
I. Introduction

A study of formal properties of different styles of formal
grammars is of great interest because each style (i.e., formal char-
acter of rules) is well suited for characterizing certain aspects of
natural language structure and is awkward for characterizing certain
other aspects. The awkwardness can be due to either an inherent
difficulty in characterizing a certain aspect (e.g., the characteriza-
tion of the notion of the 'head' of a constituent in a PSG) or an
unnecessary complexity in characterizing a certain aspect (e.g., the
statements concerning the relational aspects in a PSG) or actually a
counterintuitive characterization (e.g., this often happens in a PSG,
especiai].7 in the context of transformational gra~nnars, because a
PSG allows an 'uncontrolled' introduction of new 'nonterminals').
This naturally suggests a study of formal gramnars of mixed types in
order to take advantage of different styles.* Thus we try to see how
far we can succeed in setting up a class of granmmrs which has no
more power than necessary and which also can characterize different
aspects of natural language structure in a natural way.

The class of grammars studied here and in Joshi (1969) have been
motivated by the type of granmmr proposed by Harris (1962, 1968).
These gra,~ars also arose out of an attempt to formalize certain aspects
of the type of grammar considered by Joshi (1966) where it was used
for defining structures for the purpose of defining transformations
and ultimately for constructing a transformational decomposition pro-
cedttre.

First, in Section 2, we will introduce a new style of •formal
grammars called String Adjunct Grammars (AG). The only purpose of
Section 2 is to state some of the basic concepts and results concerning
AG's (including a brief discussion of their linguistic relevance) which
are needed for the presentation of the material in Section 3 (for a
detailed treatment of AG's, see Joshi, Kosaraju, Yamada (1968)).
In Section 3, we will introduce a class of grammars called Mixed String
Adjunct Gra,~ars (~G) which use two different types of rules - adjunc-
tion rules and a special type of rewrite rules. After studying some
properties of ~AG's we introduce Generation Schemes G s = (G, A). A G

S
maps strings in the language, L(G), corresponding to an MAG, G, into
strings in the language, L(G'), corresponding to another MAG, G'.

* See also Robinson (1968) for a similarly motivated work.

-i-

Strings in L(G) and ~(G') are both 'well-formed'. In Section 3.~
we discuss briefly the linguistic relevance of the material in the
earlier sections. A detailed development of the various ideas intro-
duced here will be reported in Joshi (1969).

Fig. A. at the end summarizes the hierarchy of some subclasses
of AL's and MAL's in relation to the phrase structure hierarchy.

-2-

2. String Adjunct Granmmrs (AG)

Briefly an AG consists of a finite alphabet, a finite set of
strings on this alphabet and a finite set of adJunction rules which
state how certain adjunct strings are adjoined to certain host
strings. The corresponding language called a String Adjunct Language
(AL) is then defined as the set of all strings derived from a cer-
tain specified subset of the given set of finite strings. The rules
in an AG have a considerably different formal character as compared
to the 'rewrite rule' in a general phrase structure grmmmar (PSG).
The language hierarchies of AG's and PSG's cut across in many
interesting ways.

2 .I Local String Ad,iunct Grammar

We will define a local string adjunct grammar (LAG) as follows.
Let A = ~al, a2, ..., am) be a finite alphabet. Let Z be a finite
set of finite strings on A and let E c C E be a distinguished set of
strings on A. We will call Z the set of basic strings and F e the
set of basic center strings. We will define a local left ad,~unction
rule, ~i~k as a 3-tuple (ai, ~, £k) where a i e Z, a i • E and ~k is a
p-~t 0f~ad,iunction in a i. WeUwill call a i as the (~esic) host of
~iJk and aj as the (basic) ~ of ~ijk" The point of ad-j~ction

of Ai~k'k refers to the point of adjunction which is to the left of
t~ekth ~ymbol of the host a i where we associate with each string

ai • ~, ~i = ail ai2 ... ani ~ aij e A, and J = i~ 2, ...~ ni~ 2n i

points of adjunction, one to the left and one to the right of each
a i.. Note that a i # 8 ~ the null string. A local right adjunction

rule ri~k is similarly defined as a 3-tuple ~i, oJ, rk), ~i e ~,
~d ¢ ~ ~ rk is the point of adjunction of rij~o and. refers to the
p6int of adjunction to the right of the kth symbol in the host ~i.
In general, (~i, ~ ~k) will denote a local ad,iunctio~rule , uij k-
If ui.ik is a local~left ad~unction rule then ~k = ~k and if Uijk~is
a loc~l right adjunction rule then ~k = rk" Finally, we have the
f on~ng

Definition 2.1.1 A local string adjunct grammar (LAG), G is a 6-
tuple, G = (A, ~, ~c' ~' ~a' J) where A is the alphabet, ~ is the
set of basic strings, L~ is the set of basic center strings, ~h is
the set of basic host sErings, ~ is the sat of basic adjunct strings,
and J is a finite set of local adjunction rules. ~ = ~uil(ui, uj,

~k) ¢ J]' ~a = ~ajl(~i' ~j' ~k) e J}, and ~ = ~cU~4J~a . Further

Z c may contain ~ but ~ ~ Z h .

-S-

/
/

Given J, S h and ~ are completely specified and S = ZcUSh~
re. Further the alphabet need not be explicitly stated. Hence,
unless otherwise necessary we will write G as a pair (Sc, J)
instead of a 6-tuple as in the definitic~ above.

Example 2.1.1 Let ~ = (~c, J) where ~c -- rabcl, and
J = {u I = (abc, pq, rl) , u 2 =.(pq, pq, ~2)}" [We will write uij k
as Just u. The indexing of u's in J is arbitrary and is merely for
convenience.] Here Z c = rabc], Z h = ~abe, pq}, re = fpq], E =
{abe, pq]. Note that abe is a basic center string but pq is not.
u 1 is a local right adjunction rule and t~ 2 is a local left adjunc-
t~on rule. Here A = ~a, b, c, p, q}.

