
Distributed Memory: A Basis for Chart Parsing

Jon M. Slack

Human Cognition Research Laboratory

Open University

Milton Keynes, MK7 6AA

ENGLAND

Abstract

The properties of distributed representations and
memory systems are explored as a potential basis for
non-deterministic parsing mechanisms. The structure of
a distributed chart parsing representation is outlined.
Such a representation encodes both immediate-
dominance and terminal projection information on a
single composite memory vector. A parsing architecture
is described which uses a permanent store of
context-free rule patterns encoded as split composite
vectors, and two interacting working memory units.
These latter two units encode vectors which correspond
to the active and inactive edges of an active chart
parsing scheme. This type of virtual parsing
mechanism is compatible with both a macro-level
implementation based on standard sequential
processing and a micro-level implementation using a
massively parallel architecture.

A lot of recent research has focused on the
problem of building psychologically feasible models of
natural language comprehension. Much of this work
has been based on the connectionist paradigm of
Feldman and Ballard (1982) and other massively
parallel architectures (Fahlman, Hinton and Sejnowski,
1983). For example, Waltz and Pollack (1984) have
devised a model of word-sense and syntactic
disambiguation, and Cottrell (1985) has proposed a
neural network style model of parsing. Originally, such
systems were limited in thier capability to handle tasks
involving rule-based processing. For example, the Waltz
and Pollack model uses the output of a conventional
chart parser to derive a structure for the syntactic parse
of a sentence. However, more recent connectionist
parsing systems (e.g., Selman and Hirst, 1985) are
more suited to handling sequential rule-based parsing.
In this type of model grammar rules are represented by
means of a small set of connectionist primitives. The
syntactic categories of the grammar are represented in a
Iocalist manner, that is, by a computational unit in a
network. The interconnections of the units within the
network are determined by the grammar rules. Such
Iocalised representations are obviously useful in the
construction of connectionist models of rule-based
processing, but they suffer from an inherent capacity
limitation and are usually non-adaptive.

The research to be discussed here differs from
previous work in that it explores the properties of
distributed representations as a basis for constructing
parallel parsing architectures. Rather than being
represented by Iocalised networks of processing units,
the grammar rules are encoded as patterns which have
their effect through simple, yet well-specified forms of
interaction. The aim of the research is to devise a virtual
machine for parsing context-free languages based on
the mutual interaction of relatively simple memory
components.

1. DISTRIBUTED MEMORY SYSTEMS

Constraints on space make it impossible to
describe distributed memory systems in detail, and this
section merely outlines their salient properties. For a
more detailed description of their properties and
operation see Slack (1984a, b).

In distributed memory systems items of information
are encoded as k-element vectors, where each element
ranges over some specified interval, such as [-1 ,+1].
Such vectors might correspond to the pattern of activity
over a set of neurons, or the pattern of activation levels
of a collection of processing units within a connectionist
model. Irrespective of the manifest form of vectors, the
information they encode can be manipulated by means
of three basic operations; association (denoted by *),
concatenation (+), and retrieval (#). The association
operator creates a composite memory vector which
encodes the association of two items of information
(denoting memory vectors by angular brackets, the
association of items <A> and is denoted <A>*).
The concatenation operator creates a composite
memory vector encoding individual items or vectors
(<A>+). Thus, a single composite vector can
encode large numbers of items, and associations
between items. The individual elements encoded on a
composite vector are accessible through the retrieval
operator. When a retrievalkey vector is input to a
composite vector the retrieval operator produces a new
composite vector which encodes those items of
information which were associated with the key vector
on the original composite trace. An important property
of the retrieval and assocaition operators is that they are
both distributive over concatenation. However, only the
association operator is associative.

476

These basic properties enable distributive memory
systems to encode large amounts of knowledge on a
single composite memory vector. The capacity
limitations of such systems are determined by the noise
levels implicit in the output of the retrieval operation.
The generated noise is a function of the number of
traces encoded on a vector and the size of the vector.

