
A n E x p e r i m e n t a l P a r s e r f o r S y s t e m i c G r a m m a r s

Robert T. KASPER
USC/information Sciences Insti tute

4676 Admiral ty Way, Suite 1001
Marina del Rey, CA 90292 U.S.A.

A b s t r a c t

We descrlbe a general parsing m e t h o d for systemic gram-
mars. Systemic grammars contain a paradigmatic analysis of
language in addition to structural information, so a parser
must assign a set o f grammatical features and functions to
each constituent in addition to producing a constituent struc-
ture. Our method constructs a parser by compiling systemic
grammars into the notation of Functional Unification Gram-
mar. The existing methods for parsing with unification gram-
mars hace been e x t e n d e d t o handle a fuller range of paradig-
matic descriptions. In particular, the PATR-II system has been
extended by using disjunctive and conditional information in
functional descriptions that are attached to phrase structure
rules. The method has been tested with a large grammar of En-
glish w:hich was originally developed for text generation. This
testing is the basis for some observations about the bidirec-
tional m~e o f a grammar.

1 Introduction

Many computational linguists have found systemic grammar (SG)
to be quite useful, because it provides an explicit representation of
features that determine how a sentence functions in the context of
communication. SG has been used directly as the basis for several
computer tex~ generation programs [Mann 82], but it has only been
used indirectly for computational parsers. Winograd used principles
from SG in designing SHRDLU [Winograd 72], a successful natural
language understanding program, but his program did not contain
an explicit representation of the grammar's system network. Instead,
he used a special purpose programming language to encode gram-
matical knowledge in a procedural form tailored specifically to the
language understanding task. Another procedural implementation of
SG was developed by McCord [McCord 77]. Both of these methods
would require a significant progranmfing step before a parser could
be produced for a different grammar. Our goal has been to develop
a general parsing method using a declarative representation of SG,
and to determine to what extent a grammar that is adequate for
text generation can also be used for text analysis. Our parser has
been developed and tested using Nigel [Mann 83], a large grammar
of English that has previously been used as part of a text generation
system.

Systemic l;nguistics builds on the foundation of Hailiday's con..
cept of the system Setwork [Halliday 76]. A systemic grammar is
organized around choices between grammatical features that reflect
the structure and content of aconstituent. Each choice between fea-
tures is called a system. Thus, a systemic grammar has two major
components:

I. a system network of feature choices, and

2. structurM realization statements corresponding to each feature.

The feature Choices define the options available to be expressed in

R A N K

-Clause

~-...
MOOD
T Y P E

a language, and may be regarded as "hooks" into a semantic
component. The realization s tatements determine the constituent
structure. There are realization statements to declare the presence
of constituents, conflate constituents, specify feature constraints on
constituents, and specify ordering constraints among constituents.

Consider, for example, the fragment of a grammar of English
clauses shown in Figure 1. There are two systems, labeled by
Mood-type and Indicative-type. Each system has an input condition
to its left, specifying when its options are applicable. The input con-
dition for Indicative-type is the single feature, Indicative, but input
conditions may also be expressed by boolean combinations of fea-
tures. In each system, exactly one of the features to the right of the
vertical bar must be chosen. For example, in the Indicative-type sys-
tem, either Declarative or Interrogative must be chosen. Under each
feature are realization statements, such as SUBJECT A FINITE un-
der the Declarative feature. This s tatement specifies that the SUB-
JECT constituent must precede the FINITE constituent in declara-
tive clauses. Each realization s ta tement is associated with a particu-
lar feature, so that structural constraints are distributed throughout
the system network. The distributed nature of structural informa-
tion in SG presents a challenge to the design of a parser, which we
will address in Section 3.

In addition to building a constituent structure for a sentence, as
do most syntactic approaches to natural language parsing, a parser
for SO must also perform the following tasks:

1. determine the set of systemic features for each constituent,

2. assign grammatical functions to each constituent.

Other theories of grammar also make use of features and grammat-
ical functions, however they have a distinct significance in systemic
theory. The feature set associated with a constituent plays an impor-
tant role in specifying its meaning (i.e., the features are not simply
discarded after syntactic analysis), so a relatively I~,rge number (e.g.,
over 50) of features may need to be assigned to eac!, constituent.
Each constituent may also be assigned to several grammatical func-
tions, because of the multifunctional nature of systemic analysis. For
example, it is common to describe a single constituent simultaneously
as SUBJECT, ACTOR and TOPIC. Therefore, in order to determine
tha t a clause has an ACTOR, it may be necessary to check whether
the clause has a SUBJECT and whether the SUBJECT of the clause
is conflatable with the. ACTOR function.

