Yonhgfeng YAN

Groupe d’'Etudes pour
(

B.P.

la Traduction Automatique
GETA)

68

University of Grenoble
38402 Saint Martin d’Heres

ABSTRACT

This article presents the Structural Correspondence
Specification Environment (SCSE) being implemented at
GETA.

The SCSE 1is designed to help linguists to deveiop,
consult and verify the SCS Grammars (SCSG) which
specify Tinguistic models. It integrates the
techniques of data bases, structured editors and
language interpreters. We argue that formalisms and
tools of specification are as 1important as the
specification itself.

INTRODUCTION

For quite some time, it has been recognized that the
specification 1s very important in the development of
large computer systems as well as the Jlinguistic
computer systems. But 1t i1s very difficult to make good
use of specification without a well defined formalism
and convenient toot.

The Structural Correspondence Specification Grammar
{SCSG) is a power ful tinguistic spectfication
formalism. The SCS5Gs were first studied in S.Chappuy’s
thesis 11, under the supervision of Professor
8. Vauquois. In their paper presented at Colgate
University in 1985 {6] SCSG was called Static Grammar,
as opposed to dynamic grammars which are executable
programs, because the SCSG aims at specifying WHAT the
Tinguistic mode s are rather than HOW they are
calculated.

A SCEG describes a linguistic model by specifying
the correspondence between the valid surface strings of
words and the mutti-level structures of a language.
Thus, from a SCSG, one can obtain at the same time
valid strings, valld structures and the relation
between them. A SCSG can be used for the synthesis of
dynamic grammars {(analyser and generator) and as a
reference for large t1inguistic systems. An 5CS
Language (SCSL) has been designed at GETA,

in which the SCSG can pbe tinearly written.

The SCS Environment (SCSE) presented here s a
computer aided SCSG design system. It will allow
1inguists to create, modify, consult and verify their
grammars 1in a convenient way and therefore to augment
their productivity.

Section I gives a outline of the system: its
architecture, principle, data structure and command
syntax. Sectton II describes the main functions of the
system. We conclude by giving a perspective for futher
developments of the svstem.

I. AN OVERVIEW OF THE SYST

1. ARCHITECTURE

The SCSE can be logically divided in five parts: 1.
SCSG base 2. monitor 3. input 4. output 5. procedures

The 5CSG base consists of a set of T1les containing
the grammars. The base has a hierarchical structure. A
tree form directory describes the relationship between
the data of the base.

The monitor is the interface between the system and
the user. It reads and analyses commands from the input
and then calls the procedures to execute the commands.

The 1input is the support containing the commands to
be executed and the data to update the base. There is a
standard input (usually the keyboard) from which the
data and comnands should be read unless an input is
explicitly specified by a command.

The output 1s a support receiving the system’s
dialogue messages and execution results. There is a
standard output (usually the screen) to which the
message and results should be sent unless an output is
explicitly specified by a command.

The procedures are the most important part of the
system. It is the execution of procedures that carries
out a command. The procedures can communicate directly
with the user and with other procedures.

2. THE PRINCIPLE

An SCSE session begins by loading the original SCSG
base or the one saved from the last session. Then the
monitor reads lines from the command input and calils
the corresponding procedures to execute the comnands
found. wWhen an SCSE session is ended by the command
"QUIT", the current state of the base is saved. The
SCSG base can only be updated by the execution of
comands .

The original SCSG base contains two SCSGs: one
describes the syntax of the SCSL and the other gives
the correspondence between the directory’s nodes and
the syntactic units of the SCSL. The first grammar is
read-only but the second one can be modified by a user.
This allows a user to have his prefered logical view
over the base’s physical data. These two grammars serve
also as an on-1ine reference of the system.

Several interactive levelis can be chosen by the user
or by the system according to the number of errors in
the command 1ines. The system sends a prompt message
only when a "RETURN" is met in the command lines. So
one can avoild prompt messages by entering several
commands at a time.

DAT/

STRUCTURE

There are two data structure levels.

The Tlower one 1s linear, supported by the host
system. The base is a set of files containing a 1ist of
strings of characters. The base can be seen as a single
strinhg of characters that is the concatenation of all
Tines in the files of the base so that the structure is
said to be linear. This structure 1is the physical
structure.

