
STORING TEXT USING INTEGER CODES 

Raja Noor Ainon 
Computer Centre 

University of Malaya 
59100 Kuala Lumpur, Malaysia. 

Abstract 

Traditionally, text is stored on computers as 
a stremn of characters. The goal of this research is 
to store text in a form that facilitates word manipu- 
lation whilst reducing storage space. A word list 
with syntactic linear ordering is stored and words in 
a text are given two-byte integer codes that point to 
their respective positions in this list. The imple- 
mentation of the encoding scheme is described and the 
perfomnance statistics of ~lis encoding scheme is 
presented. 

1.0 Introduction 

This research aims at storing text in a form 
that facilitates word manipulation whilst saving 
storage space. Although there are many text compre- 
ssion algorithnts currently in use, the word manipula- 
tion capability has yet to be incorporated. Harris 
[2], in his research, compiled a 40,000 word list 
with syntactic linear ordering and suggested that 
words in a text be given two-byte integer codes that 
point to their respective positions in this list. In 
this way the coded text has inherent syntactic 
information, thereby making it useful for many 
applications including statistical linguistics and 
question-answering systems. In this paper, we show 
how such a scheme can achieve optimal compression 
results and present its efficient implementation. 

Three text compression techniques that have 
been tested on English texts include (i) the Huffman 
variable-length encoding schemes [3] which achieve 
tight packing of data by giving variable-length bit 
code for each character, with more frequently- 
occurring words having shorter codes, (2) the 
Adaptive pattern substitution algorithm, also known 
as the Lempel-Ziv or LZW algorithm (see [7], [8], [9]) 
which converts variable-length strings of input 
symbols into fixed length codes by first looking for 
con~non patterns of two or more bytes occurring 
frequently, and then substituting an unused byte for 
the common long one, and (3) another technique, due 
to Hahn [i] encodes non-blank characters in groups of 
a fixed size as unique fixed point ntunbers. 

For measuring text compression two definitions 
are used in this paper. One is the compression ratio 
defined as the ratio of size of the original text to 
that of the coded text. ~he other is the compression 
percentage, defined as 

(Size of original text - Size of coded text)% 

(Size of original text) 

of its size, is treated a~ a unit and is represented 
in computers in the form of a computer word (usually 
4 bytes) or part of a word. It is addressable, 
hence it does not require a delii~ter like a space 
to distinguish it from a neighbouring number. 

For this encoding scheme, we endeavour to 
store text as a stream of fixed length computer words 
which is distinguishable by the computer. This can 
be achieved by keeping an external list of all words 
in the dictionary includ]mg derived ones, and 
assigning a unique integer code for each entry. 
Instead of words separated by delimiters the coded 
text represents words as numbers, thereby dispensing 
the need for representing delimiters. 

In using two bytes to represent an integer 
it is possible to have 216 - 1 = 65536 distinct 
codes. However, since it is impossible to have 
codes for all the words in the English Lan~lage, 
it is necessary to include a mechanism that allows 
for the representation of words without codes by 
their individual characters. Keeping one bit for 
that purpose ].eaves 215 - i = 32767 possible number 
of combinations. Two adjoining character codes 
(ASCII or EBDIC) always have zero as the first bit 
and is therefore read as a positive integer. The 
first bit, being a sicrn bit, can be used to indicate 
whether the two bytes represent a code (negative 
integer) or two characters, as follows: - 

IXXXXXXX XXXXXXXX a code 
OXXXXXXX XXXXXXXX two characters 

It is also necessary to show that compression 
can indeed be achieved for this encoding scheme. In 
several studies it has been shown (see Kucera [4], 
for example)that the word frequency distribution 
in natural language analysis is highly-skewed. 
Assu~ing a skewed distribution it may be seen that 
the 32000 most-frequently occurring words from the 
Cobuild* corpus constituting 60% of the corpus, 
account for 99% of the total word usage. Including 
these 32000 words in the list will imply that words 
without codes (not included in the list) makes up 
1% of the text. Assuming that the average size of 
an English word [4] consists of 4.7 characters we 

would expect thst an average occurring word would 
occupy, taking one more byte for a trailing space, 
5.7 bytes. Thus the compression ratio is 
[(2/5.7)* 0.99 + 0.01] -] : 2.8, meaning that a 
coded text is 35.7% of the original text. 

