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Abstract 

The properties of distributed representations and 
memory systems are explored as a potential basis for 
non-deterministic parsing mechanisms. The structure of 
a distributed chart parsing representation is outlined. 
Such a representation encodes both immediate- 
dominance and terminal projection information on a 
single composite memory vector. A parsing architecture 
is described which uses a permanent store of 
context-free rule patterns encoded as split composite 
vectors, and two interacting working memory units. 
These latter two units encode vectors which correspond 
to the active and inactive edges of an active chart 
parsing scheme. This type of virtual parsing 
mechanism is compatible with both a macro-level 
implementation based on standard sequential 
processing and a micro-level implementation using a 
massively parallel architecture. 

A lot of recent research has focused on the 
problem of building psychologically feasible models of 
natural language comprehension. Much of this work 
has been based on the connectionist paradigm of 
Feldman and Ballard (1982) and other massively 
parallel architectures (Fahlman, Hinton and Sejnowski, 
1983). For example, Waltz and Pollack (1984) have 
devised a model of word-sense and syntactic 
disambiguation, and Cottrell (1985) has proposed a 
neural network style model of parsing. Originally, such 
systems were limited in thier capability to handle tasks 
involving rule-based processing. For example, the Waltz 
and Pollack model uses the output of a conventional 
chart parser to derive a structure for the syntactic parse 
of a sentence. However, more recent connectionist 
parsing systems (e.g., Selman and Hirst, 1985) are 
more suited to handling sequential rule-based parsing. 
In this type of model grammar rules are represented by 
means of a small set of connectionist primitives. The 
syntactic categories of the grammar are represented in a 
Iocalist manner, that is, by a computational unit in a 
network. The interconnections of the units within the 
network are determined by the grammar rules. Such 
Iocalised representations are obviously useful in the 
construction of connectionist models of rule-based 
processing, but they suffer from an inherent capacity 
limitation and are usually non-adaptive. 

The research to be discussed here differs from 
previous work in that it explores the properties of 
distributed representations as a basis for constructing 
parallel parsing architectures. Rather than being 
represented by Iocalised networks of processing units, 
the grammar rules are encoded as patterns which have 
their effect through simple, yet well-specified forms of 
interaction. The aim of the research is to devise a virtual 
machine for parsing context-free languages based on 
the mutual interaction of relatively simple memory 
components. 

1. DISTRIBUTED MEMORY SYSTEMS 

Constraints on space make it impossible to 
describe distributed memory systems in detail, and this 
section merely outlines their salient properties. For a 
more detailed description of their properties and 
operation see Slack (1984a, b). 

In distributed memory systems items of information 
are encoded as k-element vectors, where each element 
ranges over some specified interval, such as [-1 ,+1]. 
Such vectors might correspond to the pattern of activity 
over a set of neurons, or the pattern of activation levels 
of a collection of processing units within a connectionist 
model. Irrespective of the manifest form of vectors, the 
information they encode can be manipulated by means 
of three basic operations; association (denoted by *), 
concatenation (+), and retrieval (#). The association 
operator creates a composite memory vector which 
encodes the association of two items of information 
(denoting memory vectors by angular brackets, the 
association of items <A> and <B> is denoted <A>*<B>). 
The concatenation operator creates a composite 
memory vector encoding individual items or vectors 
(<A>+<B>). Thus, a single composite vector can 
encode large numbers of items, and associations 
between items. The individual elements encoded on a 
composite vector are accessible through the retrieval 
operator. When a retrievalkey vector is input to a 
composite vector the retrieval operator produces a new 
composite vector which encodes those items of 
information which were associated with the key vector 
on the original composite trace. An important property 
of the retrieval and assocaition operators is that they are 
both distributive over concatenation. However, only the 
association operator is associative. 
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These basic properties enable distributive memory 
systems to encode large amounts of knowledge on a 
single composite memory vector. The capacity 
limitations of such systems are determined by the noise 
levels implicit in the output of the retrieval operation. 
The generated noise is a function of the number of 
traces encoded on a vector and the size of the vector. 

Two classes of distributive memory can be 
distinguished, permanent and working. The former 
provide permanent storage of information, while the 
latter have no permanent contents but are used to build 
temporary representations of inputs. An important 
feature of working distributed memories is that the traces 
encoded on them decay. Associated with each vector 
encoded on ~t working memory is a decay, or strength, 
index. The decay function is event dependent, rather 
than time dependent, in that the indices are adjusted on 
the oceurence of a new input. This property provides a 
useful form of event indexing which is crucial to the chart 
parsing scheme. 