2.2 Local String Adjunct Language (LAL)

The meaning of an adjunction rule, say, u = (ui, a i, ~k) is
that fr~n u i we can derive a new string by adjoining u~Vto the left
of the kth symbol in u i. Thus, for example if u = (abe, t, ~2) we
can derive a string atbc. However, in order to define the language
L(G) corresponding to a given LAG, Gjwe must first define how the
rules of adjunction are extended to derived (i.e. non-basic) host
strings and adjunct strings. Here we will give an example to
illustrate the main idea and c~it the precise definition (see Joshi,
~)saraju, Yamada (1968)).

Example 2.2.1 Consider the LAG, G,in Example 2.1.1. P = ~abc,
pq), Z c = {abe], J = [u 1 = (abe, pq, rl) , u 2 = (pq, pq, ~p)]. From
abe by one application of u I we obtain apqbe. We regard~he points
of adjunction of apqbc to be the same as abc, i.e., the positions to
the left and right of the symbols a, b and c. This apqbc is a de-
rived host and we can apply u I again, obtaining apqpqbc where the
newly adjoined pq is i,,,ediately to the right of a.

Again, starting with pq, by one application of u 2 we obtain ppqq.
Since pq is both a basic host and a basic adjunct (in the same rule,
in this example), ppqq is a derived host as well as a derived adjunct
and hence it can be used as a host or as an adjunct or both in the
rule u 2 . This allows us to derive strings pppqqq, ppqpqq, ppqppqqq,
etc. Since all of these are derived fr~n pq they can be used as
adjuncts in Ul, allowing us to derive apppqqqbc, appqpqqbc,
appqppqqqbc, etc. If we use apqbc as a host in Ul, we can also de-
rive apppqqqpqbc, appqpqqpqbc, etc. Thus we can derive, for example,
fromthe string abc ¢ r c the strings apppqqqbc, appqpqqbc,
apppqqqpqbc, apqpqbc, apqpqpppqqqbc, etc. All these strings will be
included in the language L(G) corresponding to G.

Example 2.2.2 Let G = (E c, J), F~ = [ab],'J = ~u I = (ab, ab, rl)].
This gra~nar generates the language L(G) = ~ w / w is a string on
A; "the number of a's in w" = "the number of b's in w" and for any

-4-

\.

initial proper substring of w, the number of a's is greater than the
number of b's). This language is context-free and is known to be
non-linear (Schatzenberger (1961)).

Remarks 2.2.1

i. In the generation of a string in L(G) we observe that once
a string is adjoined to a host then the adjunct string cannot receive
any further adjuncts. In other words a string which is to become an
adjunct string must acquire all its adjuncts prior to its being used
as an adjunct string.

2. Let w be a string in L(G) derived from some string ui ~ ~c"
The generation of w does not begin, however, with the basic center
string unless, of course, w is just a basic center string itself or
a center string with adjuncts which themselves do not receive any
other adjuncts. We have to start from the "innermost" adjunct
(adjuncts) and work our way "inside out" and finally use the basic
string which is to become the center string of w.

3. During the generation if a host string receives two (or more)
adjuncts then we have the two following situations. If the two ad-
juncts are adjoined at distinct points of adjunction of the host, then
clearly those adjuncts can be adjoined in any order. However, if the
two adjuncts are adjoined at the same point of adjunction of the host
the order is significant. Let u I = (ai, oj, ~k) and u 2 = (ci, am, ~k)

be two rules. Let ~k -- ~i for example. If u I is used before u 2 then
we obtain OjamOi; but if u~ is used before ul-then we obtain amajO i.
In other words, the adjunct adjoined later in the derivation is
closer to the point of adjunction in the host (~6~which it was adjoined)
than the adjunct adjoined earlier in the derivation.

2.3 'Tree representation for a derivation in LAG

Let G = (~c, J) be an LAG. Let the rules in J be arbitrarily
numbered u_, u_, ...,u • The generation tree is constructed as
follows, ll)~If u~ =n(oi3 oj, ~k) is used in the derivation then

we represent this as in Fig. 2.3.1a. Here we have two labeled nodes
aj and °i and a directed branch from oj to °i with the label u~: ~k"

2~ Let a host oi receive more than one adjunct, say, ajl , oJ2''"'

ejmat points of adjunction gk I'~ gk o'~ "''' gkm' i.e., we use rules

ui~ = (oi' aj2, ~k) ¢ J, ~ = l, 2, ..., m. We represent this as

in Fig. 2.3.1b. Now, in view of Remark 2.2.1-3 we impose a right to
left ordering on the points of adjunction of a host and thus in effect
define an equivalence relation on the set of derivations of a string

-5-

f ,c, . 2 . 3 . 1 ~ .

bq Pq

(,I)
(9)

:i I : rz

~ : ~ X~ . : r~

t~t~) a-i>c ,

~4 ,',, Ex~,~,,b, le. 3... 3. i .

- 6 -

~ler';vo, 4;i'or~ o:

in L(G). The tree representation of a derivation with the above
conventions will be called a ri6ht to left (r-~) tree representation.
Note that the tree representation of a derivation of a string in
L(G) is a rooted tree and the string labeling the root is in Ec"

2..1 Example = labc, Let G = (E c, J) be an LAG where Zc -- [abc~, and
j = KUl pq, r2) , u 2 = (abc, rs, r2) , u S = (pq, pq, rl) ,

u~ =(abc, t, ~l), ~ = (pq, t, ~)3. The following is a string in

L(G). w = ttabrsppqptqqrspqc

Fig. 2.3.2 show an r-~ tree representation of a derivation of w.
We have numbered the nodes for convenience. Nodes l, 3, 5, 6, 7,
8, and 9 are terminal nodes. Node lO is the root node.

The derived strings corresponding to the nodes of the tree in
Fig. 2.3.2 are as follows: 1. t; 2. ptq; 3. Pq; 4. ppqptqq; 5. Pq;
6. rs; 7. rs; 8. t; 9. t; 10. w = ttabrsppqptqqrspqc.

2.4

Theorem 2.~.i Every LAL is a CFL (context free language).
class of LAL's is properly contained in the class of CFL's.
(L = ~anbn I n ~ i] is not an LAL.

The

2.5 Distributed Strin~ Adjunct Granmmr (DAG) and Lan6ua~e (DAL)

We will generalize the local adjunction rule as follows.

