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Abstract 

Categorial unification grammars (CUGs) embody 

the essential properties of both unification and categorial 
grammar formalisms. Their efficient and uniform way of 

encoding linguistic knowledge in well-understood and 
widely used representations makes them attractive for 

computational applications and for linguistic research. 

In this paper, the basic concepts of CUGs and simple 
examples of their application will be presented. It will be 
argued that the strategies and potentials of CUGs justify 

their further exploration in the wider context of research 
on unification grammars. Approaches to selected 

linguistic phenomena such as long-distance 

dependencies, adjuncts, word order, and extraposition 
are discussed. 

0. Introduction 

The work on merging strategies from unification 

grammars and categorial grammars has its origins in 
several research efforst that have been pursued in 
parallel. One of them is the grammar development on 

the PATR system (Shieber et al., 1983; Shieber, 1984) at 
SRI. For quite a while now I have been using the 
excellent facilities of PATR for the design and testing of 

experimental[ CUGs. Such grammars currently run on 
two PATR implementations: Stuart  Shieber's Zetalisp 
version on the Symbolics 3600 and Lauri Kar t tunen 's  

Interlisp-D w:rsion on the XEROX 1109. The work on 
CUGs has influenced our efforts to develop a larger 

PATR grammar, and will do so even more in the future. 
On the theoretical side, this work is part of ongoing 
research on such topics as word order variation, 
modification, and German syntax within projects at SRI 
and CSLI (Stanford University). 

The structure of the paper reflects the diverse nature 

of the enterprise. In the first section, I will introduce the 
basic notions of CUGs and demonstrate them through 
examples in PATR notation. The second section 
discusses the motivation for this work and some of its 
theoretical implications. The third section sketches a 

linguistically motivated CUG framework with a strong 

lexical syntax that accomodates word order variation. 

The paper concludes with a brief discussion of possible 

CUG approaches to long-distance dependencies. 

1. Basic Notions of Categorial Unification 

Grammars 

1.2. Unif icat ion G r a m m a r s  and  Categorial  

G r a m m a r s  

Both terms, unification grammar (UG) and 

categorial grammar (CG), stand for whole families of 
related grammar formalisms whose basic notions are 

widely known.l Yet, for the characterization of the class 

of formalisms I want to discuss, it will be useful to review 
the most central concepts of both UG and CG. 

Unification grammar formalisms employ complex 
feature structures as their syntactic representations. 

These structures encode partial information about 
constituents. Either term or graph unification is utilized 
as the main operation for checking, propagating, and 
merging of the information in these complex 
representations. Most unification grammars also use the 
complex feature structures for the l inking of syntactic 
and semantic information. 

In traditional categorial grammars, all information 

about possible syntactic combinations of constituents is 

encoded in their categories. Those grammars allow only 
binary combinations. One of the two combined 
constituents, the functor, encodes the combination 
funtion, the other constituent serves as the argument to 
this function. Instead ot7 phrase structure rules, the 
grammar contains one or, in some formalisms, two 
combination rules that combine a functor and an 
argument by applying the function encoded in the 

functor to the argument constituent. Most categorial 
grammars only combine constituents whose terminal 

strings concatenate in the input string, but this need not 

be so. In most categorial grammar formalisms, it is 
assumed that the syntactic functor-argument structure 
in the corresponding compositional semantics. 
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There are usually two types of grammatical 

categories in a categorial grammar, basic and derived 

ones. Basic categories are just category symbols, derived 

categories are functions from one (derived or basic) 
category to another. A derived category that encodes a 

function from category A to category B might be written 

B/A if the functor combines with an argument to its right 

or B ~ ,  if it expects the argument to i ts  left. Thus, if we 

assume just two basic categories, N and S, then N/S, S/N, 

N\S, S\N, (S\N)/N, (N/S\(S\(N/N)), etc. are also categories. 

Not all of these categories will ever occur in the 

derivation of sentences. The set of actually occurring 

categories depends on the lexical categories of the 

language. 

Assume the following simple sample grammar: 

(2) Basic categories: N, S 

lexical categories: N (Paul, Peter) 

(S\N)fN (likes) 

The grammar is used for the sample derivation in (3): 

(3) Peter likes Paul 

N (S\N)fin N 

SkN 

S 

It should be clear from my brief description that  the 

defining characteristics of unification grammar have 

nothing to do with the ones of categorial grammar. We 

will see that  the properties of both grammar types 

actually complement each other quite wetl. 