2. DISTRIBUTED CHART PARSING 
REPRESENTATION 

The aim of chart parsing using distributed 
representations is to derive a composite memory vector 
which encodes the type of structural information shown 
in figure 1. The figure shows the constituent structure 
(C-structure) built for the sentence The man hit the boy. 
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This structure incorporates features of different notations 
used to describe chart parsing schemes (Earley, 1970; 
Kay, 1980). The structure represents a passive lattice 
consisting of one cell, or an equivalent edge, per 
constituent. It embodies structural information relating to 
the immediate-dominance of constituents, as well as 
information about the range of terminals spanned by 
each constituent. This structure can be collapsed under 
the operations of association and concatenation to 
derive a composite memory vector representation which 

preserves both types of structural information. Each 
constituent category is encoded as a random memory 
vector; <S>, <NP>, <DET> and so on. The vertices of 
the chart (1-6 in figure 1 ) are mapped onto the set of 
decay indices registered by the working memory 
systems at each input point. Moving from left to right 
through the table shown in figure 1 the vectors are 
combined by tile concatenation operator. The 
dominance structure exhibited within the table is 
preserved by the association operator going from 
bottom to top. These procedures produce the following 
composite vector which encodes the information 
represented in figure 1 : 

<S>*<I-6>*{<NP>*<I-3>*{<IDET>*<I-2>+<N><2-3>} 
+ <VP>*<3-6>*{<V>'=<3-4> + 
<N P>*<4-6>*{<DET>*<4-5>+<N>*<5-6>}} 

Each component of the pattern consists of a vector 
encoding a constituent label associated with the input 
indices defining the left and right edges of the 
constituent. This form of representation is similar to the 
idea of assertion sets which have been shown to have 
useful properties as parsing representations (Barton 
and Berwick, 1985). One of the major advantages of the 
representation is that the two types of structural 
information are jointly accessible using the appropriate 
retrieval vector, that is category label vector. For 
example, if the composite vector is accessed using the 
retrieval vector <VP>, then the retrieved pattern encodes 
both the categories dominated by VP and the range of 
input terminals covered by VP. 

3. PARSING ARCHITECTURE 

A possible parsing architecture for realising the 
above scheme is shown in figure 2. The parsing 
mechanism consists of three distributed memory units, 
one permanent unit which stores context-free rule 
patterns, and two working memory units which encode 
temporary constituent structures. In figure 2, the stored 
rules pattern memory adds retrieved lists of rule 
constituents to the active patterns working memory. 
The double arrows on the lines connecting to the 
inactive patterns memory depict the two-way 
interactions between the inactive patterns and both the 
stored rule patterns and active patterns. 

The input to the parsing mechanism comprises the 
syntactic categories of each constituent of the input 
string. This input is received by the inactive patterns 
working memory and each new input triggers the 
indexing of patterns in accordance with the decay 
function. Thus, while a category label vector is held on 
the inactive patterns unit its decay index is continually 
up-dated. 
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Representing the rules of the CFG by the following 
notation: 

label: Constituent category ---> List of constituents 
or 

L i:Cat i ---> Cij's 
Each element of a rule is encoded as a memory vector, 
and the rules are stored in the permanent memory unit 
in terms of the following patterns: 

<Cil >*(<Li>*<Cati>//<Ci2>*. ...... *<Cik>*<Li> ) 

The vector <Ci l> encodes the first constituent on the 
RHS of the CF rule labeled <Li>. When this constituent 
is input to the rule patterns store the split pattern with 
which it is associated is retrieved as output. The 
retrieved pattern is split in that the two halves of the 
pattern are output over different lines. The first half of 
the pattern, <Li>*<Cati>, is output to the inactive 

patterns unit, and the second half, <Ci2>*....*<Cik>*<Li>, 
is output to the active patterns memory unit. This 
retrieval process is equivalent to building an active edge 
in active chart parsing (Kay, 1980; Thompson, 1983). A 
major difference, however, is that the vector encoding 
the active edge is split over the two working memory 
units. 

The active patterns unit now encodes the list of 
remaining constituents which must occur for the RHS of 
rule <Li> to be satisfied. Meanwhile, the inactive 
patterns unit encodes the category of the hypothesised, 
or active, edge. If the list of necessary constituents is 
matched by later inptus then the label of the satisfied 
rule is retrieved on the active patterns unit and output to 
the inactive patterns store. This new input retrieves the 
constituent category associated with the rule label on 
the inactive patterns unit. This retrieval process is 
equivalent to building an inactive edge in standard 
active chart parsing. Each time a new inactive edge 
pattern is created it is output to both the other units to 
determine whether it satisfies any of the constituents of a 
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stored rule, or any remaining active patterns. Those 
active patterns which do not have their constituent 
elements matched rapidly decay, and fade out of the 
composite traces held on the two working memory units. 

When a rule is satisfied and an inactive pattern, or 
edge, is built the index range spanned by the rule is 
retrieved at the same time as the rule's category vector. 
Thus, an inactive pattern is encoded as <Cati>*<m-q>, 
where <m-q> encodes the range of input indices 
spanned by the category <Cati>. 

