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ON LOGICAL FORMULATION OF THE COMPUTATION 

PROCESS IN SEMANTICAL SYSTEMS 

In the recent years there is an intensive search for a rigorous and 
explicit semantics in the theory of natural languages (and in the field 
of computer languages). In this paper we want to present a general 
framework in which all these ideas and results can be stated and re- 
lated in a unified and systematic way, and at the same time, by the 
using of the language of predicate logic, eventually of higher order, 
to reformulate and improve the different semantical systems: the system 
discussed by Scott and Strachey in their development of the theory 
of mathematical semantics for computer languages, the set-theoretic 
semantics for context-free fragments of natural languages proposed by 
Suppes and, finally, Lewis's iutensional semantics for a categorial gram- 
mar. In ~ 1, mainly by the example of  context-free grammar, we show 
that the language of predicate logic of first-order can be used to describe 
the syntax of an object language. We obtain then in ~ 2 a logical char- 
acterization of structural descriptions associated with each reformu- 
lated syntactic rule. This leads to the development of the recursive 
mechanism in the form of definition of semantic functions by cases. 
This general principle will be then applied in ~ 3-5 to treat the concrete 
semantical systems mentioned above. 

1. GRAMMAR (SYNTAX) AND FIRST-ORDER THEORY 

Let us begin with the study of the representation of a grammar 
as a first-order theory, namely as a theory formalized in the language 
of predicate logic of first-order. We consider especially the context- 
free grammar, since it builds up on the one hand the basis for the de- 
velopment of the transformation grammar, on the other hand all the 
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semantical systems to be discussed below are referred essentially to 
context-free languages. 

In general, a context-free grammar consists of a set of rewriting 
rules each of which is of the form 

(1.1) A - .at a , l& ' at.... & a , .  

where A,  Ai,, .... At,, stand for nonterminal symbols (category symbols) 
and a¢,, ..., ain for terminal symbols and some of A i and at may be 
null. We can describe this form of context-free rule by the following 
logical formula (here and in the sequel we omit the universal quanti- 
fications) : 

(1:2) At, (xl)^ A,, (x=)^ . . .^ A,,, (x,,) = A (x'i'aFx~'aF...-x~'at,,), 

where we take A, Ai,, . . . ,  Ain as unary predicate symbols and at1, ..., 
at, as individual constants; the symbols " ^ "  and " ~  " are the conjunc- 
tion and implication sign and the function symbol . . . . .  stands for 
concatenation. The set of logical formulae thus obtained are called the 
nonlogical axioms of the first-order theory corresponding to the given 
context-free grammar. • 

As an example, we consider the following context-free grammar 
given•by P. SUVVES (1971): 

S -~ N P  VP 
VP -+ T V  N P  .'" 
N P  -* P N  
P N  -*John 
T V - +  hit 
P N  -* Mary 

The nonterminal symbols are S, NP,  VP, T V  and PN;  the terminal 
symbols are John, hit and Mary. 

Corresponding to this set of context-free rules we can state the 
following nonlogical axioms: 

NP(x)  ^ VPOt ) ~ S(x-y) 
TV(x) ^ NP(r) = vp(x-r)  

PN(x)  = NP(x)  
PN(lohn) 
TV(hit)  

.. PN(Mary).  
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It is obvious that a context-free grammar and its corresponding first- 
order theory enumerate the same set of terminal strings. More preci- 
sely, for each K-derivation of a terminal string w in a given context- 
free grammar in the sense of Chomsky, where K stands for any non- 
terminal symbol in this grammar, the formal sentence 

K(w) 

is in the corresponding first-order theory logically derivable (J. T. 
WANe, 1973). 

With this result we can state even the principle to formulate 
each grammatical transformation, which according to Chomsky is 
a mapping of phrase-markers into phrase-markers, as a nonlogical 
axiom in the following way: we describe both the applied phrase-mark- 
ers and the resulting phrase-markers, or parts of them, with formulae 
in the language of predicate logic of first-order which occur then respec- 
tively as premises and conclusion of an implication formula. This very 
implication formula can be. then taken as the representation of the 
grammatical transformation in question. As an example, for the pas- 
sive transformation, which has been specified by Chomsky as follows: 

structural description: NP, Aux, V~, NP 
structural change: x~-xa-xa-x4 ~ x4-x~-be-x3-en-by-xl 

we might state then the following nonlogical axiom: 

S(xlx2x3x4) A NP(xl)^  Aux(x2)A Vt(xa)^ NP(x,) , 
D S(x~'x~'be-x~'en-by'~x~)^ Ve(x~'be-x~en-br-Xx ). 

