
U s i n g a Logic Grammar to Learn
a Lexicon

Manny Rayner, ~sa Hugosson, G6ran Hagert

Swedish Institute of Computer Science
Box 1263

S-I64 28 KISTA
Sweden

Tel: +46-8-7521500

S u m m a r y

It is suggested that the concept of "logic grammar" as
re la t ion be tween a str ing and a parse- t ree can be
ex tended by admi t t i ng the lexicon as par t of the
relation. This makes it possible to give a s imple and
elegant formulat ion of the process of infering a lexicon
f rom e x a m p l e sen tences in con junc t ion wi th a
g r a m m a r . V a r i o u s p r o b l e m s a r i s i n g f r o m
implementa t ion and complexity factors are considered,
and examples are shown to support the claim that the
method shows potential as a practical tool for automatic
lexicon acquisition.

Keywords: Logic programming, Prolog, logic grammar,
learning, lexicon.

Topic Area: Theoretical issues

1. Introduction

The basic idea is as follows: a logic grammar [1] can be
v iewed as the definit ion of a relation between a string
and a parse-tree. You can run it two ways: finding' the
parse-trees that correspond to a given s t r ing (parsing),
or f ind ing the s tr ings that cor respond to a g iven
parse-tree (generating). However , if we v iew the lexicon
as part of this relation, we get new possibilities. More
spec i f ica l ly , w e can c o m p u t e the lexicons t h a t
correspond to a given string; this can in a natural way
be v iewed as a formalizat ion of "lexicon learning from
example sentences". In terms of the "explanation-based
l ea rn ing" p a r a d i g m , this makes the a s soc ia t ed

parse-tree the "explanation" (See diagram 1).

lexicon
learning j ~ ~,~

y] ~explanation

s t r ' g Lgrammar ~ - - - - parse-tree

parsing w

4 generating

Diagram I

524

In what comes below, we are going to consider the
fol lowing questions:

1) We are learning from posit ive-only examples~ What
can't be learned like this?

2) The basic structural constraint, the thing that makes
it all work, is the assumption that a word can usually
only be interpreted as one part of speech. If we assume
that this is always going to be true, then things really go
pret ty wel l (Section 2). However , this rule is broken
sufficiently often that a realistic system has to able to
deal with it. How?

3) H o w impor tant is the order in which examples are
presented? Can the system select a good order itself, if it
is important?

4) What kind of complexi ty features are there? H o w
scalable is it in terms of number of sentences, number
of grammar rules, number of words to learn?

2. Learning with the "one entry per word" assumption.

This is the simplest var iant of the idea: assume that
there is one entry per word, and represent the lexicon as
an association-list (alist) with one entry for each word.
Each sentence n o w constrains the possible values of
these entries to be ones. which allow it to be parsed; the
hope is that a conjunction of a suitably large number of
such constraints wi l l be e n o u g h to de te rmine the
lexicon uniquely.

In concre te Pro log p r o g r a m m i n g terms, wha t this
means is the following. In the

initial lexicon, the entries are all uninstant iated. We
use this to parse the first sentence, which fills in some
entries; the resul t ing part ial ly instantiated lexicon is
sent to the second sentence, which either refutes it or
instantiates it some more, and the process is repreated
until we get to the end. If at any stage we are unable to
parse a sentence, we just backtrack. If we want to, we
can cont inue even after w e ' v e got to the end, to
generate all possible lexicons that are consistent with
the inpu t sentences and the grammar (and in fact w e
ought to do this, so as to know which words are s t i l l
ambiguous) . This p rocedure can be embod ied as a
one-page Prolog program (see diagram 2), but despite
this it is still surpr is ingly fast on small examples (a
g rammar with 15-30 rules, 10-15 sentences with a total
of 30-40 w o r d s to learn). We p e r f o r m e d some
exper iments wi th this k ind of setup, and drew these i
conclusions:

1) Certain things can' t be learned from posi t ive-only
examples. For example (at least with the grammars we
have tried), it is imposs ib le to de te rmine whe ther
belongs is a verb which takes a PP complement with
p repos i t ion to, or is an intransi t ive verb which just
happens to have a PP modif ier in all the sentences
where it turns up. However , things of this kind seem
fairly rare.

