
ISTV£N B_.~,TORI

WORKING WITH THE INTERACTIVE VERSION OF THE

T.G.T.-SYSTEM OF JOYCE FRIEDMAN

The present paper does not claim to be a description of the TGT-
System, since it was already presented by Professor Friedman herself
at the International Conference on Computational Linguistics in Stock-
holm in 1969. In addition the system has been described also in the
book Jo'i'cE FRIEDMAN, A Computational Model of Transformational Gram-
mar, Elsevier, 1971. Our intention is to present the new interactive ver-
sion of the TGT-System, which has been developed at the Basic Re-
search of I13M Germany, and to show how it can be used in linguistic
research.

In order to appreciate the present interactive version, it will be,
however, necessary to recall some essential aspects of the TGT-System,
yet we do not want to discuss the Friedman System as such in a
systematic fashion.

Accordingly, in the first part of the paper I shall talk about the
batch version, and about our experiences with the system and then I
procede to the interactive version.

1. TIlE TGT-SYSTEM IN GENERAL

The TGT-System of Friedman grew out of the necessity to Verify
or control a formal grammar. It becomes increasingly di~cult to con-
trol any formal system beyond a certain size: if one wishes to follow
the interaction of two or three abstract rules with all their implications,

The new interactive version of the System has actually been installed at the C.N.U.C.E.
in order to enable the participants of the Conference to see the systems as it works. I
take this opportunity to thank the organizers of the conference, the C.N.U.C.E., and
particularly Professor Faedo, Torrigiani, and Zampolli, once again, for their generous
support of the demonstration. I also thank my collegues Mrs. Schirmer, Miss Zoeppritz
and Mr, Henning, who assisted me to prepare the demonstration. I am especially indebted
Dr. Picchi, who adopted the interactive version to the local cMs-System.

104 ISTV.~N ~.~TOat

he may still use his head; for a dozen rules, he will need paper and
pencil; and for hundreds of rules, he must have a computer.

As primary objective Friedman wanted to give a computational
aid to the transformationally oriented linguists. Her system as it stands
now can, however, be considered also as an attempt to formalize the
transformational grammar in the strict mathematical sense as well.
The basic intention of Friedman was not to argue for a specific type
of generative grammar but rather to Offer a framework as general as
possible and let the linguist impose restrictions on his particular gram-
mar. However, it cmmot be overlooked that the starting point of Fried-
man is clearly CHOMSKY'S Aspects-model.

Accordingly, it is easy to learn how to work with the TGT-System
if yOU are familiar with transformational theory. On the other hand,
you can use to system " to learn" transformational grammar, as a
tutorial aid. Since we do not want to discuss either the transformation-
al grammar directly, nor the purely technical details of Friedman's
System, please, let me presume familiarity with the basic notions of
generative grammar and refer for the purely notational conventions
once again to Friedman's book.

2. THE FORM OF THE GRAMMAR

The form of the Grammar is strictly prescribed, but as already
mentioned, it is very close to current transformationalist notation.

For the TGT-System a grammar consists of a phrase structure, a lexicon,
and a transformational part. In the first phase of the processing the gram-
mar is built up according to the users specifications and in the second,
subsequent phase one sentence (or more) are constructed according
to the grammar. Each of these major components is subdivided further
into smaller units. The structuring of the Grammar is indicated by
keywords, which must be used in certain positions and are anticipated
by the System.

Let me shortly comment on some points of this scheme of grammar.

3. THE TREATMENT OF THE CONTEXTUAL FEATURES

Friedman introduced a new type of feature, called contextual,
which comprises Chomsky's strict subcategorization and selectional
restrictions; i.e., it is all the same for further processing, whether a

THE INTERACTIVE VERSION OF THE T.G.T.-SYSTEM 105

contextual rule involves features, like (a) or just category symbols,
like (b) in (Fig. 1.).

Contextual Rule
(a) HUMSBJ----- (S / (# (ART) N] + H U M A N] ° / o _ %)) .
0~) DmOBJ = (V~ (% NP)>.

Lexical Entries

Key [+ N -- H U M A N f,
Student I + N + H U M A N],

Imagine I + V + H U M S B J . . . I ,

Lexical Insertion
1. Category N V . . .

