
A MORPHOLOGICAL RECOGNIZER WITH SYNTACTIC A N D

PHONOLOGICAL RULES

John Bear
Artificial Intel l igence Cen te r

SRI In t e rna t iona l
333 Ravenswood Ave

Menlo Park, CA 94025
U.S.A.

Abstract

This paper describes a morphological analyzer which, when pars-
ing a word, uses two sets of rules: rnles describing the syntax of
words, and rules describing facts about orthography.

1 Introduction t

In many natural language processing systems currently in use,
the morphological phenomena are handled by programs which
do not interpret any sort of rules, but rather contain references
to specific morphemes, graphemes, and grammatical categories.
Recently Kaplan, Kay, Koskennicmi, and Karttunen have shown
how to construct morphological analyzers in which the descrip-
tions of the orthographic and syntactic phenomena are separable
from the code. This paper describes a system that builds on
their work in the area of phonology/orthography and also has
a well defined syntactic component which applies to the area of
computational morphology for the first time some of the tools
that have bccn used in syntactic analysis for quite a while.

This paper has two main parts. The first deals with the or-
thographic aspects of morphological analysis, the second with
its syntactic aspects. The orthographic phenomena constitute
a blend of phonology and orthography. The orthographic rules
given in this paper closely resemble phoImlogical rules, both in
form and fimctlon, but because their purpose is the description of
orthographic facts, the words orthography and orthographic will
be used in preference to phonology and phonological.

The overall goal of the work described herein is the devel-
opment of a flexible, usable morphological analyzer in which the
rules for both syntax and spelling arc (1) separate from the code,
and (2) descriptively powerful enough to handle the phenomena
encountered when working with texts of written language.

2 Orthography
The researchers mentioned above use finite-state transducers for
stipulating correspondences between surface segments, and un-
derlying segments. In contrast, the system described in this pa-

ll am indebted to Lauri Karttunen and Fernando Pereir~ for all their
help. Laurl supplied the initial English automat~ on which the orthographic
grammar was based, while Fernando furnished some of the Prolog code. Both
provided many helpful suggestion~ and explanations as well. I would also like
to thank Kimmo Koskennlemi for his comments on an earlier draft of this
paper.

This research was supported by the following grants: Naval Electronics
Systems Command N00039-84-K-0078; Navelex N00039-84-C-0524 P00003;
Office of Naval Research N00014-85-C-0013.

per does not use finite state machines. Instead, orthographic
rules are interpreted directly, as constraints on pairings of sur-
face strings with lexieal strings.

Tile rule notation employed, including conventions for express-
ing abbreviations, is based on that described in Koskenniemi
[1983,1984]. Tile rules actually used in this system are based on
tile account of English in Karttunen and Wittenburg [1983].

2.1 Rules

What follows is an inductive introduction to the types of rules
needed. Some pertinent data will be presented, then some po-
tential rules for handling these data. We shall also discuss the
reasons for needing a weaker form of rule and indicate what it
might look like.

Let us first consider some data regarding English / s / mor-
phemes:

ALWAYS -ES
box+s ~--~ boxes
class+s ~ classes
fizz+s ~ fizzes
spy+s *----* spies
ash+s ~ ashes
ehureh+s ~---o churches
ALWAYS -S
s lam+s ~ slams
hi t+s ~ hits
t ip+s *---* tips

SOMETIMES -ES,
SOMETIMES -S
piano+s ~ pianos
solo+s ~ solos
do+s ~ does
pota to+s ~ potatoes
banjo+s ~ banjoes or banjos
cargo+s ~ cargoes or cargos

Below are presented two possible orthographic rules for de-
scribing the foregoing data:

t u) + - - - , c { x I z I y / i I s (h) I c h } _ s
p~2) + - - - * e {x I z I y / i I s (h) I e h I o} _ s

The first of these rules will be shown to be too weak; the second,
in contrast, will be shown to be too strong. This fact will serve
as an argument for introducing a second kind of rule.

2 7 2

Before describing how the rules should be read, it is necessary
to define two technical terms. In phonology, one speaks of under-
lying segments and surface segments; in orthography, characters
making up the words in the lexicon contrast with characters in
word forms that occur in texts. The term lezical character will
be used here to refer to a character in a word or morpheme in
tile lexicon, i.e., the analog of a phonological underlying segment.
Tile term sat[ace character will be used to mean a character in a
word that could appear in text. For example, [1 o v e + e d] is a
string of lexieal characters, while [I o v e d] is a string of surface
characters.