2) Order is fairly critical. When examples are presented
at random, a run t ime of about 100 seconds for a 10-12
sentence group is typical; ordering them so that not too
many new words are int roduced at once drops this to
about 5 seconds, a factor of 20. This gets worse wi th
more sentences, since a lot of work can be done before
the sys tem realizes it's g o t a wrong hypothesis and

backtracks

].earn (Sents~ L) :-
start lex(SentsvL),
learn :[(Sents~L) .

learn 1(JILL).
learn I([FIR]~L) : -
parse(F,L) r
learn] (RgL) ,

parse(gent~]-.) :- s(Sent~ [],L)

start lex(Sents~L) :-
seto{°([W,]vS^(member(SvSents),

member(W,S)),L).

lex lookup(WordvLex,Class) :~"
member([Word, Class],Lex).

% Example grammar:

s(L) ---~> np(L),vp(L) .
np(L) > det (L) , noun (L) .
vp(L) > iv(L).
vp(L) -.-> tv(L),np(L) .
det(L) .~-> [D], {lex lookup(D,Lrdet) }.
noun(L) --> [N], {lex lookup(N, Lrnoun) } .
iv (L) ~.-> [V] r {lex .lookup (V, L, iv) } .
tv(L) ~-> [V], {lex lookup (V, L, tv) } .

Diagram 2

3) A mo~:e important complexity point: structural
ambiguities needn't be lexical ambiguities; in other
wo~'ds, it is quite possible to parse a sentence in two
distinct ways which still both demand the same lexical
entries (in practice, the most common case by far is
NP/VP ~l'.:tachment ambiguity). Every such ambiguity
introduce:; a spurious duplication of the lexicon, and
since these.,, multiply we get an exponential dependency
on the number of sentences. We could conceivably
have tried to construct a grammar which doesn't
produce this kind of ambiguity (cf. [2], pp. 64-71), but
instead we reorganized the algorithm so as to collect
aftex' each step the set of all possible lexicons compatible
with the input so far. Duplicates are then eliminated
from this, and the result is passed to the next step.
Although the resulting program is actually considerably
xnore expensive for small examples, it wins in the long
run. Moreover, it seems the right method to build on
when we relax the "one entry per word" assumption.

3° ~.emov;[ng the "one curry per word" assumption.

We doxft actually remove the assumption totally, but
just weaken it; for each new. sentence, we now assume
that, of tlle words already possessed of one or more
entries, a'~ most one may have an unknown alternate.
.Multiple entries are sufficiently rare to make this
reasonable. 9o we extend the methods from the end of
section 2; first we try and parse the current sentence by
h ~ k i n g up known entries and filling in entries fox"
words we so far know nothing about. If we don't get
a~y result this way, we try again, this time with the
added possibility of once assuming that a word which
already has known entries in fact has one more.

Tids is t~sually OK, but sometimes produces strange
i'esults, as witness the following example. Suppose the
first three sentences are John drives a car, John drives

well, and John drives. Aftex' the first sentence, the
system gaesses that drives is a transitive verb, and it is
able to maintain this belief after the second sentence if
it also assumes that well is a pronoun. However, the
third sentence forces it to realize that drives can also be
an intransitive verb. Later on, it will presumably meet
a sentence which forces well to be an adverb; we now
have an anomalous lexicon where well has an extra
entry (as pronoun), which is not actually used to
explain anything any longer. To correct situations like
this one, a two-pass method is necessary; we parse
through all the sentences a second time with the final
lexicon, keeping count of which entries are actually
used. If we find some way of going through the whole
lot without using some entry, it can be discarded.

4. Ordering the sentences

As remarked above, order is a critical factor; if words are
introduced too quickly, so that the system has no
d~ance to disambiguate them before moving on to new
ones, then the number of alternate lexicons grows
exponentially. Some way of ordering the sentences
automatically is essential.