Two classes of distributive memory can be
distinguished, permanent and working. The former
provide permanent storage of information, while the
latter have no permanent contents but are used to build
temporary representations of inputs. An important
feature of working distributed memories is that the traces
encoded on them decay. Associated with each vector
encoded on ~t working memory is a decay, or strength,
index. The decay function is event dependent, rather
than time dependent, in that the indices are adjusted on
the oceurence of a new input. This property provides a
useful form of event indexing which is crucial to the chart
parsing scheme.

2. DISTRIBUTED CHART PARSING
REPRESENTATION

The aim of chart parsing using distributed
representations is to derive a composite memory vector
which encodes the type of structural information shown
in figure 1. The figure shows the constituent structure
(C-structure) built for the sentence The man hit the boy.

4-

S

NP ,111 i

N V

VP
i i

NP

DET DET N

I 2 3 4 5 6
The man hit the boy

f igur~ I
This structure incorporates features of different notations
used to describe chart parsing schemes (Earley, 1970;
Kay, 1980). The structure represents a passive lattice
consisting of one cell, or an equivalent edge, per
constituent. It embodies structural information relating to
the immediate-dominance of constituents, as well as
information about the range of terminals spanned by
each constituent. This structure can be collapsed under
the operations of association and concatenation to
derive a composite memory vector representation which

preserves both types of structural information. Each
constituent category is encoded as a random memory
vector; <S>, <NP>, <DET> and so on. The vertices of
the chart (1-6 in figure 1) are mapped onto the set of
decay indices registered by the working memory
systems at each input point. Moving from left to right
through the table shown in figure 1 the vectors are
combined by tile concatenation operator. The
dominance structure exhibited within the table is
preserved by the association operator going from
bottom to top. These procedures produce the following
composite vector which encodes the information
represented in figure 1 :

<S>*<I-6>*{<NP>*<I-3>*{<IDET>*<I-2>+<N><2-3>}
+ <VP>*<3-6>*{<V>'=<3-4> +
<N P>*<4-6>*{<DET>*<4-5>+<N>*<5-6>}}

Each component of the pattern consists of a vector
encoding a constituent label associated with the input
indices defining the left and right edges of the
constituent. This form of representation is similar to the
idea of assertion sets which have been shown to have
useful properties as parsing representations (Barton
and Berwick, 1985). One of the major advantages of the
representation is that the two types of structural
information are jointly accessible using the appropriate
retrieval vector, that is category label vector. For
example, if the composite vector is accessed using the
retrieval vector <VP>, then the retrieved pattern encodes
both the categories dominated by VP and the range of
input terminals covered by VP.

3. PARSING ARCHITECTURE

A possible parsing architecture for realising the
above scheme is shown in figure 2. The parsing
mechanism consists of three distributed memory units,
one permanent unit which stores context-free rule
patterns, and two working memory units which encode
temporary constituent structures. In figure 2, the stored
rules pattern memory adds retrieved lists of rule
constituents to the active patterns working memory.
The double arrows on the lines connecting to the
inactive patterns memory depict the two-way
interactions between the inactive patterns and both the
stored rule patterns and active patterns.

The input to the parsing mechanism comprises the
syntactic categories of each constituent of the input
string. This input is received by the inactive patterns
working memory and each new input triggers the
indexing of patterns in accordance with the decay
function. Thus, while a category label vector is held on
the inactive patterns unit its decay index is continually
up-dated.

477

Active
patterns

Inactive
patterns

INPUT

F/gure 2

Representing the rules of the CFG by the following
notation:

label: Constituent category ---> List of constituents
or

L i:Cat i ---> Cij's
Each element of a rule is encoded as a memory vector,
and the rules are stored in the permanent memory unit
in terms of the following patterns:

<Cil >*(*<Cati>//<Ci2>*. *<Cik>*)

The vector <Ci l> encodes the first constituent on the
RHS of the CF rule labeled . When this constituent
is input to the rule patterns store the split pattern with
which it is associated is retrieved as output. The
retrieved pattern is split in that the two halves of the
pattern are output over different lines. The first half of
the pattern, *<Cati>, is output to the inactive

patterns unit, and the second half, <Ci2>*....*<Cik>*,
is output to the active patterns memory unit. This
retrieval process is equivalent to building an active edge
in active chart parsing (Kay, 1980; Thompson, 1983). A
major difference, however, is that the vector encoding
the active edge is split over the two working memory
units.