1.2. A Sample  CUG in P A T R  Nota t ion  

Since the first categorial unification grammars were 

written in the PATR formalism and tested on the PATR 

systems implemented at SRI, and since PATR is 

especially well suited for the emulation of other 

grammar formalisms, I will use its notation. 

The representations in PATR are directed acyclic 

graphs (DAGs) 2 . Rules have two parts, a head and a 

body. The head is a context-free rewrite rule and the 

body is a DAG. Here is an example, a simple rule that  

forms a sentence by combining a noun phrase with a verb 
phrase. 
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(4) head XO -~ X1, X2 

body in unification notation 

<X0 ca t>  = S 
<X1 cat> = NP 
< X 2 c a t >  = VP 
<X1 agr>  = < X 2 a g r >  

body in graph notation 

xo 

r 

S NP 

The rule states that  two constituents X1 and X2 can 

combine to form a constituent X0 if the terminal string 

covered by X1 immediately precedes the terminal string 

of X2 and if the DAGs of X0, X1, and X2 unify with the 

X0, X1, and X2 subgraphs of the rule body, respectively. 

I will now show the most straight-forward encoding 

of a categorial grammar in this notation. There are two 

types of constituent graphs. Constituent graphs for basic 

categories are of the following form: 

(5) 

N S 

Of course, there might  be more features associated with 

the constituent: 

(6) 

/oe 7 
N S Finite 

3 Sg 

Derived constituents have graphs of the following form: 



(7) 

arg 

(t0b) Backward  Funct ional  Application (BFA) 

va lue  -~ functor a rgumen t  
< va lue  > = < functor v a l >  
< a r g u m e n t >  = <func to r  a r g >  
< f lmc to r  d i r >  :--: Left. 

This  is the graph associated with the VP likes Paul: 
in graph notation: 

(8) 

,. / ~  Left / ~  agr 

ca~//pers / form cat /pers~nu m 

S Finite N 3 Sg 

I t  corresponds to the der ived-category symboh 

(9) 

S \ N 

form : Finite pers : 3 
num: Sg 

(10a) and (10b) are the rules tha t  combine const i tuents .  

As in t rad i t iona l  categorial  g rammars ,  two such rules 

sufice. 

(10a) Forward  Func t iona l  Applicat ion (FFA) 

va lue  -~ functor  a rgumen t  
< v a l u e >  = < f u n c t o r v a l >  
< a r g u m e n t >  = < f u n c t o r a r g >  
< f u n c t o r  d i r >  = Right.  

in graph notat ion:  

val u e ~ J - ~ ~ ' ~ .  
/ f u n c t ° r l  . ~ r g u  

R i g h t  

ment 

val u e ~ - - J  J - ~ - ~ r g  u ment 

/ 
Left 

If Backward  Funct ional  Applicat ion is used to 

combine the const i tuents  Peter and likes Paul, the resul t  

is a finite sentence.  

However ,  if the same rule is applied to the identical  

const i tuents  likes Paul and likes Paul, again a finite 

sentence is obtained. ']['his is so because the graph for 

likes Paul actual ly  unifies with the va lue  of arg in the 

same graph.  This  can be easi ly remedied  by modifying 

the graph for the VP slightly.  By s t ipu la t ing  that  the 

a rgumen t  mus t  not have an unfil led a r g u m e n t  position, 

one can rule  out  derivcd categories  as subject a rguments  

tbr the VP: 

(II) 

/0o-i /°e?Tum 
S Finite N 3 Sg 

1.3. E x t e n s i o n s  to t h e  Bas ic  F o r m a l i s m  

In this  subsection [ want  to discuss very  briefly a few 

extensions of' the basic model  tha t  make  it  more sui table  

for the encoding of na tu ra l - l anguage  grammars .  The first  

one is the sort ing of f imctors according to their  own 

syntactic category. This  move migh t  be described 

a l t e rna t ive ly  as def ining the type of a const i tuent  as 

being defined by both a set of syntactic (and semantic)  
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attributes and a function from categories to categories. 

This function is also expressed as the value of an 
attribute. For a basic category the value of the function 
attribute is NIL. The following graph is a simplified 

example of a functor category (prenominal adjective in a 
language with case and number agreement within the 

NP). 