It seems evident, that the same principle stated above can be applied 
to the logical formulation of other grammatical transformations as 
well. 

2 .  SYNTACTIC RULE AND STRUCTURAL DESCRIPTION 

The results obtained abo~ce indicate that, in general, syntactic rules 
can be described in the language of predicate logic of first-order in 
the form 

p ~ / X  
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where P stands for a conjunction of formulae as premises and A for 
a conjunction of formulae as conclusion of the rule (nonlogical axiom) 
corresponding to the given syntactic rule. This suggests, however, that 
we may take the formula 

P^A 

as a characterization of the structural description of the strings generated 
by the reformulated syntactic rule in question. For example, we can 
take the formula 

A,, (xl)^ Aq (x~)^ ... ^ A,, (xn)^ A (x~ a~x~'a~. . . . - x~aJ  

as a characterization of the structural description of the strings of the 
form x~'a~x~'...-x~ai,,, which could be enumerated by the refor- 
mulated context-free rule, namely the logical formula (1.2) in § 1. 

The set of formulae of structural descriptions thus obtained, one 
for each reformulated syntactic rule, specify therefore exhaustly and 
disjoin@ the syntactic conditions, with respect to which the semantic 
evaluation function, which assigns a denotation or meaning to each 
generated terminal string, can be defined recursively. This is the kind 
of the definition of the (semantic) functions by cases in the usual mathe- 
matical sense. With this general characterization of our approach we 
are going now to treat the concrete semantical systems. 

3. SEMANTICAL SYSTEM FOR THE LANGUAGE OF NUMERALS 

Our general idea of using the language of predicate logic, eventually. 
of higher order, to give a recursive definition of the semantical functions 
can be well illustrated by reformulating the simple semantical system 
for the language of numerals, whicl'/has been given by D. SCOTT and 
C. STI~AClIEY (1971) as an example in their development for a theory 
of mathematical semantics for computer languages. In the following, 
we give just our reformulation and do not repeat their specification 
of syntax and semantics for this simple language. 

The numerals are expressions in a certain familiar language; while 
the numbers are mathematical objects (abstract objects) which provide 
the intended interpretations of the expressions. Based on the explicit 
syntax given by Scott and Strachey in the form of context-free gram- 
mar, we can describe this syntax for binary numerals by the following 
logical formulae: 
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Numeral (~ 
Numeml (1) 
Numeml (~ 
Numeml (~ 

Numeral (x-0) 
Numeral (xA1), 
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f :  Nml ~ N. 

Thus, for each x ~ Nml, the function value f(x) is the number deno- 
ted by the numeral x. 

Based on the idea of the semantical equations given by Scott and 
Strachey and using our general principles described in ~ 2, we can 
use the language of predicate logic to state the following semantic 
rules which define precisely this evaluation function: 

(3.1) 
(3.2) 
(3.3) 
(3.4) 

Numeral (0) ~ f(O) = O, 
Numeral (1) D f (1 )  = 1, 
Numeral (x),, Numeral (x-O) = f(x~O) = I f ( x ) ,  
Numeral (x),, Numeral (xA1) = f (xA1)  = 2 f ( x )  + 1. 

