
DAVID W. PACKARD

COMPUTER-ASSISTED MORPHOLOGICAL
ANALYSIS OF ANCIENT GREEK

INTRODUCTION I

This system for automated morphological analysis of ancient Greek
had its origin in a practical need rather than a theoretical concern for
natural language parsing. Our immediate goal was to develop a new
textbook and curriculum for teaching ancient Greek to American
university students. Most traditional methods assume that a student is
willing to spend at least one year in the study of grammar before
reading any significant quantity of literature. Our conviction is that
students can begin reading literature very early in the first year if the
initial grammatical instruction is focused on those features of the lan-
guage which actually occur in the texts first read. To test this theory,
we have used the computer to help produce a complete lexical and
grammatical analysis of 40,000 words of ancient Greek selected from
texts which students might wish to read in their first year. We have
concentrated our attention initially on morphological analysis since
the complexity of Greek morphology is the major obstacle to learning
the language. We have prepared statistical summaries of the morpho-
logy of each text, as well as complete concordances organized both
according to dictionary lemma and morphological category. Although
our first goal is to collect information for a textbook, it is obvious
that an automated system for morphological analysis will have uses
far beyond the teaching of elementary Greek.

THE METHODS OF ANALYSIS

Our system is based on a combination of computer analysis and
subsequent editorial verification. The program is able to identify most

1 I wish to thank the University of California for sponsoring this work under its
program Innovative Projects in University Instruction.

344 DAVID W. PACKARD

Greek words automatically, but we always examine carefully the
resulting analysis and make provision for correcting and supplementing
it manually wherever necessary.

No prior editing of the text is required; the program will accept
any Greek text which includes the normal diacritical signs (accents,
breathing marks, and iotas subscript). The words are analyzed in the
order in which they appear in the text without being sorted into al-
phabetical order. Each word is first examined to determine whether
it occurs in a list of exceptional forms. If the word is found in this list,
it is not subjected to further analysis. This list, which we call the in-
declinable list, contains forms which are not inflected (prepositions,
adverbs, particles, etc.) as well as forms whose inflection is highly
irregular. The list currently contains about 800 entries. Roughly 50%
of the words in a typical text are found in this list.

Words not in the indeclinable list must be analyzed according to
the rules of Greek morphology. Since the analytical procedure has
refinements peculiar to Greek, it cannot be understood without some
knowledge of how Greek nouns and verbs are inflected.

Most inflection in Greek consists of adding an ending to a fixed
stem. The present active indicative of the verb ~.p~0c0 'wr i t e ' is con-
jugated: y~&~0-co, yp&~0-¢~, -¢p&~-~, etc. The task of analyzing such
forms is simply one of segmenting the word into a stem and an ending.
The program first removes the final letter of the word and determines
whether that letter appears in the table as an inflectional ending. If
it does, the remainder of the word is tentatively assumed to be a stem,
and a search is made for this stem in the dictionary. If the stem exists
and is consistent with the ending, the program identifies this as one
possible analysis. The program then continues by searching for longer
endings. Each possible combination of stem and ending must be ex-
amined since the word may be ambiguous.

In some cases the original juncture between stem and ending is
obscured by phonological changes. The verb &y0cz~&co ' love ' was
originally conjugated with the same endings as yp&q~o~: 0~0c~&-o~,
&3'~z~&-e~g, 0~y0c~&-e~, etc., but in the standard literary dialect of Athens
(Attic) the adjacent vowels contract, giving the following forms:
0~'0~, &¥0c~¢, &¥~n~, etc. We treat these contracted forms as a sep-
arate conjugation with a separate set of endings, even though this
produces a false division between stem and ending: 0~.0cTt-~, ~¥~-8~,
&~,0cr~-~, etc. With the proper selection of such pseudo-stems, it is
possible to break down nearly any inflected form into a stem and an

COMPUTER-ASSISTED MORPHOLOGICAL ANALYSIS OF ANCIENT GREECK 345

ending. Especially troublesome are nouns of the third declension where
the nominative singular and dative plural are subject to a great variety
of sound changes. The nominative v6~ 'night ', for example, and its
dative plural v ~ must be placed in the indeclinable list since they
cannot be reconstructed directly from the stem vu×~:-. Words like
~0~0V.0c 'lesson ', however, are broken into a pseudo-stem ~0~0v~- and
the endings - ~ , -/z0c-ro~, -g.~-¢~, -~.r0c, -I*0~'r~0v, -g.0c~r~. This allows us to
avoid the need to enter each nominative singular and dative plural into
the exception list, as would have been necessary with the linguistically
correct stem ~0~0vl~0~'r-. Such decisions of expediency do not affect the
final analysis but only the construction of the tables used by the pro-
gram.

