
same set of elements as T with the following ordering of the 
elements of T'. All =.= transitions follow all non-=.= transi- 
tions. All =.~ or f~.= transitions precede all =.= transitions and 
follow all other transitions. Relative ordering of transitions in 
T '  is as in T otherwise. 

The definition above implies that transition precedence is by 
citation order with two exceptions. All transition pairs which 
have non-= first and second elements take precedence over any 
pairs of the form <o~,=> and <=,a> and all non-<=,=> transition 
pairs take precedence over a transition pair of the form <=,=>. 

A set of  machines {Mi} in states {Ni} accept a phoneme pair 

t~ t with accepting transitions pairs {Oi} and new states {Ni' } if 
. ( t 

S-ACCEPTS({Mi},{NiL I)t,{N i }) holds. 

S-ACCEPTS ({ Mi}, { Ni},Ot, { Ni'}) if 
Vi 3 0  i 

ACCEPTS ({Mi}, {Ni},Ot, {Oi},{Ni'}) and 
LICENSED({qDi},Ot}). 

A string is a sequence of phoneme pair elements. A string pair 
<It,v> is a pair of strings g and v. <oql3> is a prefix of the 
string pair <g,v> and the string pair <~t',v'> is the correspond- 
ing suffix of <It,v> if CONCAT(<oq~>,<It ' ,v '>,<g,v>) holds. 

CONCAT(<0~,~>,<g',v'>,<I.t,v>) if  
= ~ g '  and 

v = 13v' and 
~ ( a  = e A f~ = e ) .  

In particular, this means that prefixes can be of the schematic 
types x.x, x.e and e.x but not e.e. 

A set of  machines {/Vii} in states {Ni} accept a string pair 

<It,v> with new states {Ni' } if STR ~ 

ACCEPTS({ Mi}, { Ni} ,<ll,v>, { Ni '})holds.  

STR-ACCEPTS({M i } ,{Nil ,<e,e>, { Nil). 
STR-ACCEPTS ({Mi}, { Ni},<II,v>, { Ni'}) if 

~<OC,[~> ~<[x',V'> 3Ni"  
CONCAT(<~,I3>,<~',V'>,<g,V>) and 
S-ACCEPTS({ Mi}, {Ni},<a,13>, { Ni '} )  and 
STR-ACCEPTS({ M i}, { Ni"},<l.t',v'> , { Ni' }). 

The following definition is the top-level relation of our seman- 
tics. A set of  machines {Mi} accepts a string pair <it,v> if 
ACCEPTS({Mi},<It,v> ) holds. 
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ACCEPTS({ Mi},<l.t,v> ) if 

VM i = <NC~,E> e {Mi} 

~Ni a E N a 

~Z i = <Ni,T,T> ~ E 
STR-ACCEPTS ( { Mi}, {N~" } ,<bt,V>, { Ni} ), 

The reader may have noticed that there is no explicit declara- 
tion of  the set of  phonemes which define the alphabet of the 
FSTS. This is the reason that no mention was made of the 

alphabet in the definition of  an FST above as is usually done 
for finite state machines. This complicates the algorithms to be 
discussed below a groat deal. In particular, phoneme classes 
cannot in geaeral be replaced by their definitions, the = notation 
cannot be compiled away nor can transition sequences be 

replaced by transition sequences in which d0 ~ and ~P are both 

phonemes fi)r every transition pair • = <d?k,~)P>. However, 
explicitly declaring the alphabet is unnecessm'y and a certain 
flexibility ill the semantics of  the FSTS is gained by not doing 
SO. 

3. The Parallel Intersect ion Algori thm 

As (Karttnnen and Wittenburg 1983) points out, it is possible to 
merge a set of pm'allel FSTS into one large FST. In the worst 
case, the number of  states of  tile intersected FST is the product 
of the numl~er of  states of  the intersected FSTS. In theory, this 
number can be very large. Ill practice, it is usually much 
smaller becaase the intersection of most state pairs is undefined. 