2.0 The Two-Byte-Word Encoding Scheme 

In most computers, text is stored as a stream 
of characters - made up of alphabtes, spaces, digits 
and punctuation ma~s. Fmch word is separated from 
neigh~]uring words by delimiters such as spaces, 
~peciaL characters or punctuation nmrks. On the other 
3and, a number (integer or floating point) regardless 

*~he corpus used in the Cobuild Project, a project 
in the EnglishDepartment, University of Birmingham, 
is made of 6 million words of written text and 1.3 
million words of transcribed speech. 

418 



The encoding scheme was implemented on a 
Honeywell computer using MULTICS operating system. 
Since MULTICS represents characters using ASCII 
with the nine bits per character, two bits are not 
being utilized. For our implementation, one bit is 
used to indicate words beginning with upper-case 
characters (proper names, etc) and the other 
available bit is kept for future develo~nent. 

3.0 She Word List 

I~Lrris [2] has constructed a word list 
with linear ordering in a sense that all words in 
a group are derived forms of a baseword (the first 
word in the group), and its relative position ~nplies 
its syntactic information (see figure 1). Because 
the n~nber of derived forms is not regular, the size 
of a group varies. Even though the positional 
notation cannot be used in a strict sense as in 
numbers because of the length variability of the 
groups, the relative position of a member in a 
group can still provide its syntactic infomnation. 

For a comprehensive and consistent word 
list, some words which are not in the top 32000 have 
had to be included, resulting in a larger word list. 
As the size of the integer codes cannot exceed 
32768, the whole word list r~%y have to be reduced 
by excluding s~ne words in the top 32000. 

In using the above word list, it is found 
that two problems may arise due to (1) the occur- 
rence of homographs (words identical in spelling 
but different in pronunciation and meaning) and 
homologs (words identical in spelling and pronun- 
~i=~tion but different in meaning~ and (2)the 
occurrence of words having the same meaning but 
different syntax. If different codes are given to 
the duplicate words the encoding process would need 
an intelligent parser to be able to differentiate 
between the two. Such a parser, though not 
impossible to implement, is not cost-justifiable 
for this study; hence the only alternative is to 
assign the code for both words and to allow for 
ambiguity when the coded text is used for analysis. 

Set A (4 verb forms) 

arch arches arching arched 
bid bids bidding bid 
round rounds rounding rounded 

Set B (4 verb fomns + 1 noun) 

abnndon 
acclaim 
consent 

abmdons abandoning 
acclaims acclaiming 
consents consenting 

abandoned abandonment 
accla~ned acclamation 
consented consent 

Vig. 1 

4.0 Implementation 

For encoding, a code table c~nprising more 
than 32000 distinct words in the word list indicating 
their codes is stored in an indexed file using the 
words as keys. For faster encoding, the top 200 
words from dle Cobuild corpus are stored in a hash 
table. During encoding this hash table is searched 
before searching the code table, therefore saving 

execution time when enccx]ing con~non words. 

For word mani~:~lation of the encoded text 
the word list needs to k~ structured in order that 
the syntactic informaticm is captured. That is, the 
group and the set (set-~Type)to which the word 
belongs and the relative position of the word in 
the group needs robe ir~icated. For our ~llplemen- 
tation a l~ed list is employed to store a word 
which has liJ{s to the ~mse word (the first word 
in the group) and the next word in the group and 
information containing its set-type. Each node in 
the linked list is stored as a record in an indexed 
file using the codes as keys. In this way each word 
in a group can be retrieved individually and the 
group can be synthesized from tracing the links to 
the next word. There is further gain in using the 
codes as the search key in that the same file can 
be used for ~le decoding process. 

5.0 Some Sample Statistics 

Table 1 gives the perfomnance statistics 
of the two-byte-word encoding scheme on four English 
texts. Comparison of compression ratios with other 
techniques is sheik) in Table 2. 

Table 1 Perfoz~kqnce statistics of the two-byte-word 
encoding scheme on several English texts 

Text Text I a Text 2 b Text 3 c Text 4 d 

I. Size of 
input text 2,927,745 2,542,977 3,605,931 2,840,193 
(in bits) 

2. No. of 
Tokens 

3. No. of 
uncoded 
words 

4. 