A Greek verb can have six principal parts; these are the stems which
form the basis for conjugation. The present stem of'ro0~0co, for example,
is yp~q~-, the future yp0c+-, the aorist ¥p~+-, the prefect y~yp0c~o-, the
aorist passive yp0~(0)-. Past tenses of the indicative (aorist, imperfect,
pluperfect) augment these stems by prefixing an initial ~-, or if the
stem begins with a vowel, by lengthening that vowel. The imperfect
indicative built on the stem ~,p0~- is ~-y~0~0-ov, ~-yp0~0-~g, ~-¥p0~-e, etc.
The aorist indicative built on the stem ~x0- is {x0-ov,-~x0-ev, {x0-~,
etc. In an earlier version of our program we included in the dictionary
both augmented and unaugmented forms of each stem (~'p0~0- and
~¥~0~0-, ~0- and {~0-). This was uneconomical since the augmented
form is nearly always predictable. The dictionary now contains only
unaugmented stems except for a few verbs like ~Zo~ and 6p0100 which
are augmented in special ways (e~:Zov and ~&l~00v). Reduplicated perfect
stems, however, are entered in the dictionary.

Greek shows great freedom in forming compound verbs by the
addition of prepositional prefixes. From the stem yp=~0- is derived
r~0~p0~-yt~-eo 'write beside ', ×0~.~-yl~0-~o, 'write down', 6r~o-yt~0~0-~o
'write under ', etc. It would be uneconomical to include z~0~0~yl~0~0-,
×.r.yp.~-, and 6r~oyl~.q~- in the dictionary since all are formed by
the addition of common prefixes to the single verb stem yp~-. A dif-
ficulty arises, however, from the fact that the prefixes are often assimi-
lated phonetically to the following letter. The prefix ouv- ' together'
appears as auv- before vowels and dental consonants, as av~- before
labial consonants, as ou'i'- before guttural consonants, as ou?~- before ?~,
and as ov(~) before ~. The prefix ~ex0~- appears as V.~r0~- before consonants,
~t~0- before vowels with aspiration and ~¢z- before vowels without
aspiration. The program must recognize the assimilated forms of each

346 DAVID W. PACKARD

prefix and must verify that the letter following the prefix could in
fact have caused the suspected assimilation. In some cases a single verb
is compounded with as many as three prefixes, each of which may
appear in an assimilated form. The form ~u~,×0t0t~r~t must be analyzed
as o ~ + ×~x0~ + ~ , o ~ 0 ~ t ~ as o ~ + ~z=~ + 0 ~ + ~o~t~.
Further complication is caused by the fact that verbal augments come
before the stem but after the prefixes. The imperfect of o~.-~,-e0
is ou~-~-~w-o~.

Thus, if the word cannot be analyzed directly into a stem and an
ending, the program must attempt to remove prepositional prefixes
from the beginning of the word. If a hypothetical prefix can be re--
moved, the program proceeds to analyze the remainder of the word.
If this analysis is successfu! the prefix is reunited with the word in the
final analysis. In some cases the program makes more than one hy-
pothetical division between prefix and stem. The verb &~-;~6o~ would
generate three hypothetical divisions: &,~0~ + &x6~o, &,~0~ + &x6~0, and
finally ~,~0~ + X6~.