This set of logical formulae forms a recursive definition of the 
semantic evaluation function f with the help of the auxiliary number- 
theoretic functions of addition and multiplication. It is a definition of 
function by cases in the usual mathematical sense. Furthermore, this 
formulation corresponds to the intuitive idea in the linguistic theory, 
that on the basis of the grammatical properties and the meaning of the 
basic expressions of the languages the semantic rules enable one to deter- 
mine the meaning of any well-formed expression in terms of its syntactic 
structure. In the terminology ofJ. J. KaTz, J. A. FODOR (1963), (3.1) 
and (3.2) can be considered as the dictionary component, and (3.3) 
and (3.4) as the projection rules. However, it is essential to note, that 
is this kind of logical formulation of syntactic and semantic rules there 
is no need of any existence of phrase-marker for the semantical system 

where the symbol Numeral is a predicate symbol and the symbols 
" 0 "  and " 1 "  are individual constants. Thus, a numeral is either one 
of the digits " 0 " or " 1 " or is the result of suffixing one of these digits 
to a previously obtained numeral. Let the set of all numerals be called 
Nml. Semantically speaking each of the numerals is meant to denote 
a unique number. Let N be the set of numbers. The obvious principle 
of interpretation provides a function f, the evaluation mapping, which 
has the functional character: 
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to compute the denotation or meaning of the expressions. The structur- 
al description of a string generated by a syntactic rule is used just as the 
premises of the semantic rule corresponding to this very syntactic rule. 

In this way, we can treat the other complicated semantical systems 
for computer languages discussed by Scott and Strachey. However, 
with this simple illustration of our general approach to semantics, we 
like to continue our study of the semantics for natural languages. 

4. EXTENSIONAL SEMANTICS OF CONTEXT-FREE FRAGMENTS OF NATURAL 

LANGUAGES 

Within our general framework described in ~ 1-2 and illustrated in 
3 we want now to treat the semantical system proposed by P. SUVVES 

(1973). We indicate informally at first his approach and give then 
our reformulation and improvement of his system. 

In his study of the semantics of context-free fragments of natural 
languages, Suppes intends to give a set-theoretical account of the mean- 
ing of a sentence. To do this, a set-theoretical object will be assigned 
to each basic expression (word). In the case of a noun like men the class 
of men will be assigned; in the case of a proper noun like John the 
class consisting of a certain single member will be assigned; in the 
case of a transitive verb like hit the class consisting of pairs of individ- 
uals x and y such that x hit y will be assigned. In this kihd of approach, 
we assume thus, that over the individual words an assignment function 
v be defined, which assigns a denotation to each word. (We leave 
aside the discussion about syncategorematic expressions). To give an 
account of meanings (or denotations) of the various parts of a sentence 
and their relationships, Suppes introduces set-theoretical functions, just 
like we have used number-theoretic functions in the semantical system 
for the language of numerals. With each syntactic rule of the gram- 
mar there is associated a semantic set-theoretical function, For example 

syntactic rule 
S --> N P  VP 
VP -+ T V  N P  
N P  --> P N  
N P - +  Adj N 
P N  ---> John 
P N  ~ M a r y  
TV--> hit 

semantic function 
truth function 
image under the converse relation 
identity 
intersection 
identity 
identity 
identity 
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Using the assignment function v which assigns denotations to basic 
expressions only and using these semantic set-theoretical functions 
associated with each syntactic rule, the denotation of each labeled 
node of phrase-marker of the sentence will be then calculated. In Sup- 
pes's explicit formulation, the nodes of the phrase-marker will be num- 
bered, so that the denotation function f is actually defined for pairs 
(n, s), where n is the number assigned to a node of the phrase-marker 
and s is a terminal or nonternfinal symbol. For example, a numbered 
phrase-marker looks like this 

1; s 
J 

2, NP 
I / 

4, PN 5, TV 
I I 

7, John 8, hit 

3, VP 

6, NP 
I 

9, PN 
I 

10, Mary 

- Let I be the identity function, .4 the converse of the binary relation 
A, i.e. 

.~ = { <x, y> I <y, x> ~ A  }, 

and g"B the range of the function g restricted to the domain B, and 
let T be truth and F falsity. Then the denotation of each labeled node 
of the phrase-marker is calculated by working from the bottom up: 

f (10, Mary)-~ v(Mary), 
f (9, PN) = I(v(Mary)), 
f (8, hit) = v(hit), 
f (7, John) = v(John), 
f (6, NP) = I(v(Mary)), 
f (5, TV) -= I(v(hit)), 
f (4, PN) =- I(v(.John)), 

f ( 3 ,  VP) 
f (2, NP) 

f 0 ,  s) 