Definition 2.~ A distributed ad~unction rule, dij k is a 3-

tuple, (ai, (aj), ~k) where a i ¢ E; aj ¢ E; (aj) denotes a specified

segmentation of aj; {k is an adjunction 'vector', ~kl, %,..., ~kn;

Ek i's are the points of adjunction of ai," and ~k i = ~ki or rki ,

1 ~ k i ~ m, k i ~ ki+l, sad if k i = ki+ 1 then ~ki = ~k i sad ~ki+ l- rki+l.

The meaning of ~i-'k is that from the host oi
string, say, ap, by adjoining the segments of aj,

ajn at the points of adjunction ~kl, ~, ..., ~kn

ly. That is, we 'distribute' the specified segments of a~ over a i
at the points of adjunction ~, ~, ..., and ~k ; the j~h segment

n
is adjoined at ~kj" The Condition on ~k prevents permutation of
the segments.

we can derive a

J2 " ' Jl
of ai, respective-

-7-

The language L(G) corresponding to a given DAG, G, can be
defined by generalizing the definition in Section 2.2. The main
idea is that when a derived string is segmented each segment contains
all the adjuncts (and adjuncts of adjuncts etc.) of all the symbols
in that segment. The tree representation in Section 2.3 can also he
generalized to DAG ' s.

Example 3.1.1 Let G = (Z n, J) he a BAG where Z~ = [abc}, and

= {u l = Cabc, (p) (qr), rl~3) , u 2 = (pqr, (p) Cq~ (r), ~i~2~3)].

Here Z = [abc, pqr}, andA = [a, b, c, p, q, r}. Note that in t h

in u 1 and u 2 is not the same. Then

n n
~(G)-[ap b 5 r ~ . . . q r ¢In i ~ 0 ,

for i = i, 2, ..., m; m ~ i}.

Example 3.1.~ Some other DAL's are: LI = [a~omln ~ 11,

L, 2 = [anbncnln ~ i}, L 3 = [x xRI x ¢ AA*, "~Rx = reversal of x},

% = [XXlX C AA*], etc.

Theorem 2.~.1" The class of LAL's is properly contained in the
class of DAL's. Every DAL is a CSL (context sensitive laaguage).
The clas~ of DAL's is properly contained in the class of CSL's.

(L = [a n In ~ l} is a CSL but not a DAL).

Theorem 2.~.i There are languages which are inherently ambiguous
in the class of CFL's but which are unambiguous in the class of DAL's.

(Ex,=;le: ~. -~ {a%Jckl i , j , k :. i; i : j or j : k)

2.6 String Adjunct Grammars with Null Symbols (AGN) andLanguage

We will now introduce a somewhat modified form of AG's (IAG's
or DAG's) called string adjuncts grammars with null symbols (AGN).
The modification consists of allowing in the alphabet a very special
type of "non terminal" symbols called "nul___!l symbols". The main idea
is to use the null symbols to tag the strings in Z. The null sym-

* It is possible to generalize the local adjunction rule in the fol-
lowing manner also. This generalization permits one to adjoin to the
host a set of local adjuncts simultaneously, i.e. (ai, ajl , ~J2' "'"

ajn , ~k) where a i c Z, k = l, 2, ..., n, and ~k is the adjunction

'vector' as before. We will call these IAG's with simultaneous
(Continued on Page 9).

-8-

bols have no points of adjunction associated with them and they do
not receive any adjuncts. The null symbols are ulitmately erased
(i.e., rewritten as a null string E).

Definition 2.6.1 An IAGN (or DAGN), G, is a 7-tuple (A, N, ~,
Zc, Dn, Ea, J) where A is a finite alphabet, N is a finite set (pos-
sibly empty) of null symbols, ~ is a finite set of basic strings,
Zc c Z is the set of basic center strings, ~h is the set of basic
host strings and ~a is the set of basic adjunct strings,
E = Z c U E h U E a and J is a finite set of adjunction rules. Further

a. A~N =~; b. If ~ ¢ Zthen s c (A~N) (AUN)*; c. There is
no rule in J which adjoins adjuncts to the left or right of a null
symbol, i.e., null symbols have no points of adjunction. Thus for
a oi c Z the adjunction 'vectors' are the same as those that can be
defined for the same o i without the null symbols, i.e., as far as
adjunctions are concerned we ignore the null symbols. We will use
Greek symbols for the null symbols, and unless otherwise necessary,
we will write an LAGN (or DAGN), G, as just the pair (Ec, J).

Theorem 2.6.1 The class of LAL's C the class of LALN's and the
class of DAL's c the class of DALN'a. (We conjecture, however, that
we h a v e ' " ' ~ . n s ~ e a d o f " _C ") .

2.7

An adjunction rule u, if applicable, can be applied arbitra-
rily many times. In this sense it is repeatable. We can also
consider nonrepeatable rules, (nr-rule)~ in the sense that if a rule
u = (ui, aj, ~k) is nonrep~atable then for each occurence of the
host o i in a derivation, u can be applied no more than once. Let
nr-AG and nr-AL be the correspondin~ grammars (i.e. AG's which have
at least one nr-rule) and languages. The class of LAL's the class
of LAI/Y'S (L = [anbnln ~ I] is an nr-LAL but not anIAL). ~

2.8

We say that a local a~junction rule is uniform if in a rule u
the adjunct aj adjoins to the left (or right) of some symbol ag ~ A
in the host of u, then a~ adjoins to the left (or right) Of ag
wherever ag occurs in 8n~ string in ~. An LAG, G, is uniform if all
its rules are uniform.

(,Continued fremPage 8.)
ad.iunction rules (LsAG). It can be shown that the class of LAL's
C the class of LsAL's C the class of DAL's. This observation is
due to Leon Levy.

-9-

2.9

AG's with the condition ~ = ~_ are of special interest. Strings
in ean be considered as ele ot ry sentences (or sentence fo)
in L~G)-- If ? = ~c then every string in L(G) Can be decomposed into
a set of elementary sentences (or sentence forms). Note also that
if ~ = ~c then in the r-~ tree representation of the derivation of
string in L(G) every node is either a sentence or a derived sentence.