I
N
I

[+ N + HUMAN I

NP lip #
1
V

, . , , . ,

Imagine
I + V +HUMS13Jl

2. Category V N
S

NP VP
I I
N v

Hul,atz ~ I + V + HUMSBJ. I

k ~ Student] " ~ % ~ 1

F
I + tIUMAN[

Fig. 1. Side Effects

But apart from this simplification, the treatment of these contextual
features is significantly different from that of CHOMSKV'S in,the Aspects-
model. The main innovation is the concept of the "side effects ",
which makes the selectional rules independent of the order of inserting
lexical items into the derivational tree.

If the contextual feature refers to a node (or nodes) to which a
lexical entry has already been attached, (as in (1) on Fig. 1) the program
checks the compatibility of the item with its environment, just as
in the Aspects-model. If on the other hand (as in (2), Fig. 1) the node
referred to in the contextual rule is still empty, the new item is intro-
duced and the consequences of the contextual features, i.e. the feature
on which the insertion depends, are projected into the invironment.

f

106 ISTV~N B£TO~

4. THE REPRESENTATION OF TREES

Note that the output trees are leaned on the side to simplify print,
ing. In addition the nodes are numbered for ease of reference. These
numbers can be used, among others to localize the feature, which be-
long to a specific node, also with higher, non-terminal nodes. Note
also that features coming from the lexicon are associated originally
with the lexical entries. After lexical insertion they are adjoined to
the immediately dominating category node and not to the actual word
any more.

5. THE FORM OF TRANSFORMATIONS

In comparison with the Phrase Structure Rules the notational
conventions for transformations are less uniform. The notational un-
steadiness is largely due to the lack of a strict, mathematically founded
and universally accepted transformational theory.

There are two notational styles in use; the more popular of them
is the MIT-Style. (Fig. 2).

Verbal Description of Passive:

1. EXCHANGE SUBJECT AND OBJECT
2. INSERT THE W O R D B Y AS LEFT SISTER. OF THE AGENT
3. MAR.K THE MAIN VERB AS PAST PARTICIPLE

M. L T. - Notation :

SD # NP X PASS V NP X)
1 2 3 4 5 6 7 ~ =---------->

[S T] B Y + 2 7 SC 1 6 3 4 + PAR

M I T R E - Notation:

SD % 1 # 2NP % PASS 3V 4NP %,
SC (PREP < B Y >) A C H L E 2,

I + P A R T I MERGEF 3,

4 A L E S E 2,
2 ARISE 3.

Abbreviations

A L E S E . . . add left sister
ARISE . . . add r ight sister
M E R G E F . . . merge feature
A C H L E . . . add by Chomsky ad-

junction to the left

Fig. 2. Writing Transformations

THE INTERACTIVE VERSION OF THE T.G.T.-SYSTEM 107

This convention for transformation is generally advocated in stan-
dard introductory works. Accordingly, transformations are written in
the form of pseudo-rewriting rules, where apparently, the structural
description (SD) part should be replaced by the structural change
(SC) part. W i t h other words: you define the input arid you define
the output. The convention is self explanatory, but perhaps somewhat
vague. The MIT notation is regarded even by its own adherents
rather as a convenient short-hand for indicating structural cllanges
and not as a proper, full scale formalism.

The other style is the MITRE-notation, which is less known and
resembles computer commands. This convention defines the !nput
into a transformation and lists the elementary operations, to be carried
out on the input tree. The elementary operations shotild be defined
in advance. On the whole this way of representing transformations is
more abstract but it can be formalized more readily. Friedman uses
this style of notation: there is no problem to reformulate a trans-
formation from the pseudo-rewriting style into the operational
representation.

6. '~ THE TRAFHC RULES "

The purpose of the control program (cv) is to determine m which
order, and at which point in a derivational tree, a transformation should
be applied.

By means of a fORTRAN-like control language (by the so called
" traffic rules "), the linguist can execute the transformations cyclically,
i.e. applying the same set of transformations to every clause, he can
determine in which order the clauses of a sentence should be processed,
he may change the order of execution depending on certain condition,
e.g. on the success of preceding transformations etc. This control part
of Friedman's System provides an enormous generative power, the
possibilities of which have hardly been discussed in the linguistics. You
can easily define several successive transformational cycles by the cv
of Friedman, you can solve the ordering problem of transformations
by defining unique jumps in order to leave out the execution of a transfor-
mation, which in a "simple ", cyclically ordered grammar would be
impossible.