~ ~/ ~ ~'~unction 

ca;~/ ~ s : : m  - - ~ g r  

The combination rules need 
accordingly. This is the modified 
functional application. 

to be changed 
rule of forward 

value -~ functor argument 
< v a l u e >  = <functor function va l>  
< argument > = < functor function arg > 
<functor function d i r>  = Right. 

In a traditional categorial grammar, a derived 

category is exhaustively described by the argument and 
value categories. But often, syntacticians want to make 
more fine grained distinctions. An example is VP 
modification. In a traditional categorial grammar, two 

different VP modifiers, lets say an adverb and an 
adverbial clause, would receive the same translation. 

(12) Peter called him angrily 

N (S\N)fN N (S\N)/(S~q) 

(13) Peter called him at work 

N (S\N)/N N (S\N)/(S~aN) 
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But what should be the category for very? If it receives 

the category ((S\N)\(S\N))/((S\N)\(S~N)) to allow the 

derivation of (14), the ungrammatical  sentence (15) is 

also permitted. 

(14) Peter called him very angrily 

N (S\N)/N N ((S\N)\(SLN))/ (S\N)/(S~X[) 
((S\N)\(S~N')) 

(15) *Peter called him very 

N (S\N)/N N ((S\N)\(S~))/ 
((S\N)\(S\N)) 

at work 

(S\N)/(S~) 

If functor categories are permitted to carry features 

of their own that are not necessarily bound to to any 
features of their argument  and value categories, this 
problem disappears. Adverbs and adverbial clauses could 

receive different features even if their categories encode 
the same combination function. 

Another solution to the problem involves the 
encoding of the difference in the value part of the functor. 
Yet this solution is not only unintuit ive but  also 

contradicts a linguistic generalization. It is unintui t ive 
because there is no difference in the distribution of the 
resulting VPs. The only difference holds between the 

modifiers themselves. The gene~:alization that  is violated 
by the encoding of the difference in the value subgraphs 

is the endocentricity of the VP. The modified VP shares 
all syntactic features with its head, the lower VP. Yet 
the feature that indicates the difference between adverbs 
and adverbial phrases could not be in both the argument 
and the value parts of the functor, otherwise iterations of 
the two types of modifiers as they occur in the following 
pair of sentences would be ruled out. 

(16a) Peter called him very angrily at work. 

(16b) Peter called him at work very angrily. 

Another augmentation is based on the PATR 
strategy for l inking syntax and semantics. Most 

grammars written in PATR use the constituent graphs 

also for encoding semantic information. Every 
constituent has an attribute called trans or semantics. 
The value of this attribute contains minimally the 
internal semantic fnnction-argument structure of the 



constituent, but may also encode additional semantic 
information. The separate encoding of the semantics 

allows for a compositional semantics even in construction 

in which syntactic and semantic structure divert as in 
certain raising constructions. The following graph for a 

ficticious prenominal adjective that was introduced 
earlier contains translation attributes for the functor, 

the argument and the value. The meaning of the 

adjective is indicated by the atom Red.  

cat  ~ / functi% ~rans 
Adj 

Acc ing ~ . _ ~ g  
Red 

At first glance, the lexical graphs--even the ones 
that are used in the highly simplified examples--seem to 
exhibit an excessive degree of complexity and 
redundancy. However, the lexical approach to syntax is 

built  on the assumption that the lexicon is structured. To 
create a lexicon that is structured according to linguistic 

generalizations, we introduced lexical templates early on 

in the development of PATR. 

Templates are graphs that contain structure shared 
by a class of lexical entries. Lexical graphs can be 
partially or fully defined in terms of templates, which 

themselves can be defined in terms of templates. If a 
template name appeam in the definition of some graph, 

the graph is simply unified with the graph denoted by the 
template. 

The next augmentation is already built  into the 
formalism. Categorial grammarians have recognized the 

limitations of fimctional application as the sole mode of 
combining constituents for a long time. One of the 

obvious extensions to classical categorial grammar was 
the utilization of functional composition as a further 

combination mode. A good example of a categorial 
grammar that employs both functional application and 

functional composition is Steedman (1985). Forward 
functional composition permits the following 
combination of categories: 

(21) A/B + B/C = A/C 

The resulting category inherits the argument place for C 

from the argument B/C. 

Neither Steedman's nor any other CG I am aware of 
permits functional composition in its full generality. In 

order to prevent overgeneration, functional composition 

as well as other combination modes that are discussed by 
Steedman are restricted to apply to certain categories 
only. This somehow violates the spirit of a categorial 

grammar. Steedman's combination rules, for instance, 
are net universal. 