2 .iO

In an LAG (or DAG) we do not have nontermlnals in the sense of
the nonterminal alphabet of a PHG. We have, however, auxiliary
symbols used implicitly such as the ~k's corresponding to the points
of adjunctions. But these auxiliary symbols are used purely as
position markers and do not have the same interpretation as the
nonterminals in a PSG (i.e., the auxiliary symbols ~k's do not cor-
respond to phrase types) • If we consider the marking symbol, A,
used in making precise the definition in Section 2.2, (see Joshi,
Kosaraju, yamada (1968)), also as an auxiliary symbol then one can
posslbly consider a i (a i e A) as a nonterminal which can be inter-
preted as a phrase ^type but with the added interpretation that a
rhrase type a i has a i as the 'heed' (or 'center') of the phrase.
Each sentence in L(G) has also a 'center' namely the center string
of W.

In an IAGN (or DAGN) the null symbols are, however, like the
nonterminals in the PSG although highly restricted. The null symbols
are used to tag basic strings and therefore they are not used as
position markers; in fact, they have no positional interpretation.
The null symbols as nontcrmlnals are highly restricted because they
are never 'rewritten' (in the sense of a PSG) into any other string
except the null string, i.e., the only 'rewrite rule' associated
with a null symbol, say~, is ~ ~ £.

IAGN (or DAGN) can be considered as gra~nars of a mixed style
as we use rules of two different styles - adjunction rules and
'rewrite rules' of a special type. This is a very simple example of
a mixed ~rammar. In Section 3 we will be considering some more
interesting classes of mixed grammars.

2.11

In the linguistic context the alphabet A in an AG, G, will
consist of symbols which denote major dictionary classes (lexical
classes) such as N (nouns), t (tense, auxiliaries), % (adjectives),
V (verbs), P (prepositions), wh (who, which, whom), R (pronouns),
D (adverbs), Q (quantifiers), etc. N, t, A, V, etc. are thus

-i0-

preterminal symbols. The basic center strings thus correspond to
basic (elementary) sentence forms, e.g., N t V (John came), N t V N
(Jipb~ht books), N t V P N (people rely on John) , etc. (A
subcategorization of V's is implied here and is not explicitly
shown). Basic adjunct strings are basic adjunct forms, e.g., P N
(from Philadelphia), A (old), wh N t V (whom John saw), wh t V N
(who saw Jim), D (~--~, etc. Each de-~Ive'~-r~-~ in L(G) is
thus a derived sentence form, e.g., (assuming suitable adjunction
rules), N P N t V N (a man from Philadelphia bought books), A N t V
(an 61d man came), N wh ~ t V t V D (the man whom Bill saw ran
~) , N wh N wh t V ~ t V t V D (~he books (which) the man who
met Jim boushtwill arrive soon) , etc. (ignoring articles for
simplicity).

In an AG, lexleal insertion takes place as each basic string
is brot~ht into the generation of a sentence. Let a i = a i l a l 2 aim '

a i e A be a basic string. As o i is brought into the generation of
J , ,

a sentence, each aij can be rewritten as s set, say, ~, of syn-
tactic features and-dictionary items can be inserted immediately.
The verification of selectional restrictions that hold within the
domain of a basic string can be inmediately carried out as any pair
of adjacent symbols of ~i are contiguous at this stage. If the
basic strings are properly chosen then most selectional restrictions
are brought to bear within the domain of some basic string, and in-
deed it turns out that basic strings (with reasonable linguistic
interpretations) can be set up in this way.

There are some restrictions which hold between a host and an
adjtmct string; e.g., in N wh N t V t V (the man whom John met
arrived), wh N t V is an adjunct of N t V and the N in N t V is
really the 'object' of V in wh N t V. Some other examples are:
Zeroing in conjoined sentences, e.g., everyday, he runs and swims;
he plsyed tennis hut she didn't, etc. Restrictions between suc-
cessive adjuncts at ih6 same p0int of adjunction of the host
(ordering restrictions) as in I sm lqokin~ for a book with a green
eoverwhish was lying here somewhere. Restrictions between a ~ost
and two or more adjuncts at different points of edjunctlon of the
host as in boMs who ca w swim distrust boys who 9an't. All these can
be easily veriffed.

• AG's are well suited for formulating the 'endocentric' proper-
ties in the sense that this aspect of a constituent can be explicitly
brought out in the structural description. There are, however,
constituents which are not 'endocentrlc'. These are 'exocentric'
in the sense that we cannot replace them by any word of a character-
iziug category contained in them such that the constituents can be
considered as constituent expansionsof the characterizing category;
e.g., who willrepresent us at the meetin ~ in who will represent us

-Ii-

at the meetln~ is unclear, etc. AG's are not well suited for
formulating the exocentric properties. These properties are better
characterized bythe use of a 'nonterminal' and 'rewrite rules' in
the sense of a PSG (see Section 3)-

Sentence adjuncts (e.g., in general, today) can be handled well
in an AG; in particular, that these adjuncts can occupy various
sentence positions can be easily characterized in an AG. This is
awkward to characterize in a PSG. However, the property that these
adjuncts ere adjuncts of a sentence is better characterized by the
use of a nonterminal.

Distributed adJunction rules are required to handle eases such
as two and three are even and odd numbers respectively which is a
case of an intercalated structure. Such structures are not too

• frequent. However, if one tries to construct AG type gran~ars as
base for transformational grammars then the need for intercalated
structures is not so marginal. This is primarily because one tries
to relate each adjunct to an elementary sentence (i.e., one tries
to constitute the adjunct and host strings in such a way that the
underlying elementary sentence (s) could be reconstructed frcan them).
Some examples are: the man who came ... (double underline indicates
the distributed adjunct); John's proof of the theorem, etc. (see
Hi~ and Joshi (1967), Joshi (1906, 1969), for further details).
The kinds of intercalated structures possible in a DAG apparently
are adequate for this purpose.