~v
t

108 XSTV~N ~XXOaI

7. USING THE SENTENCE GENERATOR

The actual testing of the Grammar is done by the Sentence Gen-
erator. As already said the Grammar is laid on in the first phase of
the processing and subsequendy the system should be instructed to
generate sentences according to the given grammar. Trivially in as
much as the system generates correct sentences, the grammar is veri-
fied to the extent the generated sentences are false, the grammar is
wrong and has to be corrected.

The sentence generator as such can operate in one of three nodes
(Fig. 3):

1. Random Sentences:

S

A random sentence will be generated

2. Predefined Structures:

S #
NP A R T THE

N BOY
VP A U X MOD Q

TNS PRS
V PASS

V READ
NP P R O N W H A T

The structure will be operated on according to your grammar

3. Directed Random Generation:

S RES
N D O M
Q

A random sentence will be generated with the restriction that it will not dominate
a Q-node

Fig. 3. Types of Input into the Sentence Generator

1. It can generate sentencescompletely at random, where a ran-
dom number generator mechanism controls the selection of grammat-
ical rules and lexical insertion. All you have to do is to enter the sen-
tence symbols S.

THE INTERACTIVE VERSION OF THE T.G.T.-SYSTEM 109

2. You can predefme a sentence entirely at the level of deep
structure and let the system check the tree and carry out the transfor-
mations leading up to .the surface structure.

3. You can use partially defined input, e.g. defining just the struc-
ture, but leaving open the lexical insertions, or just specifying a partic-
ular structural configuration you are interested in, while letting the
system fill up the rest at random.

For practical testing the second and the third way of using the
sentence generator is clearly preferable. The random generator may
produce spectacular sentences, but practically never the ones which have
bearing on the problem you are interested in. The sentences delivered
.by the random generator may be and are revealing, and nobody exper-
imenting with the system would withstand the temptation to see
what his grammar would produce "left entirely alone ", but it is
not suitable for systematic work. You may correct a mistake detected
by the random generator, but you better test the correction by a pre-
determined skeleton, otherwise you may get a totally different sentence,
from which you cannot see whether the error has really been corrected
or not .

According to our experience, entirely predetermined structures in-
cluding lexical entries are the best to test a grammar. In this case you
can anticipate a normal sentence as the final output of the generator,
and can immediately decide whether the generation is correct or not.

There are two input formats: a free, bracketed (FTRIN) format,
and a fixed tree format (TVJN). It is perhaps a matter of personal taste,
yet for us the rTRIN, that is the bracketed input, seemed to be more
convenient. (Fig. 4)

FTRIN Format:

S < # NP (PRON <JEMAND)) VP (NP(AtkT(D) N(BUCH)>
V (LES >> MOD < V (HAB> TNS(PtLS >) #).

TRIN Format:

NP
VP

MOD

PRON JEMAND
NP ART D

N BUCH
V LES
V HAB
TNS PR.S

Fig. 4.

110 ISTVAN B/kTORI

Usually, the interaction of the phrase structure rules is fairly straight-
forward, while that of the transformational rules is much more intricate.
Therefore you can easily predefme a skeleton by using your own phrase
structure rules "manually " and then let the system apply the transfor-
mations to the prefabricated input. If you use partially predetermined
trees, you may be distracted by mistakes, which occur at places which
are of no interest to you. Note that you cannot correct all errors, at
least not at once, and therefore you had better concentrate on a few
points, otherwise you loose sight of you own grammar.

8. THE OUTPUT OF THE BATCH VERSION

The original batch output of the ToT-System has been designed
to provide all possible information about the processing, which the
linguist may possibly need. First the input grammar is listed, followed
by the content of the major internal tables, according to which the
subsequent generation procedes. Then, the process of sentence genera-
tion is reported in such a manner, that the linguist can follow the sig-
nificant steps of the processing (Fig. 5 (1)).

9. TIIE INTERACTIVE VERSION OF TH.E TGT-SYSTEM

The present interactive version has been developed according to
the experiences gained by working with the original batch version.
We have noticed in general that we are interested in the linguistic aspects
of the derivation, such as changes in the tree, or in the final output,
but not the actual computation.

The demand for a more condensed output will be even more im-
perative in a terminal environment where the time and the output
should be restricted to a minimum. Therefore we defined a new ad-
ditional output file, containing just the essential information in which
a linguist is interested (Fig. 5).