If the word still cannot be analyzed, the program attempts to isolate
a verbal augment at the beginning of the stem (but after any preposi-
tional prefixes). Most imperfect and aorist indicative verbal forms are
analyzed only at this point. The program often generates several hy-
pothetical unaugmented stems. The imperfect indicative of @co is ~o~.
In analyzing this form, the program would make two initial false
attempts: augment + $~y-, augment + ~y-, before finding the correct
analysis augment + &y-. Both prefix and augment may be ambiguous.
The form z=xp~-couu would produce eight hypothetical divisions:

z=~p~ + Air-,

~p~ + augment + ~z-
zc~0~ + augment + fix-
~ p ~ + augment + ¢~.'r-
~p~ + augment + zkr-
~0tp0t + augment + ~kr-
zc0t~0t + augment + ~[-=-.

Final short vowels are often elided, especially in poetry. If the
program finds an apostrophe at the end of a word, it hypothetically
restores each short vowel in turn. Most elided forms can be recon-
structed successfully by this method. Crasis, the merging of two words
into one, is more difficult to recognize automatically. We simply enter

COMPUTER-ASSISTED MORPHOLOGICAL ANALYSIS OF ANCIENT GREEK 347

the most common examples (e.g. "~&x~0~, ~,~o~t~, etc.) in the inde-
clinable list and leave the others for the editor.

A major problem faced by any automated analysis procedure is
how to deal with ambiguity. The program often generates more than
one potential analysis for a single form. It would be possible to print
every alternative, but we have found it more satisfactory to print only
the most likely analysis together with a warning of possible error.
Mistakes can be corrected later by the editor. There seems to be little
ambiguity in Greek about which stem should be assigned to each form.
Examples of such ambiguity are more interesting as curiosities than
obstructive to the analysis process. Most of them occur only because
the program ignores accents. The following ' ambiguous' forms were
found in the first 2000 words of Euripides' Medea: ~u~,~ (~0~6¥co or

' 7 ~uy~.), ~X~0v (~Xo¢ or ~X~co ?), o~x~0v (o~xo¢ or o~×~0 ?), ~xvcov (~×-
vov or z~xvdco ?), 0~pZ ~ (~pxco or 0~pX ~ ?), ~tox0ou (~6X0og or ~ox0&o ?),
~yc0v (~yd~v or @o~?), ~{~0v (~gd~,J or 0~Ie?), q~ol3ou (e6~o~ or ~o~o?),

z~ovt0v (z:6vo¢ or ~ov&o?), .m~0~v,t0v (~6~0~vvo¢ or ~u0~vv&o?), ~o~v (~o4~
or ~o&o ?), -r~X~t~ (-~?,~u~ or -r~Xcuc&o ?), 6p×tov (6p×og or 6p×&o ?).
In nearly every case of ambiguity between a verbal and a nominal
analysis, we have found that the nominal form is correct. The program
accordingly always prefers the latter.

Much more common are ambiguities about whether an article or
adjective is masculine or neuter, whether a neuter noun is nominative
or accusative, or whether a verb is middle or passive. Here again, we
allow the program to make a likely guess and mark the analysis as
doubtful. The editor can correct any mistakes.

A certain amount of this second kind of ambiguity could undoubtedly
be resolved rather easily by a primitive syntactical scan which limited
itself to immediate constituents of the type article + adjective + noun
or preposition 4- noun. The gender of the noun in the first case would
often make clear the gender of the adjective and article.

DETAILS OF IMPLEMENTATION

In line with our pragmatic approach and our immediate need to
have a large volume of text analyzed, we have designed our procedures

348 DAVID W. PACKARD

to take advantage of the hardware available at the UCLA Campus Com-
puting Network; but the program could be modified to operate on
other systems without great difficulty.

Our first problem was the representation of the Greek alphabet
with accents and diacritical signs on a keypunch. Here are the first
few lines of the Apology as we keypunched them:

O(/TI MEIN U (M E I = S , W) = A)/NDP,.ES *)AQHNAI=OI ,
PEPO/NQATE U(PO I T W = N E) M W = N KATHGO/RWN,
OU)K O I) = DA: E)GW I D' O U) = m KAI I AU)TOIS U(P'
AU)TW = N O)LI/GOU E)MAUTOU = E)PELAQO/MHN,
OU(/TW P I Q A N W = S E)/LEGON.

This transliteration suffices for most purposes; we have a Greek font
on an RCA Videocomp photocomposer available whenever we wish to
print the Greek in a more conventional manner.

