
A Lexical Functional Grammar System in Prolog

Andreas Eisele and Jochen DOrre

Department of Linguistics
University of Stuttgart

West Germany

A b s t r a c t

This paper describes a system in PROLOG for the automatic
transforination of a grammar, written in LFG formalism, into
a DCG-based parser. It demonstrates the main principles of
the transformation, the representation of f-structures and
constraints, the treatment of long-distance dependencies,
and left rccursion.
Finally some problem areas of the system and possibilities
for overcoming them are discussed.

Introduction

In order to intprove our knowledge about natural language, it
is desirable to have a high-level description language which
can be used to test grammars on a computer system, but which
is independent of the details of the implementation. For
linguists without knowledge of programming languages, a
system for writing and testing grammars on a computer should
be offered.
At the University of Stuttgart such a system has been imple-
mented in PROLOG, which uses tile formalism of Lexical-
Functional Grammar [Kaplan/Bresuan 82] as its description
language.
The system makes it possible for the user to enter grammar
rules and lexical entries directly in the form described in
[Kaplan/Bresnan 82]. The input is translated into PROLOG
rules, which form a top down parser in defiuite clause
grammar style.
Equations and constraints associated with a grammar rule are
evalnated as soon as the rule is used, thus allowing the
rejection of incorrect parses as soon as constraints are
violated.
One of the main problems using DCG grammars - the
prohibition of using left-recursive grammar rules is
solved by a conversion to right-recursive rules that does
not violate the semantics of the functional description.

grammar implementors in two respects:
i) Using DCGs for parsing (and overcoming the prohibition of

left recursion)
ii)Profiting from PROLOG's unification mechanism to

implement LFG-Unification.

U u i f i c a t i o n

LFG is a unification-based grammar formalism. To be more
precise, any defining equation in LFG can be interpreted as
the unification of certaiu f-structures. Unifying two f-
structures is an operation very similar to set union.
However, unification may fail, if the stuctures contain
contradicting values for the same attribute. Otherwise the
two structures become the same object, which contains the
information of hoth structures. Consider for example the LFG
rule

S -.~ NP VP
/t sueJ)=$ T==~

and take FS, FNP and FVP as the f-strnctures associated to
tile S, NP and VP node, respectively. Then the two equations
cau be interpreted as the unifications

FS U - FVP and FS U [SUBJ = FNP].

The unification of f-structures is also closely related to
the unification of PROLOG-Terms, yet there are two important
differences: lu f-structures values are identified by labels
(the attributes) and their number is potentially unlimited,
whereas in PROLOG-terms the arguments are identified by
their position and their number is fixed. In the following
we show how we can model f-structure unification in PROLOG.
We represent partial f-structures as an 'open ended' list of
pairs:

[A I = V I , A 2 = V2 An = Vn I _]

Main Goals of tile Implementation

When we started the implementation of our LFG-Sytem we had
mainly the following tasks in mind:

- Independence o f Implementat ion
The LFG system is meant to be a grammar-writer's tool which
allows him to ignore completely the details of the
implementation. Specifically we wanted tile system to be
useful for linguists without any prior knowledge of PROLOG.

- Complete Coverage o f the L F G - F o r m a l i s m
The system should cover all features of LFG as they are
stated by [Kaplan/Bresnan 82] . This means we had to
incorporate the principles of consisteucy, completeness and
coherence, inequality, positive and negative existential
constraints and long distance dependencies.

- F lex ib le Environment for Grammar Development
To be a really useful tool, the system must allow for
testing the grammar fragment and changing it incrementally.
In this point we had to find a good compromise between speed
of parsing and speed of grammar modification.