The active patterns unit now encodes the list of
remaining constituents which must occur for the RHS of
rule to be satisfied. Meanwhile, the inactive
patterns unit encodes the category of the hypothesised,
or active, edge. If the list of necessary constituents is
matched by later inptus then the label of the satisfied
rule is retrieved on the active patterns unit and output to
the inactive patterns store. This new input retrieves the
constituent category associated with the rule label on
the inactive patterns unit. This retrieval process is
equivalent to building an inactive edge in standard
active chart parsing. Each time a new inactive edge
pattern is created it is output to both the other units to
determine whether it satisfies any of the constituents of a

478

stored rule, or any remaining active patterns. Those
active patterns which do not have their constituent
elements matched rapidly decay, and fade out of the
composite traces held on the two working memory units.

When a rule is satisfied and an inactive pattern, or
edge, is built the index range spanned by the rule is
retrieved at the same time as the rule's category vector.
Thus, an inactive pattern is encoded as <Cati>*<m-q>,
where <m-q> encodes the range of input indices
spanned by the category <Cati>.

Within this scheme the alternative CF rules for a
particular constituent category have to be encoded as
separate rule patterns. For example, the rules for
building NPs would include the following:

1: NP ---> DETNP 2

2: NP---> NP 2
3: NP---> NP PP
4: NP 2 - - > N

5: NP2---> ADJ NP 2

To simulate a top-down parsing scheme the active
elements encoded on the inactive patterns unit can
function as retrieval vectors to the stored rules unit. This
feedback loop enables a retrieved category to retrieve
further rule patterns; those for which it is the first
constituent. In this way, all the rule patterns which are
applicable at a particular point in the parse are retrieved
and held as active edges split across the two working
memory units. On each cylce of feedback the newly
retrieved rule categories are associated with the active
elements which retrieved them to form patterns such as
<La>*<S>*(<Lb>*<NP>).

On successfully parsing a sentence the inactive
patterns unit holds a collection of inactive edge patterns
which form a composite vector of the type described in
section 2. All active patterns, and those inactive edges
which are incompatible with the final parse rapidly
decay leaving only the derived constituent structure in
working memory. If an input sentence is syntactically
ambiguous then all possible C-structures are encoded
on the final composite vector. That is, as it stands the
parsing scheme does not embody a theory of syntactic
closure, or preference.

4. A PARSING EXAMPLE

The parsing architecture described above has
been implemented on standard sequential processing
machinery. To achieve this it was necessary to decide
on computational functions for the three memory
operators, and to build an agenda mechanism to
schedule the ordering of the memory unit input/output
processes. The association and retrieval operators
were accurately simulated using convolution and
correlation functions, respectively. The concatenation

operator was simulated through a combination of vector
addition and a normalisation function. All syntactic
categories, rule labels, and input indices were encoded
as randomly assigned 1000-element vectors.

The agenda mechanism imposes the following
sequences on input-output operations:

[A] The input lines to the inactive patterns unit are
processed in the order - constituent input, input from
stored rule patterns unit, and finally, input from active
patterns unit.

[B] The retrieval and output operations for the
units are cycled through in the order - activation of
stored rule patterns, including top-down feedback;
matching of active patterns, and building of inactive
edge patterns.

[C] The final operation is to increment the input
indices, before accepting the next constituent input.

To illustrate the operation of the parsing
mechanism it is useful to consider an example. As a
simple example, assume that the stored rule patterns
unit holds the following context free rules:

1: NP---> DETNP 2 6: S---> NP VP

2: NP---> NP 2 7: VP---> V
3: NP ---> NP PP 8: VP---> V NP
4: NP 2-*-> N 9: VP---> VP PP
5: NP2---> ADJ NP 2 10: PP---> Prep NP

In parsing the sentence The old man the boats the
lexical ambiguity associated with the words old and man
produces the input string

<Det> <Adj+N> <N+V> <Det> <N>

The first input vector, <Det>, retrieves rule 1,
setting up <NP2> on the active patterns unit and
<I>*<NP>*(<Det>) on the inactive patterns unit (the
input indices have been omitted to simplify the notation).
Through feedback, rules 3 and 6 are also retrieved
creating the pattern <NP2>*<I>+<PP>*<3>+<VP>*<6> on
the active patterns unit, and the pattern
<6>*<s>*((<1 >*<NP>*(< Det>)+(<6>*<N P>*(<I >*<NP>*(<Det>)))
on the inactive patterns unit.