An example of the type of output produced by the parser is shown
in Figure 2. This example shows only the functional structure that
the parser assigns to the sentence. In addition, each constituent
is assigned a set of grammatical features, such as Indicative and
Declarative. These features are also accessible in the da ta structures
produced by the parser, but they are too numerous to display in this
short paper.

t
-Imperative

NONFINITIVE~Stem

~ -Declaratlve
SUBJECT A FINITE

-Indicative- INDICATIVE
TYPE

SUBJECT:Nominatlve
-Interrogative

Figure I: The Mood-type and Indicative-type Systems.

309

/TOPICAL / SUBJECT / MEDIUM GOAL 7 ,./,DEICTIC-- --thlsdet
/ ~".THING-- --document

//TEMPO0 / VOICE I FINITE-~-~ --b~.~ux
II, PROCESS / LEXVERB / VOICEDEPENDENT---v --crQate

--/e
FD-- ~""'AGENT / ACTOR-- .-(-'wAGE-'-/ - - r , sw

~,' .,SUBJECT / J /
<"ON'TE/ / / /

~PREDIOATOR-- ../VOIOEI /
"'. LEXVERB

Figure 2: Functional Structure of: "This document was created by

a new computer."

2 CompUat lon into Funct ional Uni f icat ion
G r a m m a r

The basic method used to construct the parser has been to develop
a compiled representation of systemic grammars in the notation of
Functional Unification Grammar (FUG). The parsing process itself
is then derived by extending methods already developed for pars-
ing With FUG [Kay 85]. In FUG, a grammar can be regarded as a
special kind of logical formula [Rounds 87], and the parsing prob-
lem is reduced to finding the set of feature structures that satisfy
the formula subject to the constraints of the words in a particular
sentence. Using the feature description logic (FDL) of Kasper and
Rounds [Kasper 86], the types of formula used to define a grammar
include: 1

NIL denoting no i~formatloa;
a where a E A, to describe atomic values;
l : ~b where I E L and ~ E FDL~ to describe structures

in which the feature labeled by l has a value described by ~;
ql or l : ANY where l E L, to describe a sliructure in which I has

a substantive (non-NIL I value;
< p > where p E L*, to describe a structure that shares

a common value with the path p;
[~bl . . . ~] where ~b~ E FDL, denoting conjunction;
{~bl . . . ~b,~} where ~b~ E FDL, denoting disjunction;
~1 --* ~ where ~b~ E FDL, denoting classical implication.

The last type of formula, denoting implication, is an extension to
FUG that enables a more efficient modeling of systemic descriptions
than is possible in Kay's version of FUG IKasper 87d].

The compilation of systems into FUG is relatively straightfor-
ward. Each system is represented by a disjunction containing alter.
natives for each feature that can be chosen in the system. These al-
ternatives also contain attributes that represent constraints on gram-
matical functions imposed by realization statements. For example,
the Mood-type and Indicative-type systems can be represented by
the description shown in Figure 3. System input conditions are bidi-
rectional: they are represented by the embedding of descriptions,
and also by feature existence conditions.

In the FUG representation there is one functional description
(FD) corresponding to each m~ior constituent category of the sys-
temic grammar. Major constituent categories for English include
clause, nominal-group, and prepositional-phrase. The method of rep-
resenting a systemic grammar as a set of FDs in FUG is described in
greater detail in [Kasper 87b,Kasper 87d]. A program has been im-
plemented to automatically translate any system network into FDs,
verifying the effectiveness and generality of this compilation proce-
dure. This program has been used to compile the entire Nigel gram-
mar, which contains over 500 systems, into FUG many different times
as changes to the grammar have been made.

:Let A and L be sets of symbols used to denote atomic valueJ and feature
labels, respectively.

Rank : Clause
Mood-type : Imperative
NONFINITIVE : [Form : Stem] 1
Mood-type : Indicative
SUBJECT : [Case : Nominative]

pattern : (. ,. SUBJECT FINITE ...)
[Indlcatlve-type : Interrogative]

3 M-cod-type ----* [Rank : Clause]
3 Indicative-type ~ [Mood-type : Indicative]

Figure 3: The Mood-type and Indicative-type Systems in ex-
tended-FUG notation.