5. 

6. 

7. 

8. 

9. 

6005 5789 7844 7].48 

1120 181 "7 2860 2069 

Compression 
Ratio 2.08 2.02 2.00 1.90 

Compression 
Percentage 51.93% 50.47 % 49.87 % 47.42 % 

Percentage 
of Text 
that is 
coded 

91% 78% 77% 8]% 

Encoding 
Time (in 
Secs) 

56 58 78 64 

Word Fre- 
quency Count 
of Coded Text 
(in Secs) 

37 39 52 45 

Word Fre- 
quency Count 187 [].78 239 not 
of Uncoded available 
Text (in Secs) 

a. "S~nall is Beautiful" by E.F. Scht~nacher 
b. "Baby and Child Care" by Dr. B. Speck 
c. "She Third World War" by Sir John Hacket 
d. "The ArLlericans" by A. Cooke 

419 



Table 2 Comparison of the Two-Byte-Word 
Encoding Scheme with other Algorithms 

Technique 

Pechura [5] 1.5 
Welch [7] 1.8 
Huf fman [ 3 ] i. 9 
Two-byte-word 2.0 
Hahn [ 1 ] 2.4 
Rubin [6] 2.4 

From Table 1 it is observed that on the 
average the compression percentage is 82%. Although 
short of the 99% mentioned in section 2.0, this is 
expected,since not all of the top 32000 words have 
been included in the word list. The compression 
ratio as shown in the fourth row has a mean of 2.0. 
Comparing the last row with the sl~m of the 7th and 
8th row it is seen that the speed for word frequency 
count for the coded texts is much faster than that 
of the coded texts. 

6.0 Some Practical Applications 

For purposes of storing compressed text, 
the two-byte-word encoding scheme can be used 
independent of the word list and some results are 
show]] in the previous section. It maybe seen that 
the performance of the scheme is comparable with 
other well-known techniques (see Table 2). With 
the word list the scheme is capable of word 
nmniDulation and therefore it can be used for more 
intelligent applications. For example, the scheme 
has been used for obtaining the le~natized word 
count of several large texts - an almost impossible 
task when done manually. No comparison results is 
shown s~nplybecause no similar system currently 
exists. 

Because the words in the coded text are 
represented by integers, word comparison - a common 
task in linguistic research involving comparison of 
character by character - becomes comparison of two 
numbers which is a c~lick and simple operation on 
digital computers. This is reflected quite 
dramatically on obtaining the word frequency 
count of the coded text. 

Agknowled~ements 

I wish to thank Professor John Sinclair 
of the English Department, University of Birmingham 
for the use of research facilities in the Cobuild 
project. I a~l also grateful to the University of 
Malaya for providing the funds for my stay in 
Britain. 

References 

i. Hahn, B., "A new technique for compression and 
storage of data", CAC~4 Aug. 1974, Vol. 17, No.8, 
pp. 434-436. 

2. Harris, S., research report, English Language 
Department, University of Birmingham. 

3. Huffman, D.A., "A method for the construction 
for minimum redundancy codes" Proc. IRE40, 
40, 9 (Sept. 1952), 1098-1101. 

4. Kucera, H. and Francis, W.N., "Computational 
analysis of present-day American English", 
Brown Univ. Press 1967. 

5. Pechura, M.," File archival techniques using 
data compression", CACM, Vol. 25, No. 9, Sept. 
1982, pp. 605-609. 

6. Rubin, F., "Exper~nents in text file compression" 
CACM, Vol. 19, No. ii, Nov. 1976, pp. 617-623. 

7. Welch, T.A., "A technique for high-performance 
data compression", IEEE Computer, June 1984, 
pp. 8 - 19. 

8. Ziv, J. and Lempel, A., "A Universal algorit[ml 
for sequential data compression" IEEE Trans. 
Information Theory, Vol. IT-23, No. 3, May 1977, 
pp. 337-343. 

9. Ziv, J .  and Lempel, A., "Compression of individual 
sequences via variable-rate coding", IEEE Trans. 
Information TheoLy, Vol. IT-24, No. 5, Sept. 
1978, pp. 5306. 

420 