In CUG, functional composition is subsumed under 

functional application. It is the functor category that 
determines whether simple functional application, or 

functional composition, or either one may take place. 

Conjunction is a good case for demonstrating the 
versatility. 

Consider the following sentences: 3 

(22a) Peter andPaul  like bananas. 

(22b) Peter likes bananas and Paul likes oranges. 

(22c) Peter likes and buys bananas. 

The conjunction and  may combine two simple 
argument categories (22a), two functors with one unfilled 
argument position (22b), or two functors with more than 
one unfilled argument position (22c). If the conjuncts 

have unfilled argument positions, the conjoined phrase 
needs to inherit  them through functional composition. 

The simplified lexical graph for a n d  is given under (23). 
In order to avoid a thicket of crossing edges, I have 
expressed some of the relevant bindings by indices. 
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(23) c ~  

.... r ( 

The most appealing feature of this way of utilizing 

functional composition is that no additional combinators 
are required. No restriction on such a rule need to be 
formulated. It is only the lexical entries for functors that  
either demand, permit, or forbid functional composition. 

Extensions to the formalism that I have 
experimented with that  cannot be discussed in the frame 

of this paper are the use of multiple stacks for leftward 
and rightward arguments and the DCG-like encoding of 
the ordering positions in the graphs. In Sections 3. and 
4., I will discuss further extensions of the formalism and 
specific linguistic analyses. The following section 
contains a summary of the motivations for working on 

and with CUG and the main objectives of this work. 

2. Motivation and Theoretical implications 

Both terms, unification grammar and categorial 
grammar are used for classes of grammar formalisms, for 

individual grammar formalisms, and finally for 
grammars that are written in these formalisms. In 

addition, they might also be used by linguists to denote 
linguistic theories that are buil t  around or on top of such 

a formalism. This is the type of terminological 
overloading that linguists have learned to live with--or 

at least gotten accustomed to. 

As I indicated in the previous section, I consider 
CUG to stand for a family of grammar formalisms that  

might be described as the intersection of categorial and 
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unification grammar formalisms. What  has been 

proposed so far is therefore not a new grammar 
formalism and even less a linguistic framework. 

The proposal is simply to further explore the 

usefulness and formal properties of subclasses of CUG. 
This proposal can be supported by a number of reasons. 

Both types of formalisms have clear advantages. 
Categorial grammars have been hailed for their 

conceptual clarity and their potentials for l inking syntax 

and semantics. The fact that  they have been around for a 
long time and that they are currently enjoying a 

renaissance in the works of Steedman, Bach, Dowty, and 
many others demonstrates their virtues. Unification 

grammars are spreading last and lend themselves to 
powerfifl but efficient computer implementations. 

Traditionally, categorial grammars have been 

lacking syntactic sophistication. In a functor category 

such as A/B, only domain and range of the function are 
specified but nothing is said about bow they are related; 

how, for instance, the features of the argument influence 
the features of the value. The graph notation expresses 

the relation between argument  and value categories 
quite well; it is expressed in a set of bindings between 
subgraphs of the two categories. 

In the context of this discussion, some remarks are in 
order on the specific role PATR has played for the 

experiments with CUGs. The philosophy behind the 

development of PATR has been to provide a tool for 
writing, testing, and comparing grammars of very 

different types in a powerful formalism with 
well-understood formal properties and a well-defined 
semantics (Shieber 1984). 

Thus PATR could be useful for writing grammars, 
designing grammar formalisms, and for exploring classes 
of such formalisms. The work on exploring categorial 

unification formalisms has not only benefitted from the 
features of PATR but it has in a way also influenced the 
development of the PATR formalism. It  was, for 
instance, essential for the writing of categorial 
grammars to allow category variables in the context-free 

phrase structure part of the rules. How else could one 
formulate the rules of functional application. The 
implementation of this facility through Stuart  Shieber, 

however, raised interesting problems in connection with 
the prediction aspect of the Earley-parser. Original 
Earley prediction works on category symbols. An answer 

to these problems was presented by Shieber (1985) who 
proposed to do Earley prediction on the basis of some 
finite quotient of all constituent DAGs which can be 

specified by the grammar writer. 