If E = ~c then each string w c L(G) has a representation in
terms of basic 'sentences' (or basic center strings). In general,
adjuncts are not strings in ?~ and hence ~ $ E c. But what seems
to be true of a natural language is that one can 'almost' construct
an AG, G, (actually, a mixed AG, see Section 3) for which ~ = ~c
and define a set of operations (these consist of permutations,
deletions, and additions of constants; these operations can be
related to transformations in a given language) for each ~ c E
and for strings derived from ~ such that we can construct a new AG,
G', with basic strings E', ~c' where E' $ ~c' and strings in E'
are transformationally derived from strings in ~. Strings in L(G')
except for morphophonemic operations are the strings (sentences)
in the language. In transformational analysis we go in the reverse
direction, i.e., from G' to G and reconstruct the set of basic
'sentences' (together with the derivation in G) underlying a given
sentence generated by G'. (See Joshi (1969) for further results
and details.)

t

-12-

3- Mixed Grammars

3.1

In AGN's (i.e., AG's with null symbols) in Section 2.6 we use
a very special type of null symbols which are ultimately erased.*
The only rewrite rule associated with a null symbol is ~ -
where ~ is a null symbol and ~ is the null string. The AGN's are
thus a class of mixed grammars as rules of more than one style are
used. It is, huwever, a rather simple class of mixed granmmrs.

3.2 Mixed Strin~ Adjunct Granmmr (M~G)

We will now consider a more interesting class of mixed grammars.
The main idea is to allow a single 'nonterminal' (in the sense of
a PSG) in an AG and a special type of 'rewrite rules' associated
with this nonterminal. We will, however, call them 'replacement
rules'. The reason for adopting this new terminology will become
clear later. More specifically, we will define a Mixed Strin~ Adjunct
r ~ (with replacement rules) (MAG), G, as follows.

First, in addition to the 'terminal' alphabet A we will have
a 'nonterminal' S. The set of basic strings, E, and the set of
basic center strings, Zc, will now be strings on (A U [S}). Thus
a string a i c ~ may now contain one or more S's in it. A oi c
which does not contain S will be called an elementary basic string
and a ui ¢ E which contains one or more S's will be called a
basic string. The adjunction rules (local or distributed) are
defined as before and we adopt the same convention as in the case
of the null symbols, i.e., in an adjunction rule if the host is a
complex basic string we disregard the S symbols in it as far as
points of adjunction are concerned. Thus the points of adjtu%ction
of a string, say, a i = aS bS are the points of adjunction which are
to the left and right of a and b. Further, the S symbols have no
points of adjunction. Of course, ~f an adjunct string, say, ~ is
a complex basic string and has a specified segmentation, then ~ach
symbol S in oj must be included in some segment of aj.

* Actually, it is possible to define the recursive extension of
the adjunction rules such that the null symbol associated with any
basic string is erased at the time the string is ad.ioined to some
host string. The null symbol associated with the center string
is then erased at the end.

- 13 -

We now define a replacement a rule Pij (often written Just
as p) as a pair < ai, oj >where a i c ~, a i is a complex basic

string, and a S ¢ ~c" The w~aning of a replacement rule p =

< ai, aj > is that ~r~ a i one can derive a new string by replacing
some occurenee of S in a i by a.. Thus we have the following

S

Definition ~.2.1 An MAG, G, is a 9-tuple, G = (A, S, E, E c, ~,

• Ea' E~' J' R) where A is the alphabet (terminal), S is a 'nonterminal'
s~m~ol (S ~ A), Z is the set of basic strings, ~c is the set of basic
center strings, E h is the set of basic host strings, E a is the set
of basic adjunct strings, Z r is the set of basic replacer strings,
J is a finite set of adjunction rules (local or distributed), and
R is a finite set of replacement rules. ~ = [oi!(ai, aj, ~k) ¢ J)

u (%1 < 5, aj > ~ RL z a = {ojl(oi, ~j, ~k) ~ J}, and

Z r = [a j I < a i , aj > ¢ R]. Z = ~e U Z h U Z a U Z r . Z c may contain 8

h ~ ~
Given J and R, Zb, Za, and ~r are completely specified and

= ~c U Z b U ~a U Z r . A need not be exp l i c i t l y stated. Since S

is the only 'nonterminal' i t need not be exp l i c i t l y stated also.
}~nce, we will write an MAG, G, as a triple (Ec, J, R) instead of
a 9-tuple as in the definition above.

Example ~.2.1 Let G = (~c' J' R) be an MAG where Ec = [abc,

pq , ahSc}, J = {u I = (abSc, (a) (b) (c) , ~1~2~3), ~ = (abe, (a) (b) (c) ,

~I~2~3)], and R = {Pl = < ahSc, abSc >, P2 = <abSc, pq ~].

Example ~.2.2 Let G = (7~c, J, R) be an MAG where ~c = lash, C],

J = {u I = (aSh, (a) (Sb), r l r 2)] , and R = [Pl = <aSb, aSh >,

P2 = < ash, c >}.

3-3 Mixed String Adjunct Language (MAL)

We now have two different styles of rules in G, namely, the
adjunction rules J and the replacement rules R. If R is empty then
we have an AG and we know how the generation proceeds in this case.
In particular, we note the 'inside out' characteristic of the
generation. If R is not empty then we have replacement rules
associated with the symbol S. The generation still proceeds in an

'inside out' manner. In order to define the language corresponding
to an FAG, we must state how the rules in J and R are extended to
derived strings. Rather than giving a precise definition, we will
illustrate the main idea by the following example.

Example 3.3.i Consider the MAG, G, in Example 3.2.1. Starting
with the complex basic string abSc and using it as a host in u I
and the string abc as an adjunct in Ul, we obtain aabbScc. Usxng
this as a derived host in the replacement rule p~, we obtain
aabbpqcc. But this is a string derived from abS~ and therefore
it can be used as a replacer string in p~. Thus we can obtain
aabbaabbpqcccc (see Fig. 3.3.1). The language L(G) = L I is

As f a r a s r u l e s i n J a r e c o n c e r n e d we r e q u i r e ' i n s i d e o u t '
g e n e r a t i o n . I n o r d e r t o d e f i n e c o n s i s t e n t l y t h e r e c u r s i v e e x t e n -
s i o n of rules in J and R together it is necessary that once a
replacer string replaces an S no further adjunctions or replacements
can be made on it. Thus before a replacer string is used it must
be completely built up (i.e., it must have received all its adjuncts
and adjuncts of adjuncts etc., and all occurences of S must have
received their replacements).* This was the reason for calling
the rules in R as replacement rules rather than rewrite rules.