()ur initial effort in this direction is very simple, but
still seems reasonably efficient; sentences are
pre-ordered so as to minimize the number of new
words introduced at each stage. So the first sentence is
the one that contains the smallest number of distinct
words, the second is the one which the smallest
number of words not present in the first one, and so on.
We have experimented with this approach, using
groups of between 20 and 40 sentences and a grammar
containing about 40 rules. If the sentences are randomly
ordered, the number of alternate lexicons typically
grows to over 400 within the first 6 to 10 sentences; this
slows things down to the

point where further progress is in practice impossible.
Using the above strategy, we get a fairly dramatic
improvement; the number of alternates remains small,
reaching peak values of about 30. This is sufficient to be
able to process the groups within sensible times (less
than 15 seconds per sentence average). In the next two
sections, we discuss the limitations of this method and
suggest some more sophisticated alternatives.

5. Increasing efficiency

It is rather too early to say how feasible the methods
described here can be in the long term. As far as we can
see, scalability is good as far as grammar.~size is
concerned; we have increased the number of rules from

15 in the first version to about 40 in the current one
with little performance degradation. Scalability with
respect to number of sentences is more difficult to
estimate. Using the methods described in sections 3 and
4, we have sucessfully processed groups of up to 50
sentences (about equally many words), with run times
typically in the region of 10-15 minutes. An example is
shown in the appendix. It is reasonable to suppose that
the system as it stands would be capable of dealing with
groups up to four or five times this size (i.e. 200-250
words to learn), but it has a limit; the problem is that
there are always going to be a few words in any given
corpus which occur insufficiently often for their lexical
class to be determinable. Although these words are
typically fairly rare, the ambiguities they introduce
multiply in the usual way, leading to an eventual

525

breakdown of the system. The following tentative ideas
represent some approaches to this problem which we
are currently investigating.

What appears to be necessary is to find some intelligent
way of utilising the fact that the various alternate
lexicons all agree on the majority of entries; typically,
less than 10% are ambiguous after any given step in the
processing. The current system completely ignores this,
representing each lexicon as a separate entity. If we are
to improve this state of affairs, we can envisage two
possible plans. Firstly, we could simply remove the
"difficult" words, hoping that there are sufficiently few
for this not to matter. More ambitiously, we can try to
share structure between lexicons, so that the common
part is not duplicated. We now expand on these two
ideas in more detail.

5.1. Removing "difficult" entries

At regular intervals the group of alternate lexicons is
analyzed: the normal state of affairs is that they are
identical excepting the entries for a few words, the
potential "troublemakers". What one could do would
be simply to remove these entries, making them once
again uninstantiated; then all sentences containing the
offending words would be removed from the subgroup
marked as already having been processed, and saved for
possible future use. The overall effect would be to
reduce the group of alternate lexicons to a single
"lowest common denominator" , which ~ would
represent the "reliable" information so far acquired,
this at the expense of losing some partial information
on the "dubious" words.

We have carried out a few simple experiements along
these lines, using a variant of the ,dea which at each
"check-point" removes all ambigous words for which
there are no further sentences awaiting processing. This
seems at first sight very reasonable, but unfortunately it
turns out that there are problems. Although one might
easiIy think that an ambiguous word is going to stay
ambiguous if it doesn't occur in any of the remaining
sentences, in actual fact this is not so; a word can be

disambiguated "indirectly", as a result of other words
being disambiguated. To give a simple example:
suppose that the first sentence is The zebra laughed.
This can give rise to a number of possibilities: for
example, the and laughed could be pronouns, and zebra
a transitive verb. If the word zebra didn't occur again,
one would thus wrongly conclude that there was no
way of determining whether it was a common noun or
a transitive verb. But this can easily be accomplished if
the or laughed are later assigned to their proper classes,
which will then remove the incorrect interpretation
and indirectly make zebra unambiguous too. Clearly, a
more sophisticated implementation is required if this
idea is going to work.

5.2. "Lexicon compaction" using Prolog constraints

Here, we discuss the idea of exploiting the similarity
between different alternate lexicons to "merge" or
"compact" them. The technical tool we will be using t o
perform this operation is the Prolog "constraint"
mechanism [3], [4]. What we propose is illustrated in
diagram 3, which shows two alternate lexicons,
differing in a single entry. These can be combined into
the third lexicon without any loss of information.