On input of the second word which covers the
categories Adj and N, the composite vector <Adj+N>
retrieves rules 4 and 5, and through feedback rules 2, 3
and 6. The ,:N> pattern component of the input vector
satisfies the <I>*<NP2> pattern held on the active
patterns unit which leads to the creation of the first
inactive edge pattern, <6>*<S>*(<NP>*(<Det>+<N>)).

The third input is also ambiguous and triggers a
large number of rules, including rules 7 and 8. Again,
the <N> pattern in the input vector triggers the
construction of an NP inactive pattern -

<6>*<S>*(<N P>*(<Det>+<Adj>+<N>)).
In addition, the retrieval of rule 7 produces the inactive
edge pattern <S>*(<NP>*(<Det>+<N>)+<VP>*<V>)),
corresponding to a premature interpretation of the input

as The old(N) man(V). However, this pattern rapidly
decays as new input is received.

The final two inputs set up another <NP> inactive
edge which when output to the active patterns unit
retrieves the label vector associated with the
constituents of rule 8. This produces a <VP> inactive
edge which through feedback to the active patterns unit
retrieves the label vector <6>, as it completes the <S>
rule. In turn, an inactive edge pattern for <S> is created.

To complete the parse, the period symbol, or
corresponding vector, can be used to trigger an
operation which refreshes only those inactive edges
which contain the final <S> pattern. All other patterns
decay rapidly leaving only the constituent structure
pattern on the inactive patterns unit.

This parsing example is not concordant with most
people's reading of the sentence The old man the boats.
In the first instance, the sentence tends to be parsed as
two consecutive NPs, (The old man)(the boats), Such
phenomena would tend to imply that the human parser
is more deterministic then the present model suggests.
However, the model is net a complete comprehension
mechanism and other factors influence the final
outcome of the parse. In particular, many of the
phenomena associated with closure and ambiguity can
be explained in terms of lexical items having preferred
interpretations (Kaplan and Bresnan, 1982). In the
present example, the preferred categories for old and
man are Adj and N, respectively. Such an idea is easily
accommodated within the present scheme in terms of
the concept of pattern strength (see Slack, 1984b, for
details).

5. MACRO- AND MICRO-LEVEL
DESCRIPTIONS

The parsing architecture described in section 3
specifies a viwtual machine which is compatible with
both traditional sequential processing based on Von
Neumann architecture, and massively parallel
processing using architectures based on connectionist
principles. The parsing scheme outlined in the last
section represents a macro-level implementation of the
distributed representation parsing mechanism. The
memory operators and agenda control structures that
determine the sequence of states of the mechanism are
well-specified, and the parallelism implicit in the system
is buried deep in the representation. However, the
concept of a memory vector, and its theoretical
operators, can also be mapped onto connectionist
concepts to provide a micro-level implementation of the
system.

A connectionist system would employ three layers,
or collections, of elementary processing units. These
sets of units correspond to the three distributed memory
units, and the gross connections between them would
be the same. Within each set of units an item of

479

information is encoded as a distributed representation,
that is, as a different pattern of activation over the units.
The memory operations are modeled in terms of
excitatory and inhibitory processes between units of the
same and different layers. As with all connectionist
models, it is necessary to delineate the principles which
determine the settings of the input weights and unit
thresholds. However, no global sequencing mechanism
is required as the activation processes have their
influence over a number of interative cycles. Each new
input pattern stimulates the activity of the system, and
through their mutual interactions the three sets of units
gradually converge on an equilibrium state. Providing
the connection weights and unit thresholds are set
correctly, the two working memory layers should encode
the types of active and inactive patterns described
previously.