Thus the generation begins from either (a) the 'innermost'
host - adjunct pair(s) or (b) the 'innermost' complex basic host -
replacer pair(s) where the replacer is an elementary basic center
string, or (e) both (a) and (b).

The reader may amuse himself by working out the language (1%)
corresponding to the MAG in Example 3.2.2. It is rather complicBted
to write it down in a parametric form.

* It is assumed that for every complex basic string, say, ~i' either
there is a rule < ~i, a.S > where ~j is an elementary basic string
or there is a sequence 6f rules < Oil , ajl >, < si2 , ~J2 >' "'''

< gin' ~Jn >where = = • k = l, 2, ... n-l, and
si I ~i, SJk ~Ik+l'

~Jn is an elementary basic string. Otherwise, ~i can be removed

from G without affecting L(G).

- 19 -

Both L I and L 2 are CSL's (Context sensitive languages). They
are both DA~'s also. This can be shown by constructing the equi-
valent'DAG's. Let G I = (~c' J) be a DAGwhere ~c = {abpqc, pq],

and J = {u I = (abpqc, (ab)(c), r2rg) , u 2 = (abpqc, (a)(b)(e),

~i~2~5)]. Then L(GI) = L I. Similarly let G 2 = (Ec, J) be a DAG

where Z c = {acb, c], and J = [u 1 = (acb, (a)(cb), rlr3) ,

~2 = (acb, (a)(b), rlr3) , u 3 = (acb, (a)(b), ~2~3) , u~ = (ab,

(a)(b), rlr2), u~ = (ab, (a)(cb), rlr2) }. It can be shown that
L(G2) = L 2. In fact, we have the following

Theorem ~.~.I For every NAG, G, there is an equivalent DAG, G',
(i.e., L~G) = L(G')) which can be effectively found.

We will omit the proof here as it is rather long. An examina-
tion of MAG's in Examples 3.2.1 and 3.2.2 and their corresponding
DAG's, G I and G 2 above will give the reader some indication of hew
the proof can be constructed. This is an interesting result because
it shows that as far as weak generative power is concerned, we can
eliminate S, the only 'nonterminal' we have used. It can also be
shown (this is easily seen from G I and G 2 above) that if the NAG,
G, satisfies the condition that E = ~c, then the equivalent DAG, G~
will not necessarily satisfy the corresponding condition E' = Z '
In fact, for some NAG there will be no equivalent DAG satisfyin~
this condition (see Section 3.9.6 for linguistic relevance).

Remarks 3.3.1

i. In an MAG, G, not every basic string is a string on A (e.g.,
the complex basic strings). However, in the tree representation of
derivation of a string in L(G), the derived strings at each node
are strings on A, just as in the case of an AG. In fact, if this
condition is not satisfied the tree will not correspond to a tree
for some string in L(G).

2. The symbol(s) S in a complex string, say, ~i' will be referred
to as a contained S. ~. will also be called a container strin~ and
the repla--c-~s-t~-~ng(s) ~or S will be called contained string(s~.
Let•~i = abSc, ~j = dSe, a k = gSh, and ~ = pq. Let u I = (abSc,

dSe, rl) be an adjunction rule and Pl = <abSc, gSh >, P2 = <abSc,

Pq >' P3 = < dSe, pq >, and P4 = < gSh, pq > be some replacement

rules. Consider the following tree representation of a derivation
(Fig. 3.3.2: the superscripts on ~ are used to distinguish the two

i is contained distinct occurences of the string pq). Note that a~

-16-

o.k, c~c

C (~) c~b g~

(4)
a.bc

-6-Ae ¢mode$

" ~ 3~4-s

~.. 0.be

z. F9

q. ~ c

,5, o_o,%b<xo, bb ~Iccc~

FI&. 3. 3, I.

W= ~.b loo.~bh~%cccc ='~n MAGr G

~ E ~ " ~ ' ~ ~.2. "f.

= aSe

,l 2.

o . ~ S c = o-,:

- 1 7 -

F i G "~.%. 2..

A

in uj and aj is adjoined to o., and u~ is contained in and
Uk ° k

'depth' 2) with respect to ~i and this is so both in the sense of
a PSG and an MAG. Now ul is two levels down where the first level
is due to an adjunction ~ud the second due to containment, but
is two levels down where both levels are due to containment.
Thus in an MAG the depth of embedding of string can be characterized
not only by the number of levels involved but also by stating for
each level whether it is due to adjunction or containment. There
is also the possibility of characterizing an arbitrary depth of
embedding in terms recurrent patterns of adJunction and/or con-
tainment levels.

3.4 Deformations and Generation Scheme

In this section we will be concerned with the construction
of an MAG, G, with ~ = ~c for an MAG, G', (for which ?2 ~ ~c',
in general) such that G is related to G' by means of certain
operations (see Section 2.11 - last paragraph).

Let A = Ill' 12' "'" ~n] be a finite set of deformations

(to be defined later).

Definition 3.4.1 A Generation Scheme, G~ is a pair (G, A)
where G is an NAG, G = (~c, J, R), A is a f~nite set of deformations,
and with each rule u e J and each rule p ¢ R, we associate unique
subsets of A, say, ~u and ~ respectively.

Let C be a finite set of constants. We say that a string s'
is a deformed a if every symbol of ~' is either a constant (i.e.,
is in C^) or is a symbol of a or both, That is, a' is obtained
from a Ey one or more of the operations of permuting, deleting,
or repeating symbols of a or adding one or more symbols from C .