We may now describe how the rules should be read. The first
rule should be read roughly as, "a morpheme boundary [+] at the
lexical level corresponds to an [el at the surface level whenever
it is between an [x] and an [s], or between a [z] and an [s], or
between a lcxical [y] corresponding to a surface [i] and an [s], or
between an [s h] and an [s] or between a [e h] and an [s]." This
means, for instance, that the string of lexical characters [c h u r
e h + s] corresponds to the string of surface characters [c h u r c
h e s] (forgetting for the moment about the possibility that other
rules might also obtain). The second rule is identical to the first
except for an added [o] in tile left context.

When we say [+] corresponds to [el between an lxl and an N,
we mean between a Icxical I x] corresponding to a surface lxl and
a lexical Is] corrcsponding to a surface [s]. If we wantcd to say
that it does not matter what the lexieal [x] corresponds to on the
surface, we would use [x/=] instead of just ix].

The rules given above get tile facts right for the words that
do not end in [o]. For those that do, however, Rule 1 misses
on [do+s] ~ - ~ [docs], [potato+s[¢=~ [potatoes]; Rule 2 misses
on [piano+s] ~ [pianos], [solo+s] ~ : ~ [solos[. Furthermore,
neither rule allows for the possibility of more than one acceptable
form, as in [banjo+s] ~ ([banjoes] or [banjos]), [cargo+s]
([cargoes] or [cargos]).

The words ending in [o] can be divided into two classes: those
that take an [es] in their plural and third-person singular forms,
and those that just take an [s]. Most of the facts could be de-
scribed correctly by adopting one of the two rules, e.g., the one
stating that words ending in [o] take an [es] ending. In addition
to adopting this rule, one wouhl need to list all the words taking
an [s] crating as being irregular. This approach has two prob-
lems. First, no matter which rule is chosen, a very large number
of words wouht have to bc listed in the lexicon; second, this ap-
proach does not account for the cocxlstcnce of two alternative
forms for some words, e.g., [banjoes] or [banjos].

The data and arguments just given suggest the need for a sec-
ond type of rule. It would stipulate that such and such a corre-
spondence is allowed but not required. An example of such a rule
is given below:

R3) + / c allowed in context o _ s.

Rule 3 says that a morpheme boundary may correspond to an
[el between an [o] and an [s]. It also has the effect of saying that
if a morphcme boundary ever corresponds to an [c], it must be
in a context that is explicitly allowed by some rule.

If we now have the two rules R1 and R3,

R1) 4- ~ e / { x l z [y / [I s (h) [e h } - s
R3) +]e allowed in context o _ s,

we can generate all the correct forms for the data given. Further-
more, for the words that have two acceptable forms for plural or
third person sing-ular, we get both, just as we would like. The

problem is that we generate both forms whether we want them
or not. Clearly some sort of restriction on the rules, or "fine
tuning," is in order; for the time being, however, the problem of
deriving both forms is not so serious that it cannot be tolerated.

So far we have two kinds of rules, those stating that a cor-
respondence always obtains in a certain environment, and those
stating that a correspondence is allowed to obtain in some en-
vironment. The data below argue for one more type of rule,
namely, a rule stipulating that a certain correspondence never
obtains in a certain environment.

DATA FOR CONSONANT DOUBLING
DOUBLING:
bar+ed ~ barred
big+est ~ biggest
refer+ed +---~ referred
NO DOUBLING:
question+ing ,---4 questioning
hear+ing ~ hearing
hack+ing ~ hacking

BOTH POSSIBILITIES:
travel+ed ~ (travelled or traveled) both are allowed

In English, final consonants are doubled if they, "follow a single
[orthographic] vowel and the vowel is stressed." [from l{arttunen
and Wittenbnrg 1983]. So for instance, in [hear+ing], thc final [r I
is preceded by two vowels, so there is no doubling. In [haek+ing],
the final [k] is not preceded by a vowel, so there is no doubling.
In [question+lug], the last syllable is not stressed so again there
is no doubling.