3 Parse r Implementa t ion:
Extending PATR-II

Our early experiments using the Nigel grammar showed that the
existing methods for parsing with FUG had several shortcomings
when applied to a large grammar. Kay's method for parsing with
FUG [Kay 85] cannot be applied directly to our grammar because it
requires:

1. expanding the grammar FD to disjunctive normal form (DNF);

2. creating a disjunct for each possible ordered combination of
constituents that is compatible with pattern features. Each of
these dlsjunets can be regarded as equivalent to an annotated
phrase structure rule.

In bath cases our grammar contains too many alternatives to carry
out the procedure:

1. Our grammar of English clauses contains over 100 systems.
Since each system is represented by a disjunction in PUG, the
DNF expansion of the clause grammar might require over 2100
disjunetsl

2. Our grammar contains many optional grammatical functions.
A particularly striking example concerns the large number of
optional adjunct types that may be used to modify an English
clause. 2 These adjuncts occur most frequently at the end
of the clause, although other orders are possible. Assuming
that there are at least 10 optional adjunct types, "we have 2 l°
different combinations of adjuncts, not counting any additional
combinations resulting from order variation.

The first problem has been solved by a new unification algorithm for
disjunctive descriptions that does not require expansion
to DNF [Kasper 87c]. The second problem has been solved by adding
a small phrase structure component to the grammar and using the
PATR-II active chart parsing algorithm, which was developed by
Shieber et al.
at SRI [Shieber 84].

3 .1 S k e l e t a l P h r a s e S t r u c t u r e C o m p o n e n t

The role of phrase structure (PS) rules in our parser is similar to
their role in Lexical Functional Grammar [Kaplan 83], however they
have less theoretical significance in our parser, We use the PS com-
ponent to recognize possible patterns for each major constituent cat-
egory, but the unification component builds the functional structure
and assigns a feature set to each constituent. The PS component is
something like a skeleton tha t cannot be seen in the final descril~.
t ions produced by the p~ser . Not very many PS rules are required,
because they only need to encode broad category distinctions. Fine
category distinctions are encoded by the FDs that are attached to
rules. Each major constituent category of the grammar has a special
rule that is annotated with the FD produced by compilation from
the systemic grammar for that category. For example, the category
CLAUSE has a rule of the form:

=A partlal lilt of adjunct types lnclude~: MANNF_~ CAUSE, ACCOMPA-
NIMENT, SPACE-LOCATIVE, SPACE-EXTENT, TIMF~LOCATIVE, TIME-
EXTENT, MATTER, ROLE, ATTITUDE.

310

CLAUSE --~ CLAUSE~PS:
<CLAUSE> = <OLAUSF_,-PS fd>
<CLAUSE> = [compiled FD for CLAUSE].

CLAUSF~PS is a non-tarminal that can derive any valid constituent
pat tern for cl~.uscs. The first unification of this rule identifies any fea-
tures tha t are known from the constituents derived by CLAUSF~'PS
with features of the CLAUSE nonterminaL The second unification
provides the functional description tha t must be satisfied for any
clause.

Consider again the problem of optional adjuncts. Instead of pro-
ducing a distinct disj'unct for each combination of adjuncts, it is much
more efficient to describe all possible combinations using a single re-
cursive PS rule. This rule is annotated with a disjunctive description
that contains a single alternative for each adjunct type:

CLAUSE-PS~ --* CLAUSE-PS2 ADJUNCT:
<CLAUSE-PS-I> = { [MANNER : <ADJUNCT> 1

[CAUSE : <ADJUNCT>]
. . . other alternatives }.

The PS component is the only part of the grammar used by the
PATR-II parser that is not produced automatically from a systemic
grammar. The pars!ng grammar for Nigel currently contains about
6D PS rules.

3 . 2 E x t e n s i o n s t o P A T R - H

The PATR-II sys tem has been extended in several significant ways
to carry out c~ur implementation:

1. handling disjunctive and
conditional descriptions [Kasper 87c,Kasper 87d];

2. using t~bles compiled from the realization s ta tements of SG.
These tables include the possible confiations for each gram-
matical function, and lexical items that are associated with
particular features in the grammar.

The compiled tables and skeletal phrase structure component enable
the parser to directly deduce structural information about a sentence,
despite the distributed nature of structural constraints in SG.

grammar tha t require an inordinate amount of time to resolve. Sys-
temic grammars can exhibit ambiguity between grammatical fea-
tures, in addition to the well known types of lexieal and structural
ambiguity.