Another example for the influence of the CUG efforts 

on the development of PATR is a new template notation 

introduced by Lauri Kar t tunen in his Interlisp-D version 
of PATR. Since categorial grammars  exhibi t  an 

extens ive  embedding of categories within other 
categories, it is useful to unify templates not only with 
the whole lexical DAG but also with its categorial 

subgraphs. The @-notation permits this use of templates 

(Karttunen,  1986)3 

3. A CUG G r a m m a r  Model tha t  Aecomodates  Word 

Order  Var ia t ion  

Worder order variation has always been one of the 

hardest problems for categorial grammars. Functional 
composition together with type-raising can be used to 
obtain all permutations of the sentences that are 

generated by a traditional categorial grammar. Totally 

free word order does therefore not pose an 
unsurmountable problem to the categorial approach. As 

with other types of grammar formalisms, it is semi-free 

word order that is difficult to accommedate. 

GPSG, LFG, and FUG all have mechanisms for 

encoding ordering regularities. Such a device does not 

exist in the categorial grammars that i am aware of. 
However, Uszkoreit (1985a,b) argues (on the basis of 
data fl'om German) for an application of l/near 

precedence rules to the valency list of syntactic functors. 

This approach presupposes that the valency list contains 

adjuncts as well as complements as the flmetor's 

syntactic a rguments )  

The model can be summarized as follows. The 

lexicon lists uninstantiated entries. For functors, these 
entries contain a set of thematic roles. The 

uninstantiated lexical entry may also state whether 
thematic roles have to be filled, whether they may be 
filled more than once, and whether idiosyncratic 

properties of the fnnetor predetermine the syntactic 
features of certain syntactic arguments. 

There are three types of rules that instantiate lexical 

entries: feature instantiat ion rules, valency 

instantiat ion rules, and order instantiation rules. 

An instantiated functor has an ordered valency list 
containing syntactic specifications of complements and 

adjuncts together with the appropriate semantic 

bindings. The model can account for the interspersing of 
complements and adjuncts as they occur in many 
languages including English. The model can also 
account for right-extraposition phenomena. 

t 

Therefore, the valency list may constain adjuncts 

that do not fill a thematic role of the functor but combine 

semantically with some constituent inside a linearily 

preceding member of the same valency listfi 

In the proposed model, the dependency between the 

extraposed phrase and its antecendent is neither 

established by functional application/composition nor by 
feature passing. It is assumed that there is a different 

matching process that combines the noncontiguous 

phrases. A process of this kind is independently needed 
for the matching of adjuncts with thematic roles that are 

embedded in the meaning of the functor: 
(26a) Tel lme about French history. 
(26b) Start in 1700. 

The year 1700 is obviously not the start time for the 

telling. 

(27a) His call was very urgent. 

(27b) lie tried desperately from every phone booth on 

campus. 

It is not try that supplies here the source role but the 

implicit theme of try. If the theme role is filled, everybody 

would analyze the from PP as semantically belonging to 

the theme of try: 

(28) He tried to call her desperately from every phone 

booth on campus. 

I want to conclude this discussion with a remark on 

the parsing problem connected with the proposed model. 

In older PATR Phrase-Structure grammars as well as in 

the categorial PATR grammars, all graphs that may be 
connected with a word in the input string are either 
retrieved from the lexicon or from a cache of ah'eady built 

lexical graphs, or they are constructed on the spot fi'om 
the [exical entries through the morphology and through 
lexical rules. 

For obvious reasons, this approach cannot be used in 

conjunction with the categorial model just proposed. If 
all adjuncts are included in the valency list, and if 
moreover all acceptable linearizations are performed in 

the extended lexicon, there is no upper bound on the 
number of acceptable lexieal graphs for functors. This 

means that lexical entries cannot be fully instantiated 

when the word is recognized. ]'hey need to be 
instantiated incrementally as potential arguments are 

encountered. 

In Uszkoreit (1985b) it is argued that the ordered 
valency lists of a functor admitted by the lexical 
[nstantiation rules form a regular language. [f further 

research confirms this hypothesis, the incremental 
{nstantiation of valency lists could be performed through 

sets of finite state machines. 

193 



4. A Note  on  L o n g - d i s t a n c e  D e p e n d e n c i e s  in CUGs  

In S t eedman ' s  (1985) categorial  g rammars ,  

long-dis tance dependencies  are  endcoded in the 

func t ion -a rgumen t  s t ruc tu re  of categories,  The 

categories  t h a t  form the path  be tween filler and gap in a 

der ivat ion t ree all carry a valency slot for the filler. This  

uniform encoding of both subeategorizat ion and 

long-dis tance dependencies  in the a r g u m e n t  s t ruc ture  of 

categories  seems at  f i rs t  glance super ior  to the HPSG or 

PATR approaches  to long-distance dependencies ,  in 

which the two types of informat ion are marked in 

di f ferent  fea ture  sets. However,  it t u rns  out tha t  the 

S teedman  g r a m m a r s  have to mark  the long-distance 
valency slots in order  to d i s t inguish  them from other  

valency slots. 