In Kart tunen and Wittenlmrg [1983] there is a single rule listed
to describe the data. llowever, the rule makes use of a diacritic
(') for showing stress, and words in the lexicon must contain this
diacritic in order for the rule to work. The same thing could
be done in the system being described here, but it was deemed
undesirable to allow words in the lexicon to contain diacritics en-
coding information such as stress. Instead, the following rules are
used. Ultimately, the goal is to have some sort of general mech-
anism, perhaps negative rule features, for dealing with this sort
of thing, but for now no such mechanism has been implemented.

RULES FOR CONSONANT DOUBLING
"Allowed-type" rules

' + ' / b allowed in context vV b _ vV z
' + ' / c allowed in context vV c _ vV
' + ' / d allowed in contexl vV d vV
' + ' / f allowed in context vV f _ vV
' + ' / g allowed in context vV g _ vV
'+ ' / I allowed in context vV I vV
' + ' / m allowed in context vV m _ vV
' + ' / n allowed in context vV n _ vV
' + ' / p allowed in context vV p _ vV
' + ' / r allowed in context vV r _ vV
' + ' / s allowed in context vV s _ vV
'+'It allowed in context vV t _ vV
' + ' / z allowed in context vV z _ vV

"Disallowed-type" rules

' + ' / b disallowed in context vV vV h _ vV
' + ' / c disallowed in context vV vV c _ vV
' + ' / d disallowed in context vV vV d _ vV

2In these rules, the symbol vV stands for any element of the following set
of orthographic vowels: {a,e,i,o,u}.

273

' + ' / f disallowed in context vV vV f _ vV
' + ' / g disallowed in context vV vV g _ vV
'+ ' /1 disallowed in context vV vV l vV
' + ' / m disallowed in context vV vV m _ vV
'+'In disallowed in context vV vV n _ vV
'+'/p disallowed in context vV vV p vV
' + ' / r disallowed in context vV vV r _ vV
' + ' / s disallowed in context vV vV s _ vV
' + ' / t disallowed in context vV vV t _ vV
'+'/z disallowed in context vV vV z _ vV

The allowed-type rules in tile top set are those that license
consonant doubling. The disallowed-type rules in the second set
constrain the doubling so it does not occur in words like [eat+ing]
¢:==> [eating] and [hear+ing] ¢====~ [hearing I. The disallowed-type
rulcs say that a morpheme boundary [+] may not ever correspond
to a consonant when tile [+] is followed by a vowel and preceded
by that same consonant and then two more vowels.

The rules given above suffer from the same problem as the
previous rules, namely, over generation. Although they produce
all the right answers and allow nmltiple forms for words like
[travel+er] ~ ([traveller] or [traveler]), which is certainly a
positive result, they also allow multiple forms for words which do
not allow them. For instance they generate both [referred] and
[refered]. As mentioned earlier, this problem will be tolerated for
the time being.

2 .2 C o m p a r i s o n w i t h K o s k e n n i e m i ' s R u l e s

Koskenniemi [1983, 1984] describes three types of rules, as exem-
plified below:

R4) a > b :=:*- c /d c / f - g /h i/j
RS) a > b ~ = old e/f- g/h i/j
R6) a > b ~ e/d e l l - g/h i/j.

Rule R4 says that if a lexical [a] eorresponds to a surface [b],
then it must be within tile context given, i.e., it must be preceded
by [c/d eft] and followed by [g/h i/j | . This corresponds exactly
to tile rule given below:

RV) a /b allowed in context old e / f_ g/h i/j.

The rule introduced as R5 and repeated below says that if a
lexieal [a] occurs following [c/d e / f | and preceding [g/h i/j | , then
it must correspond to a surface [b]:

RS) a > b e-= e /d e / f_ g /h i/j.

' rhe corresponding rule in the formalism being proposed here
would look approximately like this:

R10) a/sS disallowed in context e /d c / f - g /h i/j,

where sS is some set of characters to which
[a]

can correspond that does not include [b].

A comparison of each system's third type of rule involves com-
post |on of rules and is the subject of the next section.