The program is written in Assembly language for an IBM 360/91
computer. In the current implementation all tables reside in core storage.
With 300K bytes of memory, we can accomodate 4000 stems, 2000
endings, and 1000 indeclinables. This is the maximum memory al-
lowed for high priority jobs at our computing center, but our machine
will accept jobs requiring several million bytes on a low priority basis.
Using more sophisticated data compression techniques, we could expand
the table size to around 10,000 stems without exceeding 300K of sto-
rage. So far we have been able to work easily within the limitation of
4000 stems.

The dictionary lookup uses a simple binary search algorithm. The
tables are sorted by the program at the beginning of the analysis. This
allows extra items to be inserted temporarily for each text without
making them permanent members of the dictionary stored on the disk.
The morphological endings, however, are stored in a permanent tree
structure. This not only conserves storage but also allows much faster
searching. The tree, which currently contains about 2000 endings, is
generated by a separate program. The analysis program reads it from
the disk along with the lists of stems and indeclinables.

Ad hoc programming techniques are used for isolating the prefixes
and augments. Greek shows many idiosyncrasies in this area, and it
would be difficult to design an efficient table-driven algorithm for this
purpose.

If this system is to be expanded to include dictionaries for a wider

COMPUTER-ASSISTED MORPHOLOGICAL ANALYSIS OF ANCIENT GREEK 349

range of texts, it will eventually be necessary to exceed the current
limitation on dictionary size. At our computing center the existing
program could accomodate at least 25,000 stems, which is undoubtedly
adequate for any text. If the system were to be used on a machine
with limited memory, however, it would be desirable to keep the entire
list of endings in memory at all times and to process the text several
times with different subsets of the dictionary.

THE FIRST FORTY-THOUSAND WORDS ANALYZED

Rather than encoding a standard list of Greek verbal and nominal
stems, we have decided to add entries to our dictionary only as they
are needed. This approach seems satisfactory, and our tables now suf-
fice for a wide range of Greek prose of the classical period. So far we
have analyzed Plato's Apology, Crito, and Lysis, Xenophon's Consti-
tution of the Spartans, Euripides' Medea, and selections from Thucydides
and the New Testament. In the course of analyzing these texts, we have
been constantly improving the dictionary and the program. We expect
that far less time will be required in correcting the computer analysis
in the future.

Our tables were developed entirely from the texts cited above. It is
encouraging that these tables appear to include a very high proportion
of the forms needed for analyzing a variety of additional texts, from
the Hippocratic corpus to the fables of Aesop. A problem perhaps
unique to Greek is the existence of several literary dialects with varying
morphology. Within a single Attic drama, the dialogue is in Attic
while the choral odes are in a form of Doric. Moreover, Herodotus
and the Hippocratic authors write in Ionic, and Homer requires yet
another set of endings and dictionaries. We are currently working
on tables for use in analyzing Homer.

The program is able to analyze about 2000 words per second. The
computer charges for analyzing the entire Apology are under one dollar.
We have found that we require about one hour of manual editing
to check 500 words of analyzed text, or about four hours of human
time to check the work done by the machine in less than one second.
The cost of this editing is about fifteen times greater than the cost
of the initial computer analysis. For this reason we have taken pains
to design a convenient system for introducing coirections into the
analyzed text.

350 DAVID W. PACKARD

Our program has many points in common with the system used
by Professor Delatte in Lihge for automated analysis of Latin. So far
as I know, the Liege program does not include mechanisms for identi-
fying augments and assimilated prefixes, but these features could
undoubtedly be added. Despite the conceptual similarities, there are
significant differences between the two systems in terms of imple-
mentation. Our program, since it maintains all of its tables in core
storage, requires nearly twenty times more memory than theirs and
could not possibly be used on a small computer like their IBM 360/20.
The Liege system, on the other hand, could be used on a large machine
like ours, but it would generate a tremendous amount of superfluous
input-output activity by searching the dictionaries on the disk. Each
program takes advantage of the characteristics of the machine for
which it was designed. Given a large machine, our approach is probably
more economical, but the computer charges are a small part of the
total expense involved in producing an accurate analysis.~

An entirely different approach is taken by Busa who generates all
possible inflected forms of each stem and then collates his sorted text
with this list. I can see no advantage in using this method on machines
with large core capacity. Busa's approach, on the other hand, might
be appropriate for machines with extensive magnetic tape capacity
but limited core storage and no disks.