- Using as much o f P R O L O G as possible
We wanted to profit from the facilities PROLOG offers for

where the Ai stand for (atomic) attributes and the Vi for
the values associated to these attributes. These values are
either atomic, terms denoting semantic forms, f-structures
themselves or tile term 'set(S)' where S stands for an open-
ended llst of f-structures denoting a set.
The unification of two f-structures is evaluated in this
representation by inserting into both structures the
features missing with respect to the other, and then PROLOG-
unifying the variables that stand for the rest of the lists.
The values of features which the structures have in common
have to be unified recursively.
A procedure which performs this action can easily be written
in PROLOG* :

merge(X,X) :- !.
merge([A=VllRl],F2) :- deI(A=V2,F2,R2),

merge(V1,V2),
merge(R 1 ,R2).

deI(F,[FIX],X) :- !.
deI(F,[EIX],[EIY]) :- del(F,X,Y).

When called with the f-structures FSI and FS2, the predicate
'merge' recursively reduces the attributes in FSI. If an

*The ~re,~ment of sets is omitted here for the sake of simplicity.

551

at t r ibute appears also in FS2, 'del ' f inds its value in FS2
and the two values are uni f ied by the f irst recursive call
of 'merge ' . I f an a t t r ibute is unspeci f ied in FS2, 'del '
wil l insert i t at the end of the s t ructure as a new
at tr ibute. Eventua l ly , 'merge ' will reach the tail var iable
of FS1 and ins tant ia te i t wi th exact ly the at t r ibutes which
appear in FS2 but not in FSI, Af ter successful execut ion of
'merge ' FSI and FS2 contain the same at t r ibutes wi th the
same values (maybe in d i f fe ren t order) and tail variables at
any level are shared. So any fur ther uni f ica t ion a f fec t ing
one of them wil l af fect the other s t ructure in exact ly the
same way.

Example: The goal
merge([subj = [spec = de f ,

nu~ = sg,

pred = glrl

] RSubj I]

[RI] ,

[pred = hand(subj,obj2,obj),

tense = present,

subj = [num = sg I RSubj2]

I R2]).

yields the ins tant ia t ions

R1 = [pred = h a n d (s u b j , o b j 2 , o b j) , tense = present [R2]

RSubj2 = [spec = de f , pred = g i r t I gSubj l]

T h e f a c t t h a t t h e u n i f i c a t i o n i s p e r f o r m e d b y e x t e n d i n g b o t h

of the s t ructures and that there is no expl ic i t resul t is
essential when deal ing wi th reentrant s tructures, i.e.
embedded s t ructures that can be reached by more than one
path. In the case when such a s t ructure is extended whi le it
is reached by one of the possible paths, an access via a
d i f fe ren t path wil l also reach this extension.

Treatment of Completeness, Coherence and Constraints

In addi t ion to de f in ing equations, which can be mapped onto
the monotonic operat ion of uni f ica t ion , LFG includes formal
devices, some of which cannot be treated monotonical ly , but
need the notion of a ' f inal ' f - s t ruc ture [Shieber 85]. More
concretely, the viola t ion of posi t ive exis tent ia l
constraints, const ra in ing equations and completeness cannot
be checked before the parsing process has f inished.

Existential constraints are t reated by insert ing the
at t r ibute into the f - s t ruc ture , but leaving the associated
value unins tant ia ted (i f i t isn' t a l ready known). The
condi t ion that tiffs var iable must be instant ia ted is
stored in a list (Ex Tests) especial ly for this purpose and
tested af ter the parse.

Negative existential constraints are t reated by assigning
the value 'n i l ' to the at t r ibute. The value 'n i l ' is
in terpre ted as non-ex is tence of the feature and must not
appear in the grammar itself.

- Constraining equations can be handled as follows*:
We introduce a special te rm 'C ' (Value ,Mark) , where Value is
the value demanded by the const ra in ing equat ion and Mark is
uninstant ia ted. The def in i t ion of the uni f ica t ion is
changed, such that a s imple value X is treated as a short
form of the te rm 'C'(X,t) . Therefore , any unsat isf ied
constra ining equat ion results in an unins tant ia ted mark in
the f - s t ruc ture and can easi ly be detected af ter parsing.

*this treatraent of constraining equations is due to an idea of Jo Calder
(personal communication).
In our current implementation a more general method is used which also allows
both sides of the equation to denote substructures, but which is omitted here
since these cases never occur in realistic grammars.