Within this scheme the alternative CF rules for a 
particular constituent category have to be encoded as 
separate rule patterns. For example, the rules for 
building NPs would include the following: 

1: NP ---> DETNP 2 

2: NP---> NP 2 
3: NP---> NP PP 
4: NP 2 - - >  N 

5: NP2---> ADJ NP 2 

To simulate a top-down parsing scheme the active 
elements encoded on the inactive patterns unit can 
function as retrieval vectors to the stored rules unit. This 
feedback loop enables a retrieved category to retrieve 
further rule patterns; those for which it is the first 
constituent. In this way, all the rule patterns which are 
applicable at a particular point in the parse are retrieved 
and held as active edges split across the two working 
memory units. On each cylce of feedback the newly 
retrieved rule categories are associated with the active 
elements which retrieved them to form patterns such as 
<La>*<S>*(<Lb>*<NP> ). 

On successfully parsing a sentence the inactive 
patterns unit holds a collection of inactive edge patterns 
which form a composite vector of the type described in 
section 2. All active patterns, and those inactive edges 
which are incompatible with the final parse rapidly 
decay leaving only the derived constituent structure in 
working memory. If an input sentence is syntactically 
ambiguous then all possible C-structures are encoded 
on the final composite vector. That is, as it stands the 
parsing scheme does not embody a theory of syntactic 
closure, or preference. 

4. A PARSING EXAMPLE 

The parsing architecture described above has 
been implemented on standard sequential processing 
machinery. To achieve this it was necessary to decide 
on computational functions for the three memory 
operators, and to build an agenda mechanism to 
schedule the ordering of the memory unit input/output 
processes. The association and retrieval operators 
were accurately simulated using convolution and 
correlation functions, respectively. The concatenation 



operator was simulated through a combination of vector 
addition and a normalisation function. All syntactic 
categories, rule labels, and input indices were encoded 
as randomly assigned 1000-element vectors. 

The agenda mechanism imposes the following 
sequences on input-output operations: 

[A] The input lines to the inactive patterns unit are 
processed in the order - constituent input, input from 
stored rule patterns unit, and finally, input from active 
patterns unit. 

[B] The retrieval and output operations for the 
units are cycled through in the order - activation of 
stored rule patterns, including top-down feedback; 
matching of active patterns, and building of inactive 
edge patterns. 

[C] The final operation is to increment the input 
indices, before accepting the next constituent input. 

To illustrate the operation of the parsing 
mechanism it is useful to consider an example. As a 
simple example, assume that the stored rule patterns 
unit holds the following context free rules: 

1: NP---> DETNP 2 6: S---> NP VP 

2: NP---> NP 2 7: VP---> V 
3: NP ---> NP PP 8: VP---> V NP 
4: NP 2-*-> N 9: VP---> VP PP 
5: NP2---> ADJ NP 2 10: PP---> Prep NP 

In parsing the sentence The old man the boats the 
lexical ambiguity associated with the words old and man 
produces the input string 

<Det> <Adj+N> <N+V> <Det> <N> 

The first input vector, <Det>, retrieves rule 1, 
setting up <NP2> on the active patterns unit and 
<I>*<NP>*(<Det>) on the inactive patterns unit (the 
input indices have been omitted to simplify the notation). 
Through feedback, rules 3 and 6 are also retrieved 
creating the pattern <NP2>*<I>+<PP>*<3>+<VP>*<6> on 
the active patterns unit, and the pattern 
<6>*<s>*((<1 >*<NP>*(< Det>)+(<6>*<N P>*(<I >*<NP>*(<Det>))) 
on the inactive patterns unit. 

On input of the second word which covers the 
categories Adj and N, the composite vector <Adj+N> 
retrieves rules 4 and 5, and through feedback rules 2, 3 
and 6. The ,:N> pattern component of the input vector 
satisfies the <I>*<NP2> pattern held on the active 
patterns unit which leads to the creation of the first 
inactive edge pattern, <6>*<S>*(<NP>*(<Det>+<N>)). 

The third input is also ambiguous and triggers a 
large number of rules, including rules 7 and 8. Again, 
the <N> pattern in the input vector triggers the 
construction of an NP inactive pattern - 

<6>*<S>*(<N P>*(<Det>+<Adj>+<N>)). 
In addition, the retrieval of rule 7 produces the inactive 
edge pattern <S>*(<NP>*(<Det>+<N>)+<VP>*<V>)), 
corresponding to a premature interpretation of the input 

as The old(N) man(V). However, this pattern rapidly 
decays as new input is received. 

The final two inputs set up another <NP> inactive 
edge which when output to the active patterns unit 
retrieves the label vector associated with the 
constituents of rule 8. This produces a <VP> inactive 
edge which through feedback to the active patterns unit 
retrieves the label vector <6>, as it completes the <S> 
rule. In turn, an inactive edge pattern for <S> is created. 