= ~(v(h~t))"~O,(Mary)), 
= X ~(v(John)), 

r =g(f(2, NP), f(3, VP)) =IF if f(2, NP) of(3, VP) 
otherwise. 
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The calculation of the denotations of expressions will be thus in- 
directly achieved by the way of the calculation of the denotations of 
the nodes of the numbered phrase-marker. This unnecessary compli- 
cation with the whole matter of numbered phrase-marker, which 
can be traced back to the specification of context-free grammar in form 
of rewriting rules, would not arise at all, if the context-free grammar 
had been formulated in the language of predicate logic since the very 
beginning of the development of theory of grammar by Chomsky. 
In fact, the process to compute the denotation of an expression can 
be specified by the following set of logical formulae directly and pre- 
cisely: 

(4.1) 
(4.2) 
(4.3) 
(4.4) 
(4.5) 
(4.6) 
(4.7) 

PN(Uarr )  = f ( V a r r )  = v(Varr) ,  
PN(John) = f(John) = v(John), 
TV(hit) = f(hit) = v(hit), 
VN(x)  ^ NP(x)  =. NP(x)  = f(x)  = z +--+ PN(x)  = f(x)  = z, 
Adj(x) ^ N(y) ^ N P ( x - y )  -,.  f ( x - y )  = gl (f(x), f(y)), 
TV(x)  ^ NP(y) ^ VP(x-y)  =. f ( x - y )  = g2(f(x), f(y)), 
NP(x)  ^ VP(y) ^ S (x -y )  =. f ( x - y )  = g3([(x), f(y)). 

The functions gl, g2 and g3 being used to specify the denotation function 
f are defined as follows: 

g, (A,  B ) = {  x l x ~ .~, , ,c  ~ B } 
e , (A ,  B ) =  { ,¢ I Vr (<~, r> ~ A^ r ~ B) } 

T i f A ~ B  
g3(A, /3)= F otherwise, 

or, formulated in the language of predicate logic: 

g~(A, 13)= C ~-.+ Ax(x  e A ^  x e B ,,.-.+ x e C), 
g , (A,  B ) ~ - C ~ - + A x ( V y ( < x ,  y )  e A ^ y  e B+-.+x e C), 
Ax(~ ~ A = x ~ B) = .  g~(A, B ) =  r . , , . - q  ^x(x ~ A =,~  ~ B) 

~.  g,(A,  B) = F. 

By the set of the semantic rules which use these set-theoretic oper- 
ations, the denotation of any well-formed expressions in this defined 
language can be then directly calculated. Thus, the denotation of the 
composed expression hit Mary is the set of individuals who hit Mary; 
the sentence John hit Mary is true if and only if the set consisting of the 
single individual John is properly contained in the set of individuals 
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who hit Mary. This set of logical formulae forms with respect to the 
given assignment function v a recursive definition of the denotation 
functionf which assigns to each well-formed expression of the language 
a set-theoretical object. This function has namely the functional char- 
acter: 

f :  Expressions-+ Set-theoretical Objects. 

It is just what Suppes intends to have. 
Again, (4.1)-(4.3) can be considered as the dictionary component, 

and (4.4)-(4.7) as projection rules. The whole set of formulae consti- 
tutes a definition of function by cases. The premise of each rule states 
the syntactic condition, with respect to which the function value is 
then specified. At the same time, we do not need even the notion of 
phrase-marker which has played the central role in the concept forma- 
tion in the theory of generative grammars. 

Note there is no general principle to guide us in choosing for each 
syntactic rule the corresponding semantic set-theoretical function. It 
may be even possible that no set-theoretical operation can be found for 
a given syntactic rule at all. It seems likely that in our usual understand- 
ing of natural languages we do not use any set-theoretical operation. 
Anyway, from the standpoint of theory of meaning, the semantics 
treated by Suppes is only the extensional part of the semantics of a 
language (A. CHURCH, 1951). With these remarks in mind, let us now 
consider the intensional semantics discussed by Lewis in his theory of 
categorial grammar. 

5. INTENSIONAL SEMANTICS FOR CATEGORIAL GRAMMAR 

D. LEWIS (1970) treats a categorial grammar in the sense of Ajdu- 
kiewicz as a context-flee grammar of the following sort. 