0

Definition ~.4.2 Let u = (~i, a~, ~k) c J and let d u be the
• ' v

assoclated subset of deformations. Then a Ji ¢ Au maps the rule
u = (ai, aj, ~k) into a 3-tuple (ui', aj', ~k') where a i' = ai,

aj' is a deformed aj (the specific choice of operations of permuting,
deleting, or repeating symbols Of a j or adding constants is deter-
mined by ori) , and ~k' is an adjunction 'vector' of ui not necessarily

- 18 -

L

the same as ~k" We write this as Ji(u) = u' where u' = (ai' ,

uj', ~k').* Similarly, a li¢ Ap, P = < a i, aj >, maps p into

a pair < oi' , oj' >where a i' = oi and aj' is a deformed aj

(h i determines the specific deformation as before). We write
this as li(p) = p', where p' = < ai' , oj' >.

Note that li deforms uj and also specifies a new adjonction
'vector'. Note also that u and p are rules in the MAG, G. u'
and p' are not rules in G. However, they will be later interpreted
as rules in another MAG, G'.

Each oci can then be extended to the derived hosts and derived
adjuncts in u, and to derived hosts and derived replacers in p in
the obvious way (i.e., if a symbol of ~ is permuted it carries
with it its adjuncts, and their adjunct~ etc.~ if a symbol of G~
is deleted then we delete its adjuncts, and their adjuncts etc.,
addition of constants is not affected). More complicated extensions
have to defined however for the more complicated li's. (See Section
3-5-5, and for further details, Joshi (1969).

For a given Generation Scheme, G s = (G, 4), we will define the
l a~ngu~e__ ~c°rrespondi~ _to Gs,~L G~, as follows. We will give her--~
only an informal definition. We carry out the generation in the
MAG, G, as described in Section 3.3, with the following modification.
If during the generation we plan to use a rule u then instead of

i~n ~ ~ a~ ~. Similarly,p weif using u we use the rule u' = ~ (u) where ~e
we plan to use a replacement ~e p then s of using use
the rule p' = ~m(P) where 6 m c ~p. The choice of or~ from ~u and

~m from ~ is nondeterministic.

* This definition is not quite precise as stated. First, note that
~k' is an adJunetion 'vector' and hence its components must satis-
fy certain conditions (see Section 2.5). Secondly, if ~k' has
more than one component then 6 i must also specify the appropriate
segmentation of ~j '. This definition is also weaker than required.
More c~nplicated ~.'s can be defined and are required (see Section
3-5-9) - i

- 19 -

Note that here we use the word 'language' in the usual sense,
i.e., a set of strings on A. Ultimately, however, we are inter-
ested in the corresponding strings of lexical items. The lexical
insertion proceeds in G in the same general manner as in Section
2.11 (paragraph 2), (see also Section 3.~). In thls case the
choice of a J~ from ~ and of Jm from ~ may depend on the

lexical entries for a i and a. which are, of course, available
at this point in the generation.

The 'language' derived in this way is L(Gs). The derivations
are not in G but in G s. We could, of course, allow the generation
in G to proceed independently but concurrently with the generation
in G . In this case, we would derive a pair of 'corresponding'
strips, say w and w s where w c L(G) and w S ~ L(Gs). Note that

G S is not an MAG; however, we have the following

Theorem ~.4.1 For every Generation Scheme, G S = (G, 4) there
is an equivalent MAG, G', (i.e. L(G') = L(Gs)) , and G' can he
effectively found.

The proof is rather involved and we will omit it. At least
for the 6's in Definition 3.~.2 one can state the main idea as
follows.* Let G = (~ , J, R) and G' = (~ ', J', R'). Then
i. ~c' = ~c ° 2. j'Cobviously contains ~ll the u' = 6i(u), u ~ J,

as adjunction rules. But J' also contains some additional rules
which are needed for the following reason. Let a~be an adjunct
string in G and let some ~deform aS into aj'. N~w, if a.j is also

a host string in some adjunction rule, say, u in J then we must
add a new adjunction rule(s) in G' which in e~fect allows one
to adjoin the adjunct in u (actually, its deformations under all
possibleS's) to a~', withrthe adjunction 'vector(s)' appropriately
specified. 3. R'Uconsists of all the p' = ~i(p), p ¢ R, as
replacement rules. R' also contains some addltional rules which
are needed for the same reason as in 2 above.

We can impose the condition ~ = ~c on the MAG, G. But then
G' (equivalent to G S = (G, 4)) need not satisfy a similar condition,
i.e., ~' need not be equal to ~'. This is because ~' contains,
besides strings in ~c' (= ~c)' the deformed adjuncts and deformed
replacer strings.

I

* The proof extends to s~ne of the more complicated J's (see
Section 3.~-~)-

- 20 -

From Theorems 3.~.i and 3.3.1we then have

Corollary~.~.% For every G s = (G, A) there is an equivalent

DAG, G", (i.e., L(Gs) = L(G")) which can be effectively found.

3.9 Linguistic Relevance

In this section, we will briefly discuss the various results
in Sections 3.1 - 3.4 in the linguistic context and provide some
Justifications and interpretations for these.

3.9.1

As is evident from the discussion in Section 2.11, the main
motivation for considering FAG's is to provide suitable representa-
tions for certain structures (e.g., that he went home surprised
me, I told him to 5o home, t.hat John will come is Certain, I tried
to read the book, etc.). The purpose for considering MAG's with

= ~c is the same as in Section 2.11 (last paragraph).

3.5.2

In Section 2.11 we have seen that many restrictions have as
their domain a basic string or a basic string and its adjuncts;
and these can be easily stated and, at the time of adjunction,
easily verified. These remarks obviously hold for an FAG as far
as adj~netions are concerned. However, in addition to these, in
an FAG there are many restrictions which have as their domain a
complex string and its replacer(s) string (i.e~., a container string
and the contained string(s)). These also can be easily stated and,
at the time of replacement, easily verified. Apart from selectional
restrictions, some of these restrictions are: (a) Identity of one
of the N's in the container string and one of the N's in the con-
tained string (identity of the 'subject' or 'object' noun in the
container string and the 'subject' or 'object' noun of the con-
tained string), e.g., I told. John to go home, I promised Bill to
purchase books, John deserves promotion, He suffered defeat, I
forced him to s~rim, He is uninspirin 5 as a teache__~r, I saw the bo~
bein~ beaten by the policeman, etc. Actually, since we are
considering derivations in an MAG with ~ = ~c, we should have
written these somewhat as follows: I told John" (John" should* 5o
home), I' promised Bill (l'would purchase books), John'dese'rves
NV~-~should* pror~ote John'l, He '~ suffered (N defeated hin0, He ~ is
unlinspiring (He'1% teac h N to N), etc. (, marks the eleme-~ with the
same reference; %: untensed (or tenseless) 6). (b) Certain
conditions on replacing a noun by a pronoun, e.g., Joh~ hoped (he"

perhaps %.
- 21 -

/
J

will wln~ but not Heehoped (John'will win), etc. (c) Possible
correlations between tenses in the container and contained strings
(see examples in (a) above).