Parallel intersection is associative and commutative. Thus, tile 
tbllowing detinition of  the intersection of a sequence of FSTS 
is adequate 

n 

N<[VI1 ' ' '  Mn> = ("h Mi' 
i=1 

The intersection M 1 c~ M2, of  two FSTS 

M t := <N~,Y-.,I> and M 2 = <N~,Y_,2> 

is their cross product 

<N{* x N~',E 1 x Z2> 

The cross product of two state name sets {N i' [ l_<i_<n} and 
p tt,.~ {Nj" ] l<i_<_m} is tile set {<N i ,Nj~ . ] l_<i_<n and l<_j_<m}, 

The intersection Y'<I,a> = E1 ~ 22 of  two states 

E 1 := <NpT1,AI> and E 2 = <Na,Ta,A2> 

is 

)2<1,2 > = <<NI,N2> , T 1 × "1"2, A 1 A A2>, 

I,e., the nanm of  the intersection is the pair of the names of  the 
two intersected states. The intersection is an accepting state if 
both of the intersected states are accepting states and is a 
nonaccepting state otherwise. 

The cross product of two transition seqnences T 1 and T 2 is a 
sequence T t x 'I'~ = <T',_<> where T'  is tile set defined below 

and -<- is a to ta l  o rder ing .  

T' = {T k [ T i e T 1 and Tj e T 2 and 
T k = T i n Tj is defined}. 

< can be any total ordering which satisfies the following partial 
ordering on T': 

VT m ~ T'  9 

V m = T  i n ~ I  i a n d r  iE  r l a n d T j e  T e 
V T  e T' -9 

T n = T  oc3 T p a n d T  O c T 1 andTp ~ T 2 
( I l l  < n go-), 

-7 (o < i and p _< j) and-1 (o -< i and p < j)) 

In particular, the ordering of tile following sequence satisfies 
the partial order: 

<T<III > ' ' "  T<l,n > . . .  T<m,l > T<m,n>> 

where T<i,j > names tile intersection of the transitions T i ~ T l 

and Tj e T 2, m = IWl[ and n = IT2], 

The intersection T i c5 Tj of two transitions T i = <t~i,Ni> and Tj 

= <(bj,5> is <tl) i (5 q)'.l' <Ni'Nj>>' 

If (1) i = .<(zi,[~i> and (l)j = <~,[3j> then • i (-i ~j  is defined as fol- 
lows 

< a  i n cry, ~i n [3i> if ~(d)i) c~ '  x(Oj)  a 7'YP 
4~ i n cI~) = undefined otherwise 

The intersection of two phoneme pair elements x and y is 

defined as follows 

x n y =  

x ifx =y 
x ify = = 
y ifx = = 
x if y is a phoneme class and x c: y 
y ifx is a phoneme class and y ~ x 
x ¢~ y if both x and y are phoneme classes 

undefined otherwise 

The composite FST is nondeterministic with respect to ~; and 
the set of  start states and is deterministic otherwise. All 
phoneme class and = notation is preserved in the intersected 
transitions. This is actually quite useful for debugging pur- 
poses. In general, it will often be the case that elements of all 
intersected transition sequence are subsumed by preceding ele- 
ments in the same sequence. It is a simple matter to remove 
such transitions (although this is not necessary as they are 
unreachable). Furthermore, it is often the case that transitions 
with phoneme classes are partially subsumed by preceding ele- 
ments in the same transition sequence. It is straightforward to 
split the phoneme class transitions into disjoint phoneme class 
transitions which are not subsumed by preceding transitions in 
the same sequence. Our implementation uses both of  these 
optimisations. 

Notice that the intersection algorithm does not "compile in" the 
effect of the daisywheel. This is because the semantics of a set 
of parallel FSTS includes the daisywheel and so the composite 
FST need not have its effect "compiled in". Furthermore, the 
intersection algorithm must not build in the daisywheel because 
the composite FST would have the wrong parallel semantics 
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and could not be correctly used as input to tbe intersection 
algorithm. (I.e., we cannot eliminate = or phoneme classes 
from any transition pairs.) 