The original batch protocol enables you to follow the actual flow
of computation, e.g. in the case of a transformation you get the modules
called to perform the successive steps of the processing. The interplay
of the different subroutines is, however, always the same: A N T E S T
calls PASSIV, PASSIV calls ELEMOP etc. Since Friedman's System
works practically free of error, there is no need to check the subroutine

THE INTERACTIVE VERSION OF THE T.G.T.-SYSTEM 111

The Transformations as formulated in the Grammar:

T R A N S 1 PASSIV " PASSIVBILDUNG " l OB.
S D # I N P 2NP 3V 4 V l + P A S S 1 % .
SC (PREP I + D A T [(V O N)) AFIDE 1,

[+ P A R T [MERGEF 3,
2 ALESE 1.

The Derivational Tree to be Manipulated on:

1 S 2 #
3 NP 4 A R T 5 D

6 N 7 STUDENT3
8 VP 9 NP 10 PR.ON

12 V 13 LES
14 M O D 15 V 16 WEILD

17 TNS 18 PR.S
19 Q

20 #

11 WAS

The Report on the Successful Completion:

1. The ordinal batch protocol
ANTEST CALLED FOR. 2" PASSIV " (AC) ,SD = 7. R E S T R I C T I O N = O.
T O P = I : S
ANTEST R E T U R N S ** 1 **
CHANGE. CALL ELEMOP FOR. AFIDE 21 3
CHANGE. CALL ELEMOP FOR. ALESE 9 3

2. The new interactive protocol
PASSIV AFIDE 21 3 ADDED SUBTREE: 21 IS HEADED BY PREP
PASSIV MER.GEF 12 + P A R T
PASSIV ALESE 9 3

Fig. 5. The Protocol of the Transformations

calls every time. This information, therefore, can be dispensed with
for the most purposes.

We have designed a slightly different, more comprehensive format,
which contains only the linguistically relevant information. The new
output format of the interactive version makes a clear reference to the
input grammar, such as the name of the transformation, the name
of the elementary operations, the nodes affected by them. In one point
the interactive version provides information, which has not been explic-
itly reported in the original batch version. You can follow now also
the feature operations in the same form as you follow the tree opera-
tions: the interactive protocol delivers the features names and the actual
feature value. For a linguist testing feature operations this is an inno-

112 ISTVAN BATORI

vation over the original batch version, which suffices to give a hint
at this point, that the feature operation has been successfully comple-
ted without further details.

It should be noted, that batch-output and terminal output are not
mutually exclusive, the terminal output is a summary extracted from
the original and placed on a separate file output. The original output
is, however, still available. The file on which is written is normally
set dummy, but it can be reactivated and listed, in the very same form
as in the original version. 1

10. THE COMMANDS OF THE INTERACTIVE VERSION

The interactive version on the whole uses a fairly straightforward
language. The answer to most of the questions is either yes or no (or
just the first letter of these words). Every answer is prompted; and
should be answered by saying yes or no. In such cases where an other
answer is expected the book of Friedman should be consulted. Note
that in case you want to enter the input skeleton not from the terminal
you must have the file allocated prior to calling the TgT-System.

~ . THE CONTROL OF THE INPUT

Summarizing: if you want to run the ToT-System you have to
define and enter a grammar, give a command for the sentence gener-
ator, and you have to deliver a skeleton to be expanded (Fig. 6). Orig-
inally all these three kinds of input were entered in sequence into the
system on the same file as data.

It should be noted that the grammar is a part of the input data,
which is entered and processed in each run. This homogenous input
is then interpreted by the system as grammar or as input into the sen-
tence generator according to the internal logics of the program. In
order to achieve greater flexibility while testing a grammar, we sepa-
rated the three logically different input into three logically different
files. The input grammar, usually a text of several hundreds of lines,

1 The flies 8 and 9, containing system messages have been, however, dropped; they
were of no interest to ordinary users.

r

THE INTERACTIVE VERSION OF THE T.G.T.-SYSTEM

Bat& Input

3. Input skeletons'-~

2. Generator Commands.-"-~ A

1. Gram

Interaaive Input

I. Gralllllhqr

2. Generator Commands
o r

3. Input Skeletons

Fig. 6. The Reorganization of Input

113

)

is normally already stored on an external device and entered accord-
ingly. The generator command (the $MatN-card) may be attached
to the grammar, if not, it is prompted and you may enter it from the
terminal.