5 5 2

Completeness of f - s t ruc tures is tested by exis tent ia l
constraints on the sub-s t ruc tures required by the semant ic
form.
We th ink that the mere exis tence of a required sub-s t ruc ture
is not enough. For example , verb entr ies often in t roduce a
part ial f - s t ruc tu re for the subject by spec i fy ing its
number. This should not lead to the acceptance of a sentence
wi thout a subject . For that reason we use exis tent ia l
constraints on the 'p red ' of a s t ructure to test i f i t is
there.

Coherence of an f - s t ruc tu re is equiva len t to negat ive
exis tent ia l constra ints concern ing all governable funct ions
(i.e. funct ions that can appear in semant ic forms) that are
not requi red by its semant ic form. In t roduct ion of negat ive
existent ial constraints for all those a t t r ibutes , as
described above, would be a correct but inef f ic ien t
solution. Instead we use a special mark 'ngf ' , which closes
an f - s t ruc tu re for governable funct ions, i.e. the def in i t ion
of 'merge ' is ex tended by an addi t ional test that prohibi t s
the inser t ion of a governable funct ion af ter the ' n g f ' - m a r k .

Example: the lexical ent ry

promised: V, (1' TENSE) = PAST
("i" PRED) = 'PROMISE((1' SUBJ) (C OBJ) ('~ VCOMP))'

(T VCOMP To) : c +
(t VCOMP suaJ) = ('t SU~J)

is t ransformed to

v (V , Ex_Tests , [PSUBJ, POBJ, PVCOMP[Ex_Tests]) -->

(promised],
{merge (V , [t ense = pas t ,

pred = p r o m i s e (s u b j , o b j , v c o m p) ,

subj = [pred = PSUBJ [RSUBJ]

ebj = [pred = POBJ [] ,
vcemp = [to = 'C*(+,),

pred = PVCOMP,

subj = [pred = PSUBJ RSUBJ]

I_],
ngf

I _ l)) .

Treatment of Long-Distance Dependencies

In order to handle long-d is tance dependencies correct ly, LFG
provides bounded domina t ion metavariables . The condi t ions
for proper ins tant ia t ion g iven by [Kaplan /Bresnan 82] have
to be satisfied. They concern:
- The relat ion be tween domain roots and controllers
- The o n e - t o - o n e ass ignment be tween domain root and

eontrollee
- The observance of the crossing l imit .

Also, bounding nodes, i.e. nodes that are excluded f rom the
control domains of h igher nodes, have to be handled
correctly.

S ~ I " s(FS,[np/FNPIC IN],ZnplC OUT],
II I " - - / / ~ t ~ ExTestlN,Ex_Test_CUT)
\ /

NP / / / / \ \ \

/ \
/ x

/ 2 \

/ x
! \

/ I \ \
It

NP

Treatment of bounded domination metavariables in two steps

The binding of the bounded domination metavariables consists
of two steps. The first step, the identification of the
domain roots, only depends on the grammar and can be done
during the transforgaation of the grammar rules into PROLOG
clauses.
The main job, the assignment between domain root and
controllee, is performed as follows:

Each goal has two extra parameters for input and output of a
controller list. These lists, which are threaded through all
nodes, except the bounding nodes, act as a global stack on
which the controllers are pushed. Each element of the stack
refers to a node which dominates the current goal, and which
is a domain root.
A domain root adds an element to the stack before the parser
enters its control domain and removes a receipt after the
domain is left. The element that is pushed consists of the
class name (eg. [+wh]) of the controller and its actual
variable.
If a eontrollee appears, the stack is searched for the first
element with the same class name (for crossing limit n the
first n+l matching elements can be chosen) and replaces it
by a receipt. Now the controUee can use the actual variable
of the controller.
This treatment resembles the hold list device in the ATN
formalism [Winograd 83] a lot, but differs in two important
aspects.

By using unification to establish the correspondence
between controller and controllee, information may flow in
both directions.

A controllee does not cause a pop-operation on the stack,
but a substitution of an element by a receipt. The checking
of the receipt by the domain root ensures that a controllee
can only occur within the domain of its domain root.