526

Simple compaction of two lexicons

Two alternate lexicons for the sentence: the dog
belongs to the man

[[the:d], [dog:n], [be longs:v(intrans)],

[to:prep], [man:n]]

[[the:d], [dog:n], [belongs:v(prep(to))],

[to:prep], [man:n]]

These can be compacted into the following single
lexicon

[[the:d], [dog:n],
[belongs:<X:X=v(prep(to) ;X=v(intrans)>],

[to:prep], [man:n]l

Diagram 3

The technique is potentially very powerful, and in
favourable circumstances can be used to compact
together large numbers of alternates, as diagram 4
illustrates.

Compacting four lexicons into one in a two-stage
process.

lexl: [. . . [b e l o n g s : v (i n t r a n s)] , . . .
[plays:v(intrans)], . . .]

lex2: [. .. [belongs : v (prep (to))]r • • .

[plays:v(intrans)], . . .]

lex3: [• .. [belongs:v(intrans)]~ ...

[plays:v(prep(with))], ...]

lex4: [... [belongs:v(prep(to))], ...

[plays:v(prep(with))], ...]

In the first stage, we compact lexl and lex2 to make
lex12, and lex3 and lex4 to make lex34.

lex12: [. . . [belongs :

<X:X=v(prep(to);X=v(intrans)>], ...

[plays:v(intrans)], ...]

lex34: [. . . [belongs :

<X : X=v (prep (to) ;X=v(intrans)>], . . .

[plays:v(prep(with))], . . .]

Then we compact lex12 and lex34 to get the final result.

[. . . [belongs :

<X:X=v(prep(to) ;X=v(intrans)>], ...
[plays: <Y:Y=v(prep(with) ;Y=v(intrans)>],
• ..]

Diagram 4

What makes the "compaction" method so attractive is
that it appears to get the best of both worlds: no
information is lost, but substantial efficency gains can be
attained. The method draws its power from the fact that it
is "intelligent" about divergences between lexicons: if the
sentence to be parsed contains none of the "constrained"
words, then the compacted lexicon will behave as though
it were a single, unambiguous , lexicon; but if
"constrained" words are present, then the lexicon will be
"split" again, to exactly the extent required by the various
parsings of the sentence. It is to be noted that all this of
course requires a Prolog constraint mechanism which is
both efficient and logically complete, something that has

only recently become possible [4]. We are currently in the
process of in~plementing the method within our system.

6o Conclusioas and further directions

We have descr ibed a series of experiments which
investigate the feasibility of automatically infering a
lexicon frora a logic grammar and a set of example
sentences; this stands in fairly sharp contrast to most
work done so far within the field of automatic language
acquisition, where the emphasis has been either on
grammar induction e.g. [51, [6], [7], or learning of word
senses [8]: Ia view of the fact that much recent linguistic
research has been moving towards unification-based
formalisms where the bulk of the information is stored
in the lexicon, we think that ideas like the ones we
propound here should have a rich field of application.
For example, Pollard and Sag's HPSG framework [9] has
at only a couple of dozen grammatical rules, all of which
are ex t r eme ly general; the rest of the information is
lexical in nature.

Al though we think that progress to date has been
extremely encouraging, it is still a little too early to make
any firm claim that our methods are going to be usable in
a practical system. As discussed above, there are some
non-trivial efficiency problems to be overco-ae: it also
seems likely that we will need a more sophisticated
ordering algori thm than that described in section 4,
probably incorporating some notion of giving higher
priority to sentences containing ambiguous words. Other
important topics which we so far have not had time to
devote at tent ion to are the use of morphologica l
information and the deve lopment of some way of
handling incorrect sentences (maybe just ignoring them
is enough; but our feeling is that things will be a little
trickier). These and other related questions will, we hope,
provide fruitful ground for continued research in this
area,

References

[1] F.C.N. Pereira, Logic for Natural Language Analysis
SRI Technical Note 275, 1983

[2] F.C.N. Pereira & D.H.D. Warren, Definite Clause
Gramn,ars Compared with Augmented Transition
Networks, Research Report, Dept. of AI, Edinburgh
University 1978 (also in Artificial Intelligence, 1980)

113] A. Colmerauer , Prolog-II, Manuel de reference et
model theorique, Groupe d'Intelligence Artificielle,
Universite Aix-Marseille, 1982