Similarly, you may predefine input skeletons to be tested and enter
them just as you enter the grammar as a separate file. You have, how-
ever, the choice to enter skeletons directly from the terminal. In case
of interest you may enter as many skeleton as you like. The random
generator then provides for variation.

Technically, the separation of the three logically different kinds of
input has been accomplished by introducing a file variable, which is
set first to accept the grammar from a permanent data set and then
changed over to the terminal or an other permanent input data set ac-
cording to user specifications at session time.

114 ISTVAN B~TORI

12. TIlE TREATMENT OF THE ERROR I~iESSAGES

The same file variable technique is used to control the error mes-
sages. The error file is set either to the terminal or to the batch file al-
ternatively. There would be no problem to assign the error messages
permanently, yet an eventual change of the file requirements in ter-
minal environment would mean a revision of several hundreds of er-
ror messages, while a file variable can be controlled by a single instruc-
tion.

There is a further problem to be faced and that is the reference
point of the error message. In the original batch version the error mes-
sage precedes the actual erroneous line in the grammar or inserted in
the protocol at the appropriate point.

In the first case the interastive version does not display the original
input grammar, and therefore a message that e.g. brackets are opened,
but not closed or "special character expected ", but not found, and
the like are not very informative, since the user would be left alone
to find the critical place in the grammar. Therefore the error messages
during the processing of the input grammar are preceded by the actual
line in which the error has occurred. The line numbering will help
the linguist to localize the erroneous section in the input grammar.

If on the other hand the error occurs during sentence generation,
the message will be inserted in the terminal protocol at the appro-
priate place.

13. THE CONTROL OF OUTPUT

Another crucial point is the control of the terminal output. You
can have the following choices as regards extent of output:

1) You are not interested in any further details, you ,do not
want to see the full input tree. In this case you still get: 1., the linear
representation of the input, 2., the list of transformations which have
been applied and 3., the output of the transformations, also in the
linear form. This is the minimal amount of output (Fig. 7):

2) You wish to see the input tree into the transformational com-
ponent, you answer to the question P R I N T O U T INPUT TREE?
by saying "yes ". In this case you get also the full output tree of the

THE INTERACTIVE VERSION OF THE T.G.T.-SYSTEM 115

E R R O R MESSAGES WANTED?
Y

INPUT TREE FROM TERMINAL?
I1

PRINTOUT INPUT TREE?
n

INPUT TO TRANSFORMATIONS:
Q NEG WEP. EIN PREIS ERMOEH WERD HAB KOENN WERD PRS #

~r

TRANSFORMATIONS WHICH APPLY:

AUXELIM ALESE 20 19
AUXELIM ALESE 22 19
AUXELIM ALESE 24 19
AUXELIM ALESE 26 19
AUXELIM ALESE 28 19
KEIN AFIDE K 13
KEIN ERASE 0 6
PASSIV ALESE 12 8
PASSIV AFIDE 32 8

logoff in 15 rain
PASSIV ALESE 8 17
KNGRUM ERASE 0 28
VR.ISE ARISE 26 11
VRISE ARISE 24 11
VRISE ARISE 22 11
VRISE ARISE 20 11
VR.ISE ARISE 17 11
TOPIC ERASE 0 3
TOPIC ALESE 8 12
VERBUM3 ARISE 26 8
GR.MARK ERASE 0 2
GtLMARK ERASE 0 30
INFPAP,. ALADE T 17
INFPAR SUBSE W O R D E N 21
INFPAR SUBSE SEIN 23
INFPAR. ALADE EN 24
MORPHY SUBSE WIRD 27
INDART SUBSE EIN 14
P R O M O R SUBSE WEM 10
PUNKT &LADE 41 1
PUNKT ALADE 43 1
OUTPUT GENERATED BY TRANSFORMATIONS:
~r

,R

ADDED SUBTREE: 32

ADDED SUBTR.EE: 41
ADDED SUBTR.EE: 43

VON WEM WIRD KEIN PR..EIS ERHOEHT W O R D E N SEIN KOENNEN
QMARK PUNKT

Fig. 7.