2 . 3 R u l e C o m p o s i t i o n a n d D e c o m p o s i t i o n

In Koskennlemi's systems, rule composition is fairly straightfor-
ward. Samples of the three types of rules are repeated here:

R4) a > b = : ~ e / d e / f g / h i / j
R5) a > b ¢=== e/d e / f_ g /h i/j
R6) a > b ~ e /d e / f _ g/h i/j

If a grammar contains the two rules, R4 and RS, they can be
replaced by tile single rule R6.

In contrast, the composition of rules in the system proposed
here is slightly more complicated. We need the notion of a default
correspondence. The default correspondence for any alphabetic
character is itself. In other words, in the absence of any rules,
an alphabetic character will correspond to itself. There may also
be characters that are not alphabetic, e.g., the [+] representing a
morpheme boundary, currently the only non-alphabetic charac-
ter in this system. Other conceivable non-alphabetic characters
would be an accent mark for representing stress, or say, a hash
mark for word boundarics. The default for these characters is
that they correspond to 0 (zero). Zero is ttle name for the null
character used ill this system.

Now it is easy to say how rules are composed in this system.
If a grammar contains both Rl l and RI 2 bclow, {qlen RI3 may
be substituted for them with the same effect:

Rl l) a /b allowed it, context e/d e/f g /h i/j
R12) a / " a ' s default" disallowed in context e /d e/f g /h

~/j
R13) a ~ b / c / d e / f g / h i / j

In fact, when a file of rules is read into the system, oCCUl'rence:~ of
rules like RI3 are internalized as if the grammar really contained
a rule like R l l and another like R12.

2 . 4 U s i n g t h e R u l e ~

Again consider for an example tile rule R1 repeated below.

R1) + - - ~ e / {x I z l Y / i [s (h) [o h } _s

When this rule is read in, it is expanded into a set of rules
whose contexts do not contain disjunction or optionality. Rules
R14 through R19 are the result of the expansion:

R14) ' + ' - -~ e / x s
R 1 5) ' + ' ~ e / z _ s
R16) ' + ' - -~ e / y / i _ s
R17) ' + ' - - * e] s s
i2.18)'+' ~ e / s h s
R 1 9) ' + ' ~ e / e h _s.

R14 through R19 arc in turn expanded automatically into R20
through R31 below:

R20) ' + ' / 0 disallowed in context x _ s
R21) % ' / 0 disallowed in context z _ s
R22) ' + ' / 0 disallowed in context y/i .. s
R23) ' + ' / 0 disallowed ill context s - s
R24) ' + ' / 0 disallowed in context s h : s
R25) ' + ' / 0 disallowed in context c h _ s

R26) ' + ' / e allowed ill context x _ s
R27) ' + ' / e allowed in context z _ s
R28) ' + ' / e allowed in context y / i - s
R29) ' + ' / e allowed in context s _ s
R30) ' + ' / e allowed in context s h - s
R31) ' + ' / e allowed in context e h _ s.

274

The disallowed-type rules given here stipulate that a mor-
pheme boundary, lexieal [+], may never be paired with a mill
surface character, [0], in the environments indicated. Another
way to de.scribe what disallowed-type rules do, in general, is to
say that they expressly rule out certain sequences of pairs of
letters. For example, R20

R20) + / 0 disallowed in cantext x _ s

states that the sequence

. , , X '-}" 8 . , .

I I I
. . . X 0 S . . .

is never permitted to be a part of a mapping of a surface string
to a lexical string.

The allowed-type rules behave sfightly differently than their
disallowed-type counterparts. A rule such as

R26) '+'/e allowed in context x _ s,

says that lexieal [+] is not normally allowed to correspond to sur-
face Ie]. It also affirms that lexical [q-] may appear between as
Ix| and a~t Is|. Other rules starting with tbe same pair say, in ef-
fect, "here is another cnvirmuncnt where this pair is acceptable."
The way these rules are to be interpreted is that a rule's main
correspondence, i.e., the character pair that corresponds to the
underscore in tile context, is forbidden except in contexts where
it is expressly permitted by some rnle.

Once the rules are broken into the more primitive allowed-type
and disallowed-type rules, there are several ways in which one
could try to match them against a string of surface characters
in tile recognition process. One way wonld be to wait until a
pair of characters was encountered that was the main pair for a
rule, and tficn look backwards to see if the left context of the
rule matches the current analysis path. If it does, put the right
context on hold to see whether it will ultimately be matched.