There  could stil l  be a just i f icat ion for encoding the 

two types of dependencies  in the same a r g u m e n t  stack. 

One m i g h t  loose impor t an t  nes t ing  informat ion by 

sepa ra t ing  the two types of slots. However,  I have not  ye t  

seen a convincing example  of nes t ing  cons t ra in t s  among 

subcategor iza t ion and long-distance dependencies .  

Therefore,  I consider  the quest ion of the appropr ia te  

place for encoding long-distance dependencies  still  open. 

A last  r emark  on long-distance dependencies.  In a 

unificat ion based sys tem like PATR it is not tr ivial  to 

ensure  t h a t  gap informat ion is passed up from one 

daugh t e r  cons t i tuen t  only when a rule is applied. There  

are two ways to enforce th is  cons t ra in t .  The first  one 

involves a mul t ip l ica t ion of rules. For a binary rule A 

- ->  B C, for ins tance ,  one could introduce three  new 

rules, one of which does not do any gaP passing, ano ther  

one the pass ing of a gap from B to A, and the third  the 

pass ing  of a gap from C to A. 

PATR uses a l i t t le more e legant  method  which has 

been first  sugges ted  by Fernando  Pereira .  Two fea tures  

are th readed  th rough  every tree, one of which carr ies  a 

gap up a tree, pass ing through all the cons t i tuents  to the 

left of the gap, and a second one t h a t  is set  to NIL if a gap 

has been found and tha t  is then  sent  th rough all the 

cons t i tuen ts  to the r igh t  of the gap, unifying it on the 

way with  potent ia l  gaps. It requires  tha t  informat ion 

about  the two special fea tures  be added to every rule. In 

PATR a preprocessor  of rules adds this  informat ion for 

all rules in which the g r a m m a r  wri ter  did not include 

any gap th read ing  informat ion herself,  e.g., for encoding 

island cons t ra in ts .  
In a CUG tha t  only conta ins  two (or at least  very 

• few) rules, the first  method of dupl ica t ing  rules appears  

preferrable  over the gap th read ing  approach. Rules tha t  

propagate gap informat ion  migh t  also include rules t ha t  

permit  parasi t ic  gaps along the lines of S teedman ' s  rules 

of functional  subs t i tu t ion .  
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Notes 

*The research for this paper was made possible through a gift by the 
System l)evelopment Foundation. 

tFor an introduction to the family of unification grammar models 
refer to Shieber (forthcmning). A good introduction to the basic 
notions ofcategorial grammar is Bar [tiliel (1964). 

2The PATti implementations that arc currently used at SR[ actually 
permit cyc l ic graphs. 

:IRight-Node-Raising (RNR) which leads to sentences as: Peter likes 
and Paul buys bananas will be neglected here (although RNR is an 
attractive lopic for catcgorial grammarians and one of my grammars 
~ctnally handles many cases of RNR.) 

IAn even lilt)re general notation can })e used that does not 
distinguish between root templates and subgraph templates. As long 
as template names are marked by some typographic convention. 
could be freely used wherever a graph is described. 

~The version of t!le linear precedence rule component proposed b~ 
Uszkoreit {1982. 1986) is {\tlI> compatible with this approach. The., 
proposal permit> the formalization of partially free word order as [t 
results fl'om the interaction of potentially conflicting ordering 
principles and as it probably occurs to some degree in all natural 
languages 

6Sag (1985) proposes a mechanism for IIPSG that allows the 
syntactic binding of an extraposcd phrase to a complement or 
adjunct slot of a complement or adjunct. However, this approach is 
too restricted. Although there is a strong tendency to only extrapose 
complements and adiunets of top-level complements and adjuncts, 
there is certainly no such constraint in languages like English or 
German. The following sentence could not be handled since the 
extraposed relative clause modifies an adjunct of the subject. 
Petitions from those people were considered who had not filed a 
complaint before. 

7Mark Johnson (1986) has worked out a quasi-categorial solution of 
this phenomenon in the framework of HPSG. 