The cross product of two transition sequences T 1 and T 2 is a 

sequence T 1 x T 2 = <T',<> where T' is defined below and < is 
a total  ordering.  

4. Tile Serial Composition Algorithm 

Just as parallel FSTS can be intersected, a cascade of FSTS 
may be composed into one FST. Such a cascade is most useful 
for representing ordered sequences of rules. For example, a 
theory which orders assimilation processes before morpho- 
phonemic processes could be modelled by a cascade of two 
parallel sequences of transducers where the first parallel 
sequence models the assimilation processes and the second 
models the morphophonemic processes. As is the case with 
parallel intersection, the number of states of a composed FST is 
the product of the number of states of the composed FSTS in 
the worst case. Again, the number of states in the composed 
FST is usually much smaller in practice. 

Serial composition is different in several ways from the parallel 
intersection problem. Fit'st, each FST in the composition must 
have the parallel semantics of §2 "compiled in" before it is 
composed. This means that type intersection as defined for 
parallel intersection is irrelevant for composition. On the other 
hand, we must include the effect of the daisywheel before com- 
position on any transition pair <Op;~,OpP> where both gpX and ¢0 
are phoneme classes. As a result, we can replace all such tran- 

sitions with one or more transitions <¢x,, CO,> •where ¢~' and 

~ '  are both phonemes. This simplifies the composition algo- 
rithm considerably. However, we must still check that the type 
of each transition pair in each FST to be composed is an ele- 
ment of TYP e . (In particular, users may encode illegal transi- 

tions.) Also, although serial composition is associative, unlike 
parallel intersection, it is not commutative. So, a cascade of 
FSTS must be composed in the same order as they appear in 
the cascade. 

The composition of a sequence of FSTS *<M 1 . . .  Mn> is 
defined by 

f M ifn=l 
*<211/t ' "  M > :  

*<M l . . .  M. t>*  M ifn>l k 

T ' =  {TklT  i ~ T I and T j e  T 2 
and T k = T i * Tj is defined}. 

< must satisfy the same partial ordering as that given for paral- 
lel intersection (modulo the substitution of * for n) .  Again, we 
use the ordering given in §3. 

If Z i = < N i ' , T I , A i >  and Ej = <N j ' ,T2 ,A j>  and T i E T 1 and Tj 
T 2 then the composition T i * Tj of two transitions T i = <Oi,Ni> 
and Tj = <~j,Nj> is defined by 

r , * ~ =  

<<=,=>,<NvNj >> 
<<~,I3>,~/vF> 

<<a,~>.<v~ ~v/>> 
<<~,~>,~,':v~>> 
<<a,~>,~v, Svj>> 
undefined 

if ~ /=  <=,=> and Oj = <=,=> 
if Oi = <=,=> and ~ = <~,13> 
and <<a;0t>,Nk> fl T 1 ~ k<i 

if • i = <a,13> and Oj = <=,=> 
and <<13,13>,Nk> ¢ T 2 ~ k<j  
if Ot = <a,e> 
if Oj = <e,[~> 
if O i = <a.13> and O/= <13,$> 
otherwise 

(The fourth and fifth clauses are due to Martin Kay (Kay 
1983).) 

Note that if • i = <a,e> and Oj = <e,13> then both 

<<(z,e>,<Ni,N'j>> and <<a,~>,<N'i,Nj>> are defined. Their 
• order relative to each other is irrelevant since the semantics is 
nondetemainistic with respect to e transitions. Also, note that 
the second and third clauses dealing with <=,=> transitions are 
further constrained to eliminate any "instantiation" of <=,=> 
which has lower precedence than a transition with the "instan- 
tiati0n" in the transition sequence which contains <=,=>. E.g., if 
<<=,=>,Nj> e T 1 and <<=,=>,Nil * <<b,c>,Nk> = 

<<b,c>,<Nj,Nk>> and there is a transition <<b,b>,Ni> e T 1 and 

i<j then <<b,b>,Ni> takes precedence over <<=,=>,Nj> and so 
the composition is undefined. 