To complete the parse, the period symbol, or 
corresponding vector, can be used to trigger an 
operation which refreshes only those inactive edges 
which contain the final <S> pattern. All other patterns 
decay rapidly leaving only the constituent structure 
pattern on the inactive patterns unit. 

This parsing example is not concordant with most 
people's reading of the sentence The old man the boats. 
In the first instance, the sentence tends to be parsed as 
two consecutive NPs, (The old man)(the boats), Such 
phenomena would tend to imply that the human parser 
is more deterministic then the present model suggests. 
However, the model is net a complete comprehension 
mechanism and other factors influence the final 
outcome of the parse. In particular, many of the 
phenomena associated with closure and ambiguity can 
be explained in terms of lexical items having preferred 
interpretations (Kaplan and Bresnan, 1982). In the 
present example, the preferred categories for old and 
man are Adj and N, respectively. Such an idea is easily 
accommodated within the present scheme in terms of 
the concept of pattern strength (see Slack, 1984b, for 
details). 

5. MACRO- AND MICRO-LEVEL 
DESCRIPTIONS 

The parsing architecture described in section 3 
specifies a viwtual machine which is compatible with 
both traditional sequential processing based on Von 
Neumann architecture, and massively parallel 
processing using architectures based on connectionist 
principles. The parsing scheme outlined in the last 
section represents a macro-level implementation of the 
distributed representation parsing mechanism. The 
memory operators and agenda control structures that 
determine the sequence of states of the mechanism are 
well-specified, and the parallelism implicit in the system 
is buried deep in the representation. However, the 
concept of a memory vector, and its theoretical 
operators, can also be mapped onto connectionist 
concepts to provide a micro-level implementation of the 
system. 

A connectionist system would employ three layers, 
or collections, of elementary processing units. These 
sets of units correspond to the three distributed memory 
units, and the gross connections between them would 
be the same. Within each set of units an item of 
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information is encoded as a distributed representation, 
that is, as a different pattern of activation over the units. 
The memory operations are modeled in terms of 
excitatory and inhibitory processes between units of the 
same and different layers. As with all connectionist 
models, it is necessary to delineate the principles which 
determine the settings of the input weights and unit 
thresholds. However, no global sequencing mechanism 
is required as the activation processes have their 
influence over a number of interative cycles. Each new 
input pattern stimulates the activity of the system, and 
through their mutual interactions the three sets of units 
gradually converge on an equilibrium state. Providing 
the connection weights and unit thresholds are set 
correctly, the two working memory layers should encode 
the types of active and inactive patterns described 
previously. 

The major advantage of the distributed 
representation parsing scheme is that it obviates the 
need for special-purpose binding units as used in other 
connectionist parsing systems (Selman and Hirst, 1985; 
Cottrell, 1985). The function of such units can be 
achieved through the appropriate use of the association 
operator. 

6. TOWARD A COMPLETE LANGUAGE INPUT 
ANALYSER 

The main goal of this research is to establish the 
relationship between language understanding and 
memory. This involves building a complete language 
analysis system based on a homogenous set of memory 
processing principles. These principles would seem to 
include, (a) the interaction of mutual constraints, (b) a 
high degree of parallel processing, and (c) the necessity 
for distributed representations to facilitate the simple 
concatenation of multiple constraints. Such principles 
need to be matched against linguistic models and 
constructs to derive the most integrated account of 
linguistic phenomena. 

Within these goals, the present chart parsing 
scheme is not allied to any particular grammatical 
formalism. However, distributed memory systems have 
previously been used as the basis for a parsing 
mechanism based on the principles of lexical functional 
grammar (Slack, 1984a). Originally, this system 
incorporated a conventional CFG module, but this can 
now be simulated using distributed memory systems. 
Thus, the processing underlying the language analyser 
is based on a more homogenous set of principles, and 
more importantly, memory principles. 

As a component of the language analyser the CFG 
module generates a constituent structure comprising an 
augmented phrase-structure tree. This structure is 
derived using augmented CF rules of the form: 

6: S ---> NP VP 
('~Subj=~) 
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These augmented rules are easily assimilated into the 
present chart parsing scheme as follows: The functional 
equations {e.g., ( t  Subj=j,)} are replaced by grammatical 
function vectors; <SUB J>, <OBJ>, and so on. These 
vectors are encoded on the stored CF rule patterns as a 
third form of output associated with sub-patterns such as 
(<6>*<S>*<NP>). The function vectors are output to a 
working distributive memory system which encodes the 
functional structure of an input sentence. As long as its 
associated sub-pattern is active within the CFG module 
the appropriate function vector will be output. This 
means that a particular grammatical function vector will 
only be active in the system while the rule and 
constituent with which it is associated are also active. 
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