The thigher one is hierarchical, defined by the

directory of the base. The base is composed of a
number of SCSGs ; each grammar contains a declaration
section, a rule {chart) section ... etc. and the
components of a grammar (declaration, rules ... etc.)

have their own structure. T7The hierarchical structure
is the logical structure of the base.

The directory has a tree form. A node in the tree
represents a logical data unit that 1s 1ts content (for
instance a grammar). Every node has a type and a 11st
of attributes characterising the node’s content. The
internode’s content is the composition of those of {ts
descendents. The leaf’s content 1s directly associated

81

with a physical data unit (a string ol characters).
The following figure shows the relation between the two
structures.

LOGICAL STRUCTURE (1)

Str1ng of characters ph swcaT structure

< %I) D

Grammar

‘J

LOGICAL STRUCTURE (2)
language date

Grammar English l

node type attributes

The directory i1s similar to a UNIX directory. But in
our directory, the leaves do not correspond to files
but to logical data units and furthermore an attribute
1ist 1s attached to each node. The correspondence
between two structures is maintained by SCSE. We shall
see later that this organisation allows a more
efficient information retrieval.

It 1is possible for users to have access to the data
by means of both structures. The logical one 1s more
convenient but the physical one may be more efficient
in some cases.

4.

COMMAND _SYNTAX

The general command format is
<operator> <operand> <options>

- The “opetator" 1s a word or an abbreviation
recalling the operation of the command.

- The ‘"operand" is a pattern giving the range of
the operation.

- The "options" is a list of optiohal parameters of
the command.

For example, the commnand V GRAMMAR (LANGUAGE =

ENGLISH)

visualizes, at the standard output, all the English
grammars in the base. Here V s the operator,
GRAMMAR (LANGUAGE =ENGLISH) 1s the operand pattern and no
option is given.

The operand belng mostly a node in the directory
tree, the pattern is usually a tree pattern. When the
pattern matches a subtree of the directory, the part
that matches a specially marked node is the effective
operand.

The pattern 1s expressed by a geometric structure
and a constraint condition. The structure 1s a tree
written in parenthesized form perhaps contatning
variables each representing a tree or a forest. The
condition is a first order logic predicate in terms of
the attributes of the nodes occurring in the geometric
structure. More sophisticated conditions may be
expressed by a predicate combined with geometric
structure to efficiently select information from the
base.

82

Pattern writing should be reduced to a minimum. In
the above example, the geometric structure is simply a
grammar type node and the constraint 1s the node’s
language attribute having the value: English.

The use of a current node in the directory allows
not only the simplification of pattern writing but also
the reduction of the pattern matching range. The
effective operand becomes the new current node after
the execution of a command.

II1. THE MAIN FUNCTIONS

We shall Jjust describe the functions that seem
essential. The functions may be divided into four
groups: 1. general 2. SCSG base updating 3. SCSG base
inquiry 4, SCSG verification.

1. GENERAL FUNCTIONS

These functions itnclude: SCSE session options
setting, the system’s miscellaneous information inguiry
and access to host system’s commands.

The following options can ‘be set by user commands:
1. interactivity 2 dilalogue language 3.
auto-verification 4. session trace 5. standard
input/output.

One of the 4 following iInteractive modes may be
chosen: 1. non-interactive 2. brief 3. detailed 4.
system controled.

In non-interactive mode, no question is asked by the
system. An error command 1s ignored and a message will
be sent but the process continues. In brief mode, the
current accessible command names are displaved when a
command 1s completed and a RETURN in the command 1ines
is found. In detailed mode, the. Function and parameters
of the accessible commands are displayed and 1f an
error 1is found 1in the user’s input data, the system
will diagnose 1t and help him to complete the command.
A prompt message 1s sent every time RETURN is found in
the command lines. In the system controlled mode, the
interactivity ts dypamically chosen by the system
according to the system-user dialogue.

For the time being, only French is used as the
dialogue language. But the multi-langueage dialogue is
taken into account in design. It is simpler in PROLOG
to add a new dialogue language.