First, we have a finite number of basic categories like the categories 
of name (N), common noun (C) or sentence (S). Second, we have 
infinitely many derived categories like the categories of intransitive 
verb (S/N), adjective (G/C) or article ((S/(S/N))/C). In general, when- 
ever c, q, ..., c,, for n ~ 1, are any categories, either basic or derived, 
we have a derived category c/q ... c,. Third, we have context-free 
rule of the form 

(5.1) c~c/cx ... c.+q +... +c. 
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corresponding to each derived category, where " - t - "  stands for the 
concatenation. 

One of the main ideas behind the theory of categorial grammar 
is that the phrases of a derived category are phrases which combine 
phrases of basic or derived categories to form other phrases of certain 
category, which may be basic like the category of sentence or derived. 
Such phrases are called functors by H. B. CURRY (1961). Every functor 
combines one or more phrases, called its arguments, to form a new 
phrase called its value. This syntactic property shall be reflected in 
stating the semantic projection rule. We note here that the context- 
free rule of the form (5.1) can be described, as before, by the following 
logical formula as a direct translation: 

(52.) clq ... c. (y),, c, (xl) , ,  ...,, c, (xo) (y -x , - . . .  x,,), 

where we take c/q ... q, cl ..... cn and c again as unary predicate sym- 
bols. The word order as specified in the context-free rule (5.1) is 
sometimes too odd; the phrase of a derived category takes always the 
left-most position in its combined phrase. To take into account the 
natural word order, we should actually describe i t .by the following 
logical formula: 

(5.3) clcl ... c,~ ( y ) ^ q  ( x l ) ^  . . .^  c,~ (Xln) :3 C (X~'...--X'~'y~xi+L~...--X,). 

With these remarks about the syntactic rules in a categorial gram- 
mar, we are prepared to treat Lewis's intensional semantics within 
our general framework. 

Let us denote the sets of phrases of name, common noun, adjeCtive, 
intransitive verb, article etc. by Names, Common-Nouns, Adjectives, 
Intransitive Verbs and Articles respectively. Let Things denote the set 
of things and Sets the set of sets of things. And let T denote the set 
of truth values, and let I denote the set of indices, each of which is, 
roughly speaking, a package of the various factors like possible world, 
time, place and speaker on which the extension of an expression may 
depend. As used before, given any two domains D1 and Da, we write 
[D~ ~ D~] for the set of all functions from D1 into D2. We write 

h: D1 ~ D2 

to indicate that h is just such a function. 



ON LOGICAL FORMULATION OF THE COMPUTATION PROCESS 97 

According to Lewis's theory, an appropriate intension for a name 
is any function from indices to things; an appropriate intension for 
a common noun is any function from indices to sets of things; an ap- 
propriate intension for an adjective is any function from common- 
noun intensions to common-noun intensions, etc. In adapting this 
point of view, we shall consider in the sequel assignment functions, each 
of which assigns an appropriate meaning to a word of certain category, 
with the following functional charact.ers: 

vx : Names-+ [I ~ Things] 
v2: Common-Nouns ~ [!-+ Sets] 
vs: Adjectives-~ [[I-+ Sets]--> [I---> Sets]] 
v,: Intransitive Verbs-+ [[I-+ Things] ~ [I---~ T]] 
vs: Articles ~ [[I ~ Sets] ~ [[[I ~ Things] ~ [I ~ T]] ~ [I ~ 7"]]] 

Thus, for man: E Common-Nouns, the function value 

(man) 

is the assigned meaning of the word man, where this meaning itsel 
is a kind of function from indices to sets of things (individuals). In 
what follows, we assume that such assignment functions specifying 
an appropriate meaning for each word of certain category are already 
given or known to us, for example by learning or ostensive definition, 
In other words, we assume we know the meaning of each individual 
word. The problem is just how we can know the meaning of any 
well-formed expression in this language. We ask namely for a semantic 
evaluation function, which can compute the meaning of any well- 
formed expression on the basis of its syntactic structure and the meaning 
of its constituting words. This evaluation function f shall have namely 
the following functional character: 

f :  Expressions -+ Meanings. 