INITIAL RESULTS

As an example of our statistics, we can compare the morphology
of Plato's Apology with the grammatical topics introduced in the first
thirty lessons of a widely used elementary Greek textbook. The first
lesson (Lesson 3) equips the student to recognize the endings of more
than 1500 of the 8000 words in the text (the definite article, &y0~06¢,
X6"fog, yv6tz~, and ~po,~). The next lesson introduces adjectives like
8~og with 250 examples, the relative pronoun with about 100, and
various first declension nouns which account for an additional 150
forms. The first chapter on verbs brings 200 verbal forms within the
student's grasp, and Chapter 8 increases this by 150 imperfect and

The Li6ge program is described in great detail by JosEPH D~NOOZ in the Revue
(1973, No. 1) of the Organisation Intemationale pour l'Etude des Langues Anciennes par
Ordinateur.

COMPUTER-ASSISTED MORPHOLOGICAL ANALYSIS OF ANCIENT GREEK 351

aorist indicatives. In the first twelve lessons, little is superfluous, though
one might question the presentation of ~o~dr~pog and &~¢cvc0v in Les-
son 9. Lessons 12 and 13, however, enable the student to recognize
exactly five new words in the Apology. These chapters piesent the
-~t verbs. These uncommon, confusing, irregular verbs are introduced
far earlier than the middle voice and the participle, each of which oc-
curs many times more often. Lesson 15 consists of xt~&co and ~0&~00,
which covers 150 forms. Lesson 16, however, adds only 9 forms, apart
from the very common personal pronouns (about 500 examples).
The active participle is postponed until Lesson 19, despite its great
frequency (230 occurrences), and the extremely common middle voice
is presented only in Lessons 25 through 29. A textbook designed to
equip students with the morphology needed for reading Plato early
would be organized far differently.

On the basis of these statistics, we have written (and are now using)
a new textbook which introduces the middle voice (Lesson 4) and the
participle (Lesson 6) very early but postpones -V-~ verbs and other less
common forms.

APPENDIX

The purpose of this Appendix (written in 1977) is to describe briefly
our progress since 1973. Many additional texts have been analyzed and
corrected, including four books of Thucydides, the Hellenica of Xenophon,
and the Phaedrus, Gorgias and Laws of Plato. The program has successfully
been installed at half a dozen universities. The editing of the analysis is now
peformed on consoles equipped with the full Greek alphabet including
accents (on an Ibycus System).

There has also been a major revision in the internal organization of the
dictionary used by the program. The new dictionary is created by a com-
puter program from a dictionary in the old format. Those who use the ana-
lysis program do not need to be aware of the internal structure of the dic-
tionary, but it may be of interest to specialists.

Each entry in the stem dictionary consists of four elements: the stem,
the type-code, the flag, and the lemma. In.the initial version of the program
these fields were stored in a fixed format:

Stem Type Flag Lemma

~vOp~oz~ N2 M ~v0pco~o¢
~¢X'a~'~ A2 S ~yo~06¢
~o~X V1 M ~o6Xotz0tt
~ouX N1 F ~o~X~
z~oXt N3I F ~6X~
yp~? Vl ypo~co
y p ~ VF yp~,?~
ypot~ VA yp~?co
ysyp~? VX yp~?~
ysypc~ VP yp~,?~
Yfl~9 VC

This format is convenient for external use, but it is a very inefticient way
to store the dictionary inside the computer. We must allow fourteen cha-
racters for a long word like rcokuz~p0~W.oouvv b but we need only five for
a short word like yp0~?co. The same objection holds for the type field which
uses three characters to distinguish fewer than one hundred different codes,
and the flag, which has only four possible values. In the case of the lemma
field, not only does the fixed length format waste space for short lemmas,

COMPUTER-ASSISTED MORPHOLOGICAL ANALYSIS OF ANCIENT GREEK 353

but the same lemma is often repeated with more than one stem. Many
lemmas, moreover, can be reconstructed from the stem simply by adding
an ending and an accent.