Unintended ambiguities between grammatical features often arise
from underspecified parts of the grammar, i.e., the grammar contains
an alternation between two or more features with insufficient realiza-
tion information to determine which features apply in many eases.
Usually the solution to this problem is to add realization information
for those features. Sometimes the realization of those features may
depend on other features and the modification is somewhat complex.
In such cases, it is possible to temporarily disable the underspeeifiad
alternatives while parsing until a more complete solution is devel-
oped.

Some features may have realizations that are formally adequate
and efficient for generation, but quite inefficient for parsing. For ex-
ample, the Nigel grammar for nominal groups contains the Pronomi-
nal feature to indicate tha t the head constituent is a pronoun. There
is no explicit realization s ta tement associated with this feature, but
the system network contains more specific features for each of type of
pronoun. These more specific features have realizations that specify
particular lexical items for the head constituent. Since English pro-
nouns are a closed class, there is a finite number of features that need
to be examined to determine whether a nominal group is pronominal.
However, it is quite inefficient to consider each member of the c lass
individually. Obviously, we can improve the parsing efficiency of the
grammar by adding a realization to the Pronominal feature that con-
strains the head to be a member of the class of pronouns. We have
found a significant number of similar cases, where the grammar was
adequate for generation, but was missing some useful generalization
for analysis.

It seems reasonable to expect that most grammars that are orig-
inally developed specifically for generation or parsing tasks will need
similar kinds of tuning before they can be used effectively for the
inverse task. A bidirectional grammar seems to be a reachable goal,
bu t it will probably have some specifications that are superfluous for
either parsing or generation. These specifications can be marked if
necessary for efficiency, so that the parser or generator does not have
to examine unnecessary information.

5 C o n c l u s i o n s

4 B i d i r e c t i o n a l G r a m m a r

Bidirectional grammar, i.e. using the same grammatical knowledge
tbr both parsing and generation of a language, has been a real but
sometimes elusive goal in computational linguistics. The goal of bidi-
rectional grantmar was clearly a motivation for Kay's formulation of
FUG [Kay 85 I. Kay has shown that if a declarative representation
is used to encode the grammatical knowledge of a language, then it
should be possible to compile that knowledge into appropriate da ta
structures for parsing or generation. We have followed this method in
constructing ~ parser for systemic grammars by compiling the gram-
mar into a notation like FUG. Our discussion in this section tbcuscs
on other issues besides compilation tha t have been identified in our
effort to dew.'lop a bidirectional systemic grammar.

Our experience with the Nigel grammar has indicated tha t it
is possible to develop a bidirectional grammar within the systemie-
functional framework, although a substantial amount of effort may
be required to tune the grammar for both parsing and generation.
In other wordsj the framework of systemic grammars is potentially
invertible, bui; particular grammars may require some modification
before they cun be used effectively for both parsing and generation.
Generally, parsing places greater demands on the realization com-
ponent of the grammar, while generation places greater demands on
the systems of choice. The Nigel grammar was originally developed
for use i n s text generation program, so our observations deal mostly
with problenm tha t can arise when inverting a grammar tha t is ade-
quate for gem~ration but untested for analysis.

Most pnodifications tha t we have made to enable parsing involve
eliminating u~dntended ambiguities or disjunctive alternatives in the

We have developed a general method for parsing systemic grammars
by extending the techniques of FUG and the PATR-II system. The
parser is reasonably efficient for grammar testing and use as a lin-
guistic research tool, but further refinement would be necessary for
applications demanding real-time performance. Using the full Nigcl
grammar, it currently requires less than a minute to parse simple
single-clause sentences, and several minutes to parse more complex
sentences. It should be noted that parsing speed depends heavily
on grammar size, and we are using a graznmar that is significantly
larger than most grammars tha t have been implemented to this date
with unification-based methods.

We have only investigated an exhaustive bottom-up strategy, in
which the parser produces all possible parses for a sentence. This
Strategy is well-suited to g r a m m ~ testing, bu t other strategies should
be developed for applications demanding more selectivity and effi-
ciency. We have not yet at tempted to incorporate extra-grammatical
(i.e., semantic and pragmatic) information for ambiguity resolution,
but this would also be necessary for most practical applications.