The major advantage of the distributed
representation parsing scheme is that it obviates the
need for special-purpose binding units as used in other
connectionist parsing systems (Selman and Hirst, 1985;
Cottrell, 1985). The function of such units can be
achieved through the appropriate use of the association
operator.

6. TOWARD A COMPLETE LANGUAGE INPUT
ANALYSER

The main goal of this research is to establish the
relationship between language understanding and
memory. This involves building a complete language
analysis system based on a homogenous set of memory
processing principles. These principles would seem to
include, (a) the interaction of mutual constraints, (b) a
high degree of parallel processing, and (c) the necessity
for distributed representations to facilitate the simple
concatenation of multiple constraints. Such principles
need to be matched against linguistic models and
constructs to derive the most integrated account of
linguistic phenomena.

Within these goals, the present chart parsing
scheme is not allied to any particular grammatical
formalism. However, distributed memory systems have
previously been used as the basis for a parsing
mechanism based on the principles of lexical functional
grammar (Slack, 1984a). Originally, this system
incorporated a conventional CFG module, but this can
now be simulated using distributed memory systems.
Thus, the processing underlying the language analyser
is based on a more homogenous set of principles, and
more importantly, memory principles.

As a component of the language analyser the CFG
module generates a constituent structure comprising an
augmented phrase-structure tree. This structure is
derived using augmented CF rules of the form:

6: S ---> NP VP
('~Subj=~)

480

These augmented rules are easily assimilated into the
present chart parsing scheme as follows: The functional
equations {e.g., (t Subj=j,)} are replaced by grammatical
function vectors; <SUB J>, <OBJ>, and so on. These
vectors are encoded on the stored CF rule patterns as a
third form of output associated with sub-patterns such as
(<6>*<S>*<NP>). The function vectors are output to a
working distributive memory system which encodes the
functional structure of an input sentence. As long as its
associated sub-pattern is active within the CFG module
the appropriate function vector will be output. This
means that a particular grammatical function vector will
only be active in the system while the rule and
constituent with which it is associated are also active.

7. REFERENCES

Barton, G.E. and Berwick, R.C. (1985) Parsing with

assertion sets and information monotonicity. In

Proceedings of MCAI-85, Los Angeles.

Cottrell, G.W. (1985) Connectionist Parsing. In

Proceedings of the Seventh Annual Conference of the

Cognitive Science Society, Irvine, California, 201-212.

Earley, J. (1970) An efficient context-free parsing

algorithm. Communications of the Association for

Computing Machinery, 13, 94-102.

Fahlrnan, S.E., Hinton, G.E., and Sejnowski, T.J.

(1983) Massively parallel architectures for Al: NETL,

Thistle, and Boltzmann machines. In Proceedings of AAAI,

Washington, 109-113.

Feldman, J.A. and Ballard, D. (1982) Connectionist

models and their properties. Cognitive Science, 6,

205-254.

Kaplan, R. and Bresnan, J. (1982) Lexical Functional

Grammar: A formal system for grammatical representation.

In Bresnan, J. (ed.), The Mental Representation of

Grammatical Relations, MIT Press, Cambridge, Mass..

Kay, M (1980) Algorithm schemata and data structures

in syntactic processing. In Proceedings of the Symposium

on Text Processing. Nobel Academy.

Pollack, J. and Waltz, D. (1985) Massively parallel

parsing: A strongly interactive model of natural language

interpretation. Cognitive Science, 9, 51-74.

Selman, B. and Hirst, G. (1985) A rule-based

connectionist parsing system. In Proceedings of the

Seventh Annual Conference of the Cognitive Science

Society, Irvine, California.

Slack, J.M. (1984a) A parsing architecture based on

distributed memory machines. In Proceedings of

COLING-84, Stanford.

Slack, J.M. (1984b) The role of distributed memory in

natural language parsing. In Proceedings of ECAI-84,

Pisa.

Thompson, H.S. (1983) MCHART: A flexible, modular

chart parsing system. In Proceedings of AAAI, Washington.

481