Another posslblility would be to continually keel) track of the
left contexts of rnles that are matching the characters at hand,
so that when tbe main character of a rule is encountered, the
program already knows that the left context has been matched.
The right context still needs to be pnt on hold and dealt with
the same way as in the other scheme.

The second of the two strategies is the one actually employed
in this system, though it may very well turn out that the first
one is more efficient for the current grammar of English.

2 . 5 P o s s i b l e C o r r e s p o n d e n c e s

The rules act as filters to weed out seqnenees of character pairs,
but before a particular mapping can bc weeded out, somcthlng
needs to propose it ~s being possible. There is a list called a
list of l)ossible correspondences, or sometimes, a list of feasible
pairs - that tells which characters may correspond to which
others. Using this list, the ri:cognizer generates l)ossible Icxica]
forms to correspond to tile input surface form. These can then bc
checked against the rules and against the lexicon. If tim rules (1o
not weed it out, and it is also in the lexicon, we have successfully
recognized a morpheme.

3 S y n t a x

The goal of the work being deserlbcd was an analyzer that would
be easy to use. In the area of syntax, this entails two subgoal.s.

First, it should be easy to specify which morphemes may com-
bine with which, and second, when tile recognition tlas been com-
pleted, the result shnuld be something that can easily be used by
a parser or some other program.

Kart tunen [1983] and Kartt lmen and Wittenburg [1983] have
some suggestions for what a proper syntactic component for
a morphological analyzer might contain. They mention using
context-free rules and some sort of feature-handling system as
possible extensions of both their and Koskenniemi's systems. In
short, it has been acknowledged that any such system really
ought to have some of the tools that have been used in syntax
proper.

The first course of action that was followed in building this
analyzer was to implement a unification system for (lags (directed
acyclie graphs), and then to have the analyzer unify the dags of
all tile morphemes encountered in a single analysis. That scheme
turned out to be too weak to be practical. The next step was to
implement a PATR rule interpreter [Shieber, et al. 1983] so that
selected paths of dags could bc unified. Finally, when that turned
out to be still less flexible than one would like, tile capability of
handling disjunction in the dags was added to the unification
package, and the PATR rule interpreter [Karttnncn i984].

The rules look like PA'I'R rules with tile context free skeleton.
The first two lines of a rule are just a comment, however, and
are not used in doing the analysis. The recognizer starts with
the (lag [cat: empty]. The rnle below states that the "empty"
dag may be combined with the (lag from a verb stem to produce
a dag for a verb.

% verb ~ emllty + verb s tem
% 1 2 3
<2 cat> = empty
<3 cat> = verb_stem
<3 type> = regular
<1 type> = <3 type>
< l cat> = verb
<1 word> = <3 lex>
< l form> = {inf

tense: pres
pers: {1 ~} 1}.

The resulting dag will he a.mbigatous between an infinitive verh,
and a l)rcsent tense verb that is in clther the first or second
person. (The braces in tim rule arc the indicators of disjunction.)
The verb stem's value for the feature Icx will be whatever spelling
tile stem has. This value will then I)e the value for the fl~at~u'e
word in the new (lag.

The analyzer applies these rules in a w~ry simple wrff. It al-
ways carries along a (lag representing the results found t, hns far.
Initially this dag is [cat: empty]. When a morpheme is fonnd, tile
analyzer tries to combine it, via a rule, with the (lag it has been
carrying along. If tile rule succeeds, a new (lag is produced and
becomes the (lag carried along by the analyzer. In this way tile
information about which morpbentes have been fonnd is propa-
gated.

If an ling| is encountered after a verb has been found, the
following rule builds the new (lag. It first makes sure that the
verb is infinitive (form: inf) so that tile suffix cannot be added
onto the end of a past participle, for instance, and then makes
t h e tense of the new dag be pres part for present participle. The
category of the new dag is verb, and the value for word is the
same as it was in the original verb's dag. The form of the input
verb is a disjunction of inf (infinitive) with [tcnsc: prcs, pets: {1
2}], so the unification succeeds.