[4] M. Carlsson, An Implementation of "dif" and
"freeze" in the WAM, SICS Research Report, 1986

[5] S.F. Pilato & R. Berwick Reversible Automata and
Induction of the English Auxiliary System, Proc.
23rd ACL, Chicago, 1985

[6] R.M. Whar ton , Grammar Enumeration and
Inference, Information and Control, Vol 33, 253~272,
1977

[~/J }.I;[. Aadersson , A Theory of Language Learning
Based on General Learning Principles, Proc. 7th
IJCAI, Vancouver, 1981

[8] R.C. Berwick, Learning Word Meanings From
Examples IJCAI 1983

[9] C. Pollard & I. Sag Information-Based Syntax and
Semantics, Vol. 1,CSLI 1987

We enclose two appendices. The first shows some
sample runs; the second, the grammar used in the
examples.

Appendix 1

SICStus V0.5 - July 31, 1987
Copyright (C) 1987,
Swedish Institute of Computer Science.
All rights reserved.
I ?~- ['start.pl'].
[consulting /khons/asa/learning/start.pl..]
[compiling /khons/asa/learning/xgproc.pl...]
[xgproc compiled in 14480 msec.]
[consulting /khons/asa/learning/xgrun.pl...]
[xgrun reconsulted in 159 msec.]
[consulting /khons/asa/learning/utilities.pl.]
[utilities.pl reconsulted in 1360 msec.]
[compiling /khons/asa/learning/prettyprint.pl.]
[prettyprint.pl compiled in 4680 msec.]
[consulting /khons/asa/learning/top.pl...]
[top.pl reconsulted in 5920 msec.]
[consulting /khons/asa/learning/sent.pl...]
[sent.pl reconsulted in 2340 msec.]

** Grammar from file grammar.pl : 0 words **

[consulting /khons/asa/learning/read-file.pl.l
[read-file.pl reconsulted in 1420 msec.]
[start.pl eonsulted in 32100 msec.]

% ..

% A simple test with six sentences.
..

yes
1 ?- test qroup(5).

Order before sorting: [1,26,2,3,4,5]
Order after sorting: [1,2,26,3,4,5]

% ...

% The format of each line is:
% Sentence number (in test sentence),
% sentence,number of lexicons left.
...

i. the cat saw the dog 8
2. the dog saw a cat 2
26. that man saw the dog 3
3. a man saw the nice dog 2
4. the nice dog likes the man 2
5. the man likes the dog that the cat saw 1

Run time = 13420. Compiling statistics ...

..

% The system asks the user which of the
% alternate lexicons is the correct one.
% Here there is only one possibility left.
% ...

a: det
cat: noun(_48268)
dog: noun(48270)
likes: verb(trans)
man: noun(_48273)
nice: adj
saw: verb(trans)
that: det rel pro

the: det

Is this correct? yes.

No mistakes
yes

% ..

% A rather more complicated example.
% ..

527

I ? - test_grouP(0)"

Order before sorting:
[i,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16e
17,18,19,20,21,22,23,24,25,26,27,28,29,
30,31,32,33,34,35,36,37,38,39,40,41,42,43]

Order after sorting:
[1,2,3,4,5,26,27,13,14,6,15,39,11,9,19,18,
21,20,10,12,17,7,23,33,16,8,22,28,29,30,
31,32,25,24,35,38,34,36,37,40,41,42,43]

I. the cat saw the dog 8
2. the dog saw a cat 2
3. a man saw the nice dog 2
4. the nice dog likes the man 2
5. the man likes the dog that the cat saw 1
26. that man saw the dog 1
27. the man has a cat 1
13. the dog belongs to the man 4
14. the dog likes most men 8
6. most men like the dog 4
15. the men like john 4
39. the man hoped that john likes the dog 24
ii. the dog hoped that the man

read the newspaper 16
9. the man read the newspaper 16
19. john has read the newspaper today 16
18. john read the newspaper today 16
21. the man read the newspaper before

john saw the cat 16
20. john has not read the newspaper 16
10. the dog brought the man the newspaper 16
12. john threw the newspaper to the dog 12
17. john threw the newspaper on the table 12
7. the dog sat on the table 20
23. the cat sat on the car 20
33. john saw a glass on the table 16
16. the dog sat with john 8
8. the table belongs to the man who

owns the dog B
22. the man who owns the cat drives the car 8
28. the man who has a cat has no dog 8
29. the cat ate a fish 8 ~
30. john ate the beans 8
31. the man ate a can of beans 16
32. the man brought the cat a can

of catfood 16
25. the man can drive the car 72
24. the dog can not drive the car 16
35. the man drank the whisky 16
38. john hoped the dog drank the water 4
34. john drank a glass of water 2
36. john poured the water on the cat 2
37. john poured a can of water on the cat 2