The auto-verification option indicates whether the
static coherence (see 4. SCSG verification) of a

grammar will be verified each time it is modified.

The trace option 1s a switch that turns on or off
the trace of the session.

The standard input/output option changes the
standard input/output.

Some inquiries about the system’s genheral
information, such as the current options and directory
content, are also included in this group of functions.

The access to host system’s commands without leaving

SCSE can augment the efficiency. But any object
modified out of SCSE 1s consided no more coherent.

2. SCSG BASE UPDATING

This group of functions are: CREATE, COPY, CHANGE,
LOCATE, DESTROY and MODIFY. They may be found in all
the classic editors or file management systems. The
advantage of our system is that the operand of commands
can be specified according to the logical structure of
the base.

For example, the command DESTROY CHARTS(TYPE=NP)

Destroys all the charts which describe a Noun Phrase.

The SCSE has a syntactic editor that knows the
logical structure of the texts being edited. This
editor is used by the commands MODIF and CREATE.

The command CREAT <operand> <options>

calls the editor, creating a 1logical data unit
specified by the operand. If the interactive option is
demanded, the editor will guide the user to write
correctly according to the nature of the data.
Following the same idea of different interactive
levels, we try to improve on the classical structural
editor, for instance that of Cornell University {5}, so
that one can enter a piece of text Tonger than that
prompted by the system. If the interactive option is
not demanded, one just enters into the editor with an
empty workspace.

The comimand "MODIF <logical unit>" calls the
system’s editor with the logical data wunit as the
workspace. The data in the workspace may be displayed
in a legible form which reflects 1ts logical structure.
The multi-windows facility of the editor makes 1t
possible to see simultaneously on the screen the source
text and the text 1n structured form.

The SCSE editor inherits the usual edliting commands
from the host editor. Thus one can change all the
occurrences of a rule’s name in a grammar without
changing the strings containing the same characters,
using a logical structure change

C NAME (type=rule) old_name new_ name,
while the physical structure command
C/o1d_name/new_name/ * ¥

changes all the strings "old_name" in the workspace by
new_name.

wWhen an object’s definition 1s modified, all its
occurrences may need to be revised and vice versa even
if the modification does not cause a syntactic error. A
structure 1location commnand finding the definition and
all the occurrences of an object can be used In this
case.

Only the logical units defined in the directory and

the SCSL syntax can be manipulated by the structural
cammands.

3._SCSG_BASE_INQUIRY

These functions allow users to express what they are
interested 1n and to get the 1nguiry results in a
legible form. A part of the on-Tine manual of usage in
the form of SCSG may also be consulted by them.

The operand patterns discussed above are used to
select the relevant data. The operator and options of
commands choose the output device and corresponding
parameters. A parametered output form for each logical
data unit has been defined. The data matching the
operand pattern are shaped according to their output
form. The data may of course be obtained in their
source form.

One may wish to examine an object at different
levels (e.g. Just the abstract or some comments). The
options of the command can specify this. If one just
wants to change the current node in the directory for
facilitating the following retrieval, the same locating
command as before may be used.

4. SCSG VERIFICATIONS

Two kinds of verifications may be distinguished
static and dynamic. The static verification checks
whether a grammar or a part of a grammar respects the
syntax and semantics of the formalism. The dynamic
verification tests whether a given grammar specifies
what we want it to.

Static verification

An internal representation of the analyzed text is

produced and used by the system Ffor structurat
manipulation. The analyser may produce a 1i1st of cross
references of nameable objects and a 1list of

syntaxo-semantic errors found in the text. The exemples
of nameable objects are the charts, the macros, the
attributes. The 1ist of cross-references reveals the
objects which are used but never defined or those
defined but never used.

A chart may refer to other charts. This reference
relation can be represented by an oriented graph where
the nodes stand for a set of charts. A hierarchical
reference graph 1is often given before writing the
charts. A program can calculate the effective graph of
a grammar according to the result of analysis and
compare it with the given cne.

The comnand options may cancel the output of these
two lists and the graph calcutation. The graph
calculation may also be executed alone. One of options
indicates whether the analysis will be interactive.