116 ISTVAN BATORI

whole generation automatically. You get also the list of the transforma-
tions which apply displayed; to be more precise you get the list of
tree operations (Fig. 8):

ENTER. R A N D O M GENERATOR COMMANDS!
$main trin gen tran.

INPUT TREE FROM TERMINAL?
yes

ENTEP. R A N D O M GENERATOR INPUT IN THE FORM OF TI~INI
+ + + + +

s

PRINTOUT INPUT TREE?
yes

PRINTOUT FEATURES?
n o

INPUT TO TRANSFORMATIONS:
1 S 2 #

3 N P
4 V P

5 MOD

9 PI~ON 15 JEMAND
7 N P 1 0 N
8 V 16 SEH

11 TNS 17 PRS
12 Q
13 NEG

JEMAND HANS SEH PR.S Q NEG #

TR_&NSFORMATIONS WHICH APPLY:

NICHT ALESE 18 9
NICHT ERASE 0 13
KONGP.UE5 ERASE 0 11
VERBUM ALESE 8 3
VERBUM EP.ASE 0 12
GRLOE ERASE 0 2
GRLOE SUBSE FtLGZ 6
OUTPUT GENERATED BY TRANSFORMATIONS:

1 S 8 V 16 SEH
3 NP 9 P R O N 15 JEMAND
4 V P 7 N P 1 0 N

18 NEG 19 NICHT
20 FI~GZ

SEH JEMAND HANS NICHT FRGZ
1

ENTER GENERATOR INPUT AS TtLIN
+ + + + +

/*

TRIN .NO MORE INPUTS.
READY

14 HANS

ADDED SUBTREE: 18

14 HANS

OR QUIT BY >/~>!

Fig. 8.

THE INTERACTIVE VERSION OF THE T.G.T.-SYSTEM 117

3) You may want to see also the features associated with the
nodes in the tree - then you respond to the next question of the system
PRINTOUT FEATURES correspondingly - and you get the features
displayed both of the input and the output tree. In addition you get
also the list o f transformations applying, now including also the fea-
ture operations (Fig. 9) :

call new(tgt 250)
~r

WELCOME TO THE INTERACTIVE VERSION OF
FRIEDMAN[S TGT-SYSTEM !

E R R O R MESSAGES WANTED?
yes

INPUT TREE FROM TERMINAL?
n o

PRINTOUT INPUT TREE?
yes
PRINTOUT FEATURES?

yes
INPUT TO TRANSFORMATIONS:

NODE

NODE

NODE

NODE

NODE

NODE

1 S 2 #
3 NP 4 ART 5 D

6 N 7 STUDENT3
8 VP 9 NP 10 P R O N

12 V 13 LES
14 MOD 15 V 16 WERD

17 TNS 18 PRS
19 Q

20 #
4 ART

[+ A R T + D E F [
6 N

11 WAS

"k

PASSIV A.FIDE 21 3
PASSIV MERGEF 12 + PART
PASSIV ALESE 9 3
NOMIN MERGEF 9 + NOM
NOMIN MERGEF :10 + NOM
DATIV MERGEF 3 + DAT

TRANSFORMATIONS WHICH APPLY:

ADDED SUBTR.EE: 21

+ N + MASC -SG + HUMAN + ANIM -PRPNM [
10 P R O N

+ PRON + SG -HUMAN + ANIM + (S/(%_%Q%>> [
12 v

+ V + EN + STRK + <S/>~NP<(ART)* [+ HUMAN l>%_b/o>> [
15 V

I + v + PASS I
17 TNS

[+ T N S + P R S [
D STUDENTEN WAS LES WERD PRS Q #

118 ISTVAN BATORI

KONGR.UE5 MOVEF 10 15
KONGI~UE5 MOVEF 17 15
KONGtkUE5 ERASE 0 17
VERBUM ALESE 15 9
VERBUM ERASE 0 19
ERGFIk ARISE 9 2
INFPAI~ ERASEF 12 SG