It would be very desirable to discover a way to produce the phrase
structure component of the parsing grammar, or some functionally
equivalent mechanism, automatically from a systemic description.
If accomplished, this would make it possible to fully automate the
production of a parsing grammar, bu t this appears to be a difficult
problem. It is currently much easier to 15reduce a small phrase struc-
ture component manually from one's knowledge of the grammar.

A c k n o w l e d g e m e n t s

I would like to thank Bill Mann for originally suggesting and eneouro
aging this topic of research. I would also like to thank Christian

311

Matthiessen, Martin Kay, Lanri Karttunen, John Bateman and Bill
Rounds for helpful comments on the design of the parser, and Stuart
Shieber for providing help in the use of the PATR-II system.

This research was sponsored in part by the United States Air
Force Office of Scientific Research contract F49620-87-C-0005, and
in part by the United States Defense Advanced Research Projects
Agency under contract MDAY03-81-C-0335; the opinions expressed
here are solely those of the author.

References

[Kaplan 83]

[Kasper 87a]

[Kasper 87b1

[Kasper 87c]

[Kasper 87d]

[Kasper 86]

Kaplan, R. andJ. Bresnan. Lexical Functional Gram-
mar: A Formal System for Grammatical Represen-
tation. In J. Bresnan, editor, The Mental Represen-
tation of Grammatical Relations. MIT Press, Cam-
bridge, Massachusetts, 1983.

Kasper, R. Feature Structures: A Logical Theory with
Application to Language Analysis. PhD dissertation,
University of Michigan, 1987.

Kasper, R. Systemic Grammar and Functional Unifi-
cation Grammar. In J. Benson and W. Greaves, ed-
itors, Systemic Functional Approaches to Discourse,
Norwood, New Jersey: Ablex (in press). Also avail-
able as USC/Information Sciences Institute Reprint
RS-87-179.

Kasper, R. A Unification Method for Disjunctive Fea-
ture Descriptions. In Proceedings of the 25 ~h Annual
Meeting of the Association for Computational Lin-
guistics, Stanford University, Stanford, CA, July 6-9,
1987. Also available as USC/Information Sciences In-
stitute Reprint RS-87-187.

Kasper, R. Conditional Descriptions in Functional
Unification Grammar. USC/Information.Scienees In-
stitute Research Report RR-87-191, November, 1987.

Kasper, ~. and W. Reuncls. A Logical Semantics for
Feature Structures. In Proceedings of the 24 ~h Annual
Meeting of the Association for Computational Lin-
guistics, Columbia University, New York, NY, June
I0-13, 1986.

[Kay 85]

[Halliday 76]

[Mann 82]

[Mann 83]

[McOord 77]

[Rounds 87]

[Shieber 84]

[Winograd 72]

Kay, M. Parsing in Functional Unification Grammar.
In D. Dowry, L. Karttunen, and A. Zwicky, edi-
tors, Natural Language Parsing. Cambridge Univer-
sity Press, Cambridge, England, 1985.

G.R. Kress, editor. Halliday: System and Function
in Language. Oxford University Press, London, Eng-
land, 1976.

Mann, W.C. Text Generation. Section of Applied
Computational Linguistics in Perspective: Proceed-
ings of the Workshop, In American Journal of Com-
putational Linguistics, Vol. 8:2, 1982.

Mann, W.C. mad C. Matthisssen. Nigeh A Sys-
temic Grammar for Text Generation. USC / Infor-
mation Sciences Institute, RR-83-105. Also appears
in R. Bunsen and J. Greaves, editors, Systemic Per-
spectives on Discourse: Selected Papers Papers from
the Ninth International Systemics Workshop, Ablex,
London, England, 1985.

McCord, Michael C. Procedural systemic grammars.
In International Journal of Man-Machine Studies,
Vol. 9, pp. 255-286, 1977.

Rounds, W. C. and Manaster-Reaner, A. A Logical
Version of Functional Unification Grammar. In Pro-
ceedings of the 25 th Annual Meeting of the Associa.
tion for Computational Linguistics, Stanford Univer-
sity, Stanford, CA, July 6-9, 1987.

Shieber, S. M. The design of a computer language
for linguistic information. In Proceedings of the Tenth
International Conference on Computational Linguis-
tics: COLING 8.~, Stanford University, Stanford,
California, July 2-7, 1984.

Winograd, T. Understanding Natural Language, New
York: Academics Press, 1972.

312