40. mary knows that john owns a dog 2
41; john believes that mary drives a car 2
42. mary believes John knows that peter

has a eat 4
43. peter can not believe that mary

ate the fish 2

Run time = 949120. Compiling statistics

~ ~

% This is the first lexicon of two. The
% divergences are summarized by the system
% further down. Note that "can" and "has"
% are correctely assigned to two different
% classes, and "that" to three.
% ..

% Nouns can be classified as either
% "count" or "measure". Most of them
% could be either, but nouns occuring
% in partative constructions ("can of
% catfood", "glass of whisky") are
% forced to be "measure".
% ...

e: det
atef verb(trans)
beans: noun(measure)
before: sub_conJ
believe: verb(s_comp)
believes: verb(s comp)
belongs: verb(intrans)

528

brought: verb(doubly txans)
can: noun(342148) verb(aux)
car: noun(342150)
cat: noun(342152)
catfood: noun(measure)
dog: noun(342155)
drank: verb(trans)
drive: verb(trans)
drives: Verb(trans)
fish: noun(342160)
glass: noun(342162)
has: verb(trans) verb(aux)
hoped: verb(s comp)
john: name
knows: verb(s_comp)
like: verb(trans)
likes: verb(trans)
man: noun(342170)
mary: name
men: noun(342173)
most: det
newspaper: noun(_342176)
nice: adj
no: det
not: negator
of: partative marker
on: prep
owns: verb(trans)
peter: name
poured: verb(trans)
read: verb(trans)
sat: verb(intrans)
saw: verb(trans)
table: noun(342189)
that: rel pro det comp

the: det
threw: verb(trans)
to: prep
today: adv
water: noun(measure)
whisky: noun(342197)
who: tel pro
with: prep

Is this correct? yes.
belongs : 1 mistakes [verb(pobj([to~45]))]
yes
J ?- halt.

user time 983.600000

Appendix 2

% Here is the grammar to the learning system~

s v-> nprvp.

np --> det,npl(_).
.np --> name.

npl(Type) --> adJs,
n(Type),
optional_lop,
tel.

adjs -->. [].
adjs --> adJ,adJs.

vp --> v(Verb),
lex(Verb,verb(V type)),
v_comps(V type),v mods.

v comps(intrans) --> [].
v_comps(trans) --> np.
v_comps(doubly trans) --> np,np.
v_comps(pobj(Prep)) --> pp(Prep).
v_comps(s_cOmp) --> comp, s.
v_comps(s comp) --> s.

v mods--> pp(Prep).
v~mods --> adv.
v mods --> sc.
v-mods --> [].

sc --> sub conJ,s.

optional_pp ~-> pp(_).
optional pp --> partative marker,

npl(measure)°
optional_io p --> [] •

pp(Prep) --> [Prep],lex(Prep,prep),np.

rel ~-> [] .
tel --> rel pro, s.

det --> [Word],lex(Word, det).

adv --> [Word],lex(Word, adv).

adj -~-> [Word],lex(Word, adj).

sub_conj --> [Word],lex(Word, sub conj).

n(Type) --> [Word],lex(Word, noun(Type)).

name --> [Word],lex(Word, name).

oomp --> [Word],lex(Word, comp).

partative_marker --> [Word],
lex(Word,partative_marker).

tel loro ... np --> [Word],lex(Word, rel_pro).

v(Verb) --> [Verb],lex(Verb,verb()).
v(Verb) --> aux, [Verb],lex(Verb,verb()).

aux --> [Verb],lex(Verb,verb(aux)).
aux --> [Verb,Negator],

lex(Verb, verb(aux)),
lex(Negator,negator).

529