275

% verb ~ verb + ing
% 1 ~. 3
<2 cat> = verb
<3 lex> = i n g
<2 form> = inf
<1 eat> = verb
<1 word> = <2 word>
<1 form> = [tense: pres-part] .

The system also has a rule for combining an infinitive verb with
the nominalizing [er] morpheme, e.g., swim : swimmer. This rule,
given below, also checks the form of the input verb to verify that
it is infinitive, it makes the resnlting dag have category: noun,
number: singular, and so on.

% noun - -~ verb + er
% 1 2 3
<2 cat> = verb
<3 lex> -- er
<2 form> = inf
<1 ca t> --- noun
<1 word> = <2 word>
<1 nbr> = sg
<1 pers> = :3 .

The noun thus formed behaves just the same as other nouns.
In particular, a pluralizing Is] may be added, or a possessive ['s],
or any other affix that can be appended to a noun.

There are other rules in the grammar for handling adjective
endings, more verb endings, etc. Irregular forms are handled in
a fairly reasonable way. The irregular nouns are listed in the
lexicon with form: irregular. Other rules than the ones shown
here refer to that feature; they prevent tile addition of plural
morphemes to words that are already plural. Irregular verbs
are listed in the lexicon with an appropriate value for tense (not
unifiable with inf) so that the test for infinitivcness will fail when
it should. Irregular adjectives, e.g. good, better, best are dealt
with in an analogous manner.

4 F u r t h e r W o r k

There are still some things that are not as straightforward as one
would like. In particular, consider the following example. Let
us suppose as a first approximation that one wanted to analyze
the [un] prefix in English as combining with adjectives to yield
new ones, e.g., unfair, unclear, unsafe. Suppose also that one
wanted to be able to build past participles of transitive verbs
(passives) into adjectives, so that they could combine with [tin],
a.~ in uncovered, unbuilt, unseen.

What we would need, would be a rule to combine an "empty"
with an [un] to make an [un] and then a rule to combine an [un]
with a verb stem to form a thingl , and finally a rule to combine a
thingl with a past participle marker to form a negative adjective.
More rules would be needed for the case where [un] combines with
an adjective stem like [fair]. In addition, rules would be needed
for irregular passives, etc.

In short, without a more sophisticated control strategy, the
grammar would contain a fair amount of redundancy if one really
at tempted to handle English morphology in its entirety. How-
ever, on a more positive note, the rules do allow one to deal
effectively and elegantly with a sufficient range of phenomena to
make it quite acceptable as, for instance, an interface between a
parser and its lexicon.

5 C o n c l u s i o n

A morphological analyzer has been presented that is capable of
interpreting both orthographic and syntactic rules. This rep-
resents a substantial improvement over the method of incorpo-
rating morphological facts directly into the code of an analyzer.
The use of these rules leads to a powerful, flexible morphological
analyzer.

References

[1] Karttunen, L. (1983) "Kimmo: A General Morphologi-
cal Processor," in Tezas Linguistic Forum #22, Dalrymple
et al., eds., Linguistics Department, University of Texas,
Austin, Texas.

[2] Karttunen, L. (1984) "Features and Values," in COLING
84.

[3] Karttunen, L. and K. Wittenburg (1983) "A Two-level Mor-
phological Analysis Of English," in Texas Linguistic Forum
#22, Dalrymple et al., eds., Linguistics Department, Uni-
versity of Texas, Austin, Texas.

[4] Kay, M. (1983) "When Meta-rules are not Meta-rules," in
K. Sparcke-Jones, and Y. Wilkes, eds. Automatic Natural
Language Processing, Jotm Wiley and Sons, New York.

[5] Koskenniemi, K. (1983) "Two-level Model for Morphological
Analysis," IJCAI 83, pp.'683-685.

[6] Koskennlemi, K. (1984) "h General Computatlona] Model
for Word-form Recognition and Production, ~ COLING 84,
pp. 178-181.

[7] Selkirk, E. (1982) The Syntaz of Words, MIT Press.

[8] Shieber, S., It. Uszkoreit, F. Percira, J. Robinson, and
M Tyson (1983) "The Formalism and hnplementation of
PATR-II," in B. Grosz, and M. Stiekcl (1983) Research on
Interactive Acquisition and use of Knowledge, SRI Final Re-
port 1894, SRI International, Menlo Park, California.

276