The composition M 1 * M 2 of two FSTS 

M 1 =<N~,Y.I> and/Vl 2 =<N~,E2> 

is their cross product 

<v~ x te~,X 1 x X2> 

The composition Z<l,2 > = Z 1 * Z 2 of two states 

Finally, note that nondetemainistic transition sequences may be 
defined. That is, two or more transitions with the same transi- 
tion pair may be specified which have different new states. E.g., 
the composition of the transitions <<a,b>,sl> and <<b,c>,tl> is 
<<a,c>,<sl,tl>> but the composition of the transitions 
<<a,d>,s2> and <<d,c>,t2> i s  <<a,c>,<s2,t2>>. Both composi- 
tions have the transition pair <a,c> but the new state is the 
<s l , t l>  for the first transition and <s2,t2> for the second transi- 
tion. This form of nondeterminism is genuine and must be 
eliminated if the quasi-deterministic semanties that we have 
outlined is to be maintained. 

X 1 = <NI,T1,AI> and Z z = <N2,T2,A2> 5. T h e  D e t e r m i n i s a t i o n  A l g o r i t h m  

is 

Z<l,2 > = <<Ni,N2>, T 1 x T2, A 1 A A2> 

I.e., the name of the composition is the pair of the names of the 
two composed states. The composition is an accepting state if 
both of the composed states are accepting states and is a nonae- 
cepting state otherwise. 

As (Barton 1986b) points out, FSTS used as aeceptors are 
finite-state machines (FSM) with an alphabet of pairs of charac- 
ters. As such, an equivalent deterministic FST can be con- 
strutted.for any nondeterministic FST used as an acceptor since 
a deterministic FSM can always be constructed that accepts 
exactly t h e  same language as a nondeterministic FSM 
(Hoperoft and Ullman 1979). Because the serial composition 
algorithm may produce nondeterministic FSTS, a determinisa- 
tion algorithm is required to produce equivalent deterministic 
FSTS. 
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The algorithm collapses all transitions in a transition :~equence 
with common transition pairs but different new states into one 
transition with a complex new state name. This new state name 
is the name of a state which is the parallel intersection of all 
the new states" of the transitions with the common transition 
pairs. The only fundamental difference between this type of 
parallel inteisection and the definition presented in § 3 is that a 
state in the intersected FST is an accepting state if any of the 
intersected states is an accepting state. 

Although it may not be obvious, the determinisation algorithm 
is guaranteed to terminate. The following argument shows 
why. The new states of simple states are always simple states 
so complex states are the intersection of only simple states. 
The number of simple states is finite. The number of transi- 
tions within a simple state is finite. It follows that the number 
of transitions in a transition sequence with common transition 
pairs is bounded, the number of possible complex states is 
bounded and the size of a complex state is bounded. Therefore, 
there is an upper bound on the size of the equivalent deter- 
ministic machine and so the determinisation algorithm is 
guaranteed to terminate. 

6. Implementation 

The second author designed the parallel semantics and imple- 
mented an interpreter for it in Interlisp-D on a Xerox 1186. The 
first author designed and implemented the parallel intersection, 
serial composition and determinisation algorithms in Lucid 
Common Lisp on a Masscomp MC5700. The programs exhibit 
reasonable performance (about ten minutes using compiled Lisp 
for composite FSTS with approximately 160 states). 

7. Conclusions and Related Work 

Although it has been reported in the literature that the algo- 
rithms described here have been implemented, we are unaware 
of the publication of any such algorithms to date. The algo- 
rithms themselves are of interest because they formalise the 
semantics of finite state transducers. Also, these algorithms are 
similar to graph unification algorithms. Specifically, the paral- 
lel intersection and determinisation algorithms can be viewed as 
cyclic graph unification and graph disjunction elimination algo- 
rithms respectively. 

As Barton points out, a determinisation algorithm like the one 
presented here will not work on transducers used for generation 
and recognition (as opposed to simple acceptance). He claims 
that many FSTS are not determinisable at all. The current work 
provides a formal basis on which to investigate the class of 
detemlinisable transducers used for generation and recognition. 
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