As an example, the transformations of LFG rules with
controller and controllee are given:

N P --, e

np(Fnp, CLOr CL1, Ex Tests, Ex tests) -->
13,
(subst(np/Fnp, rip, CLO, CLI)).

S' ~ NP []

(t ,:ocus):-$

s bar(Fs_bar, CLO, CL1, Ex_TestsO, ExTests2) -->
np(Fnps [~h/QICLO], [~hICL1], Ex_festsO, Ex_Testsl)~
{merge([q=O, focus=Fnp [3, Fsbar)},
s(Fsbar, [np/Fnp], [np], Ex_Testsl, ExTests2).

Treatment of Left Recursion

Definite Clause Grammars do not allow left-recursive grammar
rules when interpreted by a top-down parser. This is a
serious shortcoming for a natural language system, since
many linguistic phenomena can be most naturally described
with left-recursive rules (coordination, possessive NPs
etc.).
In the theory of formal languages, there exist several
algorithms to convert a grammar containing left recursion
into a weakly equivalent grammar that does not [Aho/Ullman
77]. But in LFG, the c-structures are essential for the
correct evaluation of f-structures, so a transformation must
provide a way to get the right interpretation of the
functional description.

For a detailed discussion of how this can be achieved for
locally left-recursive rules, please refer to [Eisele 85].

Experience with the System

We have implemented two versions of the LFG system, both
running on a VAX 11/780. The first version was written by
the autlmrs in PROLOG II, using ideas of W.Frey and U.Reyle.
It made use of the built-in predicates 'freeze' and 'dif',
which give the possibility of delaying subgoals to optimize
the evahmtion of constraints [Eisele 85].
To improve the flexibility of the user interface, the system
was reimplemented in C-PROLOG by Stefan Schimpf and Andreas
Eisele. It has been used for the development and testing of
different grammars for fragments of English, German [Netter
86] and French, the latter consisting of about 50 grammar
rules and more than 200 lexical entries, and turned out to
be a useful tool for this purpose.
The performance of the system is quite good for simple
grammars with a small amount of nondetermiuism. Using the
grammar given in [Kaplan/Bresnan 82], parsing the sentence

"I wondered which violin the sonata is tough for her to play on"

needs about 2.3 seconds cpu time (C-PROLOG interpreter).
Yet, we don't expect that our system constructs an efficient
parser from an arbitrary grammar mainly for two reasons:

The complexity of the LFG recognition problem is known to
be NP-complete [Berwick 82].

- Our approach to handle nondeterminism by mere backtracking
leads to unneccessary duplications of parsing actions.

Whereas the first point is highly questionable as to whether
it concerns practical grammars, there are several
possibilities to improve the behaviour of the parser.

Storing intermediate results in a chart could help to
avoid multiple parsing of' the same constituents and would
facilitate error analysis.
Explicit representation of ambiguities in f-structures

(instead of a chronological enumeration) would be a step
towards a packaging of local ambiguity.

But in either case, the built-in structure-sharing mechanism
of PROLOG could not be used as straightforward a way as in
our current system and tim definition of unification would
have to be considerably more complex.

References

Aho, A.V. and Ullman, J.D,, "Principles of Compiler Design",
Addison-Wesley, Reading, Mass., 1977.

Berwick, R.C., "Computational Complexity and Lexical-
Functional Grammar", ACL Journal, Vol.8, 1982.

Eisele, A., "A Lexical Functional Grammar System ill Prolog",
LDV-Forum 2/85.

Kaplan, R.M. and Bresnan, J., "Lexical-Functioual Grammar: A
Formal System for Grammatical Representation" in "Mental
Representation of Grammatical Relations", Bresnan eds., MIT
Press, 1982

Netter, K., "Getting Things Out Of Order", this volume.

Sbieber, S.M., "An Introduction to Unification-Based
Approaches to Grammar", Tutorial Session at the 23rd Annual
Meeting of the ACL, Chicago, 1985.

Winograd, T., "Language as a Cognitive Process", Vol. l
Syntax, Addison.-Wesley, Reading, Mass., 1983.

553