To define this function, .we begin with the specification of its val- 
ue for the individual words or basic expressions, based on the given 
assignment functions. As before, we state thus the following semantic 
rules, here formulated in the language of predicate logic of higher- 
order due to the functional characters of the assignment functions: 
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(5.4) 
(5.5) 
(5.6) 
(5.7) 
(5.8) 

N (John) ~ f (John) = v~ (John), 
C ( m a n ) = f  (man)= v, (man), 
C/C (young) ~ f (young) = v~ (young), 
SIN (sleeps)~ f (sleeps)= v4 (sleeps), 
(S/(SIN))/C (the) ~ f (the) = v5 (the), 

where we take again the symbols N, C, C/C, S/N, (S / (S /N)) /C etc. 

as unary predicate symbols. For the computation of the meaning of 
composed well-formed phrases, we shall state, corresponding to each 
syntactic rule, the semantic projection rule. For the syntactic rule of 
the form (5.2), the semantic projection rule will, in general, be of the 
form 

4c~ ... c, (Y) ̂  ~1 (x,)^ ... ^ ~, (x,) ^~ ( y - x r x ; . . . - x , )  
~. f (y-x7x-f ...-x,) = g(f(y), f (x 0 ..... f(x,)), 

based on the assumption, that the meaning of an expression depends 
on the meanings of its parts; it is a function of the meanings of its parts. 
This function g, which uses the meanings of these parts as arguments 
to compute the meaning of the composed phrase as its value, must 
be, first of all, specified. In general, as we have seen in the case of Sup- 
pes's system, there is no uniform principle to do it. In his semantic 
theory for categorial grammar, Lewis holds, however, the view that 
the result of concatenating a phrase of the category c/q ... c~ with in- 
tension i0, a phrase of the category c1 with intension/1, ..., and a phrase 
of the category q with intension i, is a phrase of the category e with 
intension 

;0(i l  . . . . .  i.). 

In accordance with this conception, we can state then, correspond- 
ing to each syntactic rule of the form (5.2), the following semantic 
projection rule: 

(5.9} c/c1 ... c,~ (y) ^ q (x~)^ c~ (xz} ̂  ... ^ c, (x,)^ c (y-x~'xT...-x,) 
~ .  f (y-x~'x~...-x~) = f  (y) (f(xl), ..., f(x~)), 

or, taking into account the proper word order: 

(5.~o) ~ /q . . .~  ( y )^q  (xO, , . . . ^~  (~ , )^~(~7 . . . -~ 'y -~ ,÷ , - . . . -x , )  
• f ( ~ i ' . . . ~ r ~ , + , ~ . . . ~ ) - - f  (y) ( f  (~0, ..., f (~,)). 
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Thus, we may have semantic projection rule like 

SIN (3)^ N (x) =. f  (x -y)=f  (3) ( f  (x)). 

One of its instances is as follows: 

s/N ( 1 ep4,, n (John) = . f  (John-steees)=f (sleees) 0 r (john)). 

In combination with the logical formulae (5.4)-(5.8), such rules 
enable one to derive logically the meaning of the sentence like John 
steeps, which can be represented as v, (sleefs) (vx (John)). And this rep- 
resentation would correspond to the usual so-called logical form: 
SLEEP(j). The set of projection rules thus obtained specifies in con- 
nection with those semantic rules like (5.4)-(5.8), which constitute the 
dictionary component, the evaluation function f recursively. This 
kind of formulation of semantic rules stands very near to our intuition, 
that on the basis of the syntactic structure and on the knowledge of 
the meanings of the constituting words we can understand the meaning 
of an expression. 

The semantic projection rule stated above has a nice homogeneous 
feature in specifying semantic evaluation function. This holds actually 
for all grammars using the notion of functor which combines one or 
more phrases as its arguments to form a new phrase. The meaning of 
the composed phrase can be then always considered as the result of the 
operation of the meaning of the functor with the meanings of its ar- 
guments. According to H. B. CURRY (1961), what Harris and Chomsky 
call transformations are also functors. From this point of  view, we can 
then state the semantic projection rule for a given transformation rule 
in the same way as described above. 
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