Dynamic. verification
The dynamic verification 1s the calculation of a
subset of tha string-tree relation defined by a
grammar . A member of the relation is a pair:
<string,tree>. The command gives the grammar and the
subset to be calculated. The subset may be one of the
four following forms

1. a palr with a given string and a given tree (to
see whether it belongs to the relation)

2. pairs with a given string and an arbitrary tree
3. pairs with an arbitrary string and a given tree
4. all possible pairs

The calculation 1s carried out by an interpreter.
The user may gitve interpretation parameters indicating
interactive and trace modes, size of the subset to be
calculated and other constraints such as a list of
passive (or active) charts during this interpretation,
the depth and width of trees and length of the string
etc..

As 5CSGs are static grammars, no heuristic strategy
will be wused in the interprete’s algorithm. So the
interpretation will not be efficient. Since the goal is
rather to test grammars than to apply them on a real
scale, the effictency of the interpreter 1s of no
importance.

The system presented is being implemented at GETA.
In this article, we put emphasis on the system’s design
principles and specification rather than on the details
of implementation.

We have followed t(hree widely recommended design
principles: a) early focus on users and tasks, b)
emptrical measurement and c) interactive design [2]).

The specification of the functions are checked by
the system’s future users before implementation. The
user’s advice 1s taken 1{into account. This dialogue
continues during the implementation. The top-down and
modular programming aprroaches are followed so that,
even 1f the impJjementation is hot completly achieved,
the 1mplemented part can st117 be used.

The system is designed for being rapidly implemented
and easily modified thanks to its modularity and
especially to a high leveil logic programming language:
PROLOG (3. We have tried our best to make the system
as user-friendly as possible. The system’s most
remarkable character is that the users manage their
data according to the logical structure adapted to the
human being.

What s interesting 1in our system is not that it
shows some very original 1deas or the most recent
techniques 1n state-of-the-art but it shows that the
combination of well-known techniqgues used orignally in
different fields may find 1its application in other
fields.

83

Long term perspectives of the system are numerous.
With the evaluation of the SCSG, some strategic and
heuristic meta-rules may be added to a grammar.
Eguipped by an expert system of SCSG, SCSE could
interprete effciently a static grammar and synthetise
from it efficacious dynamic grammars.

It s also interesting to integrate into SCSE an
expert system which could compare two SCS5Gs of two
languages and produce a transfer grammar or at least
@give some advice for constructing it.

Using 1its logical structure maniputlation mechanism,
SCSE can be extended to deal with other types of
structured texts. Thanks to 1ts efficient interpreter
or in cooperatlon with a powerful machine translation
system such as ARIANE, SCSE could be capable of
offering multi-linguatl editing factlities [4].

BIBLIOQGRAPHIE

1. S.Chappuy,
"Formalisation de 1la Description des Niveaux
d’Intepretation des Langues Naturelles. Etude
Mende en Vue de 1’Analyse et de la Génération au
Moyen de Transducteur.",
Thése de troisiéme cycle & 1/USMG-INPG, juillet
1983.

2. JOHN G. COULD & CLAYTON LEWIS,
"Designing for Useab1lity: Key Principles and
What Designers Think",
Communication of the ACM, March 1985 Volume 28 N°
3.

3. Ph. Donz,
"PROLOG_CRISS, une extention du langage PROLOG",
CRISS, Universite 1II de Grenoble, Version 4.0,
Juillet 1985,

4, HEIDORN G.E., JENSEN K., MILLER L.A., BYRD R.J.,
CHODOROW M.S.,
"The EPISTLE text-crittiguing system.",
IBM Syst. Journal, 21/3, 1982.

5. TEITELBAUM 1. et at,
"The Cornell Program Synthesizer: a syntax
directed programming environments.",
Communication of ACM, 24(9), Sept. 1981.

6. B. VAUQOIS & S. CHAPPUY,
“Static Grammars : a formalism for the
describttion of 1inguistic models",
Proceedings of the conference on theoretical and
methodological 1ssues 1in machine translation of
natural Tlanguage, Colgate Untversity, Hamilton
N.-Y., USA, August 14-16, 1985

~0~0-0~0~0-0-0~0~

84