Tin3 STEMS

In order to conserve space, the stems are divided into fifteen sub-diction-
aries according to their length. All stems of length one are stored in alpha-
betical order in the first subset of the dictionary, followed by stems of
length two, and so forth. This solves the problem of wasted space, but it
requires a table showing the location of each sub-dictionary. In order to
find a given stem in the dictionary, we use the Stem Length Table to find
the location of the dictionary for stems of that length. Within the proper
sublist the stem is found by a binary search.

THE TYPE CODE

Associated with every stem is a one-byte field specifying the type. In-
ternally the types are coded as follows:

lxxx xxxx Verbs 128 types
01xx xxxx Nouns 64 types
001x xxxx Adjectives 32 types
0001 xxxx Pronouns 16 types
0000 xxxx Others 16 types

The verb stems are further subdivided into the following classes:

10 000 xxx
11 000 xxx
10 001 xxx
11 001 xxx
10 010 xxx
11 010 xxx
10 011 xxx
11 011 xxx
10 100 xxx
11 100 xxx
10 101 xxx
11 101 xxx
10 110 xxx

present stems
augmented present stems
present stems
augmented present stems
aorist stems
augmented aorist stems
aorist passive stems
augmented aorist passive stems
perfect active stems
augmented perfect active stems
perfect middle stems
augmented perfect middle stems
future stems

The last three bits (printed above as xxx) provide eight types within each
class. Two present classes accommodate sixteen types. The second bit from

23

354 DAVID W. PACKARD

the left always indicates whether the stem is augmented. Since a future stem
cannot be augmented, the type code 1111xxxx is illegal and reserved for
special use internally by the program (for duplicate stems).

TrlE FLATS

Each stem has a flag with four possible values. The meaning of the flag
depends on the type of the stem. For nouns the flag gives the gender. For
verbs the flag indicates whether the stem is deponent. For adjectives the
flag identifies stems that are by nature comparative or superlative. Internally
the flag is coded as a two-bit binary number and is stored in the leftmost
portion of the lemma fidd.

THE LEMMAS

Lemmas are divided into two basic classes, those that are self-defining
and those that are not. A self-defining lemma can be reconstructed by
adding one of the following endings to the stem:

coy co o~

o4 ~ ¢co

The suffix is coded as a four-bit binary number. Another four-bit number
specifies which accent to use and where to place it. These two four-bit fields
are packed into a single byte. A self-defining lemma is recognized by the
fact that the first byte contains ff111111 (where ff are the two flag bits).
The second byte contains the suffix and accent codes. Lemmas which are
not self-defining are stored in the Lemma String. Each lemma appears only
once in this string. The lemma field in the stem list is an index into the
Lemma Table, which gives the length of the lemma and its origin within the
Lemma String.

DUPLICATE STEMS

It often happens that two or more stems are spelled alike. In such cases
only one copy of the stem is placed in the dictionary itself. This stem,
instead of having its type code and lemma code, has a pointer to the
Duplicate Stem List. Duplicate stems are recognized by a type code of the
form l l l lnnnn, where the four-bit binary number nnnn serves as a counter

COMPUTER-ASSISTED MORPHOLOGICAL ANALYSIS OF ANCIENT GREEK 355

showing how many entries for this stem exist in the duplicate stem list.
The lemma field is an index into this list. Each entry in the duplicate stem
list is a three-byte field consisting of a standard type code and lemma field.

SAVINGS IN SPACE

In the original fixed format the six stems of the verb yf~&q0co required a
total of 240 bytes in the dictionary (six entries of 40 bytes each). With the
new format the space required is as follows:

The stem ypo~qo
The stem yp~qa
The stem ysyo~q~
The stem ysyO0~
Duplicate list for 3,p0~0
Duplicate list for y9~d~
Lemma string for 7p&~0to
Lemma Table for 7p&~0t0

7 bytes
7 bytes
9 bytes
8 bytes
6 bytes
6 bytes
6 bytes
4 bytes

The total space required is now 53 bytes, or about 20% of the previous
value. For many nouns and adjectives the saving is even greater. The
noun 0s6g now requires only five bytes (the lemma is self-defining). In a
large dictionary the average entry requires about eleven bytes.