PRS
INFPAR. AFIDE GE 12
INFPAk ALADE N 12
MORPHY SUBSE WIleD 16

• DEFAR.T SUBSE DEN 5
DEFAtLT SUBSE DEN 5
GtLLOE ERASE 0 2
GRLOE SUBSE FRGZ 20
OUTPUT GENERATED BY TRANSFORMATIONS:
-k

1 S 9 NP 10 PRON 11 WAS
15 V 25 VCIR.D
3 NP 21 PREP 22 VON

4 AtLT 26 DEN

NODE

NODE

NODE

NODE

NODE

NODE

NODE

NODE

1
READY

+ SG
+ PRS

6 N 7 STUDENT3
8 VP 12 V 23 GE

13 LES
24 EN

28 FRGZ
' 9 N P

-4- NOM [
10 PRON

+ PRON + SG -HUMAN + ANIM + NOM + <S1(%-% Q%)) I
15 V

+ V + S G +PIKS +PASS [
3 N P

+ DAT I
21 PREP

+ DAT [
4 APT

+ AR.T + DEF [
6 N

+ N + MASC -SG + HUMAN + ANIM -PRPNM [
12 V

+ V + EN + STR.K + PAP.T + <S/<#NP<(AIKT)* I + HUMAN l>
%-%>> I
WAS WIRD VON DEN STUDENTEN GELESEN FP.GZ

Fig. 9.

THE INTERACTIVE VERSION OF THE T.G.T.-SYSTEM 119

4) You may be interested in even more details, for instance in
some intermediate trees and you have inserted TrACE-cards in the con-
trol program of the grammar just as they are inserted in the original
batch version. Now if you answer to the question P R I N T O U T IN-
P U T T R E E by saying A L L , you will receive every intermediate tree
as well, in addition to the input and output tree with features and fea-
ture operations. Otherwise the TRACt. function returns just the terminal
string of the derivation. Fig. 10 shows the general logics of the output
control:

Printout input tree?
Printout features?

Output produced:
Terminal strings
Trees
Features
Tree operations
Feature operations
Intermediate Trees by axse~

NO

+

+

Yes
No

+
+

+

Fig. 10. The Control of Interactive Output

Yes
Yes

+
+
+
+
+

All

+
+
+
+
+
+

14. CtOSlNC~F.MARKS

A grammar developed direcdy with the aid of the TGT-System
is practically never complete, it generates only a subset of the language
in question. You may add, change, remove parts of the grammar
and thus you can easily produce minor variants of the same grammar
one of which may be preferable over the other. In fact this is the nor-
mal way to work with the system.

At the C.N.U.C.E.-installation the/'e was a number of test-gram-
mars (German, Italian, English and Spanish), offered to the participants
to try how such testing looks like. The participants of the Conference
were invited to look at the Grammar Tester as it works. In the Centro
Nazionale Universitario di Calcolo Elettronico the Transformational
Grammar Tester was running on a I~M System/360 Model 67 under
CP-CMS-67.

REFERENCES

N. CHOMSK~', Aspects of the Theory of
Syntax, Cambridge (Mass.), 1965.

J. FaI~I~lq, T. H. B~DT Lexical Insertion
in Transformational Grammar, Palo Alto
(Calif.), 1968.

J. Fr.I~D~, P,. W. D o ~ , A Formal
Syntax for Transformational Grammar,
Palo Alto (Calif.), 1968.

J. Fm.~aA~, P. MYst~NsgY, Computer
Experiments in Transformational Gram-
mar: The UCLA English Grammar,
Ann Arbor (Mich.), 1970.

J. FRIr~MAN, Application of a Computer
System for Transformational Grammar,
Preprint No. 14, in International Con-
~rence on Computational Linguistics,
Stockholm, 1969.

J. Fr.mDV_~, Directed Random Generations
of Sentences, in ,~ Communications of
the ACM~,, XII (1969) 1.

j. FRmDV~N, A Computer System for
Transformational Grammar, in ~ Com-
munications of the ACM~, XII
(1969) 1.

J. Fmr~DMAN, Distribution and Use of the
Computer System for Transformational
Grammar, Working paper in Compu-
tational Linguistics, M-27, The Uni-
versity of Michigan, 1973.

J. FRmDmA~, et al., A Computer Model of
Transformational Grammar (Mathemat-
kal Linguistics and Automatic Language
Processing Nr. 9), New York, London,
Amsterdam, 1971.

Y. CH. Mom~, Computer Experiments in
Transformational Grammar: French I,
Ann Arbor (Mich.), (Natural Language
Studies Nr. 3), 1969.

P. I~OSENBAUM, D. I.OCI~AK, The IBM
Core Grammar of English, Yorktown
Heights (New York), 1966.