Later, in the context of generation in G s = (G, A) we will
discuss some additional restrictions. These do not affect the
'well-formedness' (with respect to the satisfaction of restrictions)
in G. Thus the strings of lexical items corresponding to strings
in L(G) are also 'well-formed'.

3.5-3

We now consider the derivations in G s = (G, A). Obviously,
the purpose of 6's is to obtain the corresponding strings in
G s (i.e., also in G'), e.g., Ltold John to gq home --I told Jo_~
~ d go h °m-e), etc. Note that for each rule u or p in G,
the 6's are selected from A u or ~ respectively. Some examples

of restrictions on ~'s are: (a) The choice of a ~ from A u (or Ap)
may be affected by the lexical entries for the container and
contained strings, mostly by the verb (including is___~A and is___NN)
of the container string, e.g., I tried to drive a car, I tried
drivin~ a .car, but ~nly I stopped drivin~ a car; That he answered
the .letters is true, His answering the letters is strange, but
not His answerin5 the letters is true, etc. (b) Choice of a
particular preposition in a deformation may depend on the lexical
entries for the container and contained (?) strings, e.g., I
know of John's coming, I believe in (my) leaving early, etc.
(see Section 3.~.5 and Joshi (1969) for further details).

3.9.4 A Simple Example of G, G s and G'

Let G = (Ze, J, R) be an NAG (with Z = Z c) where A = [N, t,

V,A];Ze=Z=[~i=NtV, a 2=~tvN,o3=~tvS,o4=
N t VN S, a9 = S t VN , a6 = S t VA, c 7 = S t V S}*;

J = [(al, aj, rl] U ~(o 2, ~j, r I) O [(a 2, oj, r~¢)} O ~(o 3, oj, rl) 3

U {(a]¢, oj, rl)~} U {(ab, o~i' rl~] U [(aS, (~j, r3)}, J = I, 2, 3, b~)

* A subcategorization of N's, V's, and A's is implicit here and
is not shown explicitly in the notation.

- 22 -

R= {<al, aj >I i=3, ~, 9, 6, 7; J =I, z, ..., 7}.

Let G s = (G, A)be a Generation Scheme where A = [or i} is

a set of deformations ~d the ~'s are defined as follows.
(Set of Constants, Cq = [wh, __that, ~t°' __,'sing])

~l: (ai' aj, ~k) ~ (ai, aSl , ~k) where i = i, 2, 3, ~, 9; J = i,

i =wh t V, I z, 3,~; (a i, aj, ~k) c J; and% ~2 =whtv~'

aS =wht V S, a =wht VN S.*

2
62: (ai, aj, ~k) --~ (ai, aj, ~k) where i = 1, 2, 3, ~, 5;

2 =whN t V, j = z, ~, 5; ("i' aj, %) c J; and a z
2 =wh S t V. =whNt V S, o 9

• S : < ai'

S=

~
: < a i,

< a i,

< al, aj S > where i = S, ~, 5, 6, 7; a S > ..@

i, 2, ..., 7; < a i, aj > c R; and aSS = that aj.

4
aS > ~< ai, a S >where i = S, ~; J = i, 2, 3, 4;

a S > ~ R; and af' =to V, a2~ = toVN, a34 = toV S,

toVN S.

~9: < ai' ~J > ~ < ~i' ~j9 >where i = 3, 5, 6, 7; J = I, 2, S, 4;

< ai, aj > e R; a19 = (N's) V ing, a25 -- (N's) Ving N,

a35 = (N's) Ving S, ~45 = (N's) Ving N S.

We have not shown explicitly the various subsets of A
associated with the rules in J and R in G. But, these can be
worked out fr~n the specification of the o~'s above.

\

\

Actually, we should use here a distributed adjunction rule to
account for the definite article to the left of N in the host.
We leave this out in order not to complicate the example.

- 23 -

/

An NAG, G', equivalent to G s =(G, A) can now be easily
constructed (see the discussion under Theorem 3~4.1). We will
not write G' here as it is too long. It is easily seen that we
can derive in G s =(G, A) and therefore in G' sentences such as,
John wants to ~o home, I prefer walking, The man who came ordered
Jim to shut the door, ! promised Bill to tell John that he should
visit Fred, Bill's forcin 6 John to resign annoyed him,
the doors blue was the custom, My asking him towrite a paper
caused his leavin 6 the job, etc.

3.~.~ Some Complex Deformations*

Some examples of deformations more complicated than those in
Definition 3.4.2 ~re as follows:

a. A J may be defined such that it requires the adjunct string, aj,
~n the rule u = (~i' ~j' ~k) to be a derived string. ~ then refers

to not only ~ but string(s) which maybe at most a fixed finite
depth (counted in terms of adjunction and containment levels) rela-
tive to o.. Mostly depth i (and occasionally depth 2) is adequate,

e.g., The man who had the keys finally came ~The man finall~
came who had the keys: The man who finall~ came who had the keys ...

b. A J may be defined as above but with the possibility of
--o r referring to not only o. but a string which is at an arbitrary
depth relative to ~. where ~he arbitrariness of the depth is so
constrained that itScanbe specified in terms certain recurrent
patterns of adjunction and containment levels, e.g., The meetin 6
(which) I selected John to represent us at ..., The people we hope
that John told to water the plants ..., etc. [Although slightly
out of place, it might be worth mentioning here that the distinction
between adjunetion and containment levels also helps in stating
certain pronouning restrictions to some extent, e.g., the pronoun
is in the contained string and not in the container string: John"
thou6ht he'will win but not He'thou6ht John°willwin; but if-~
have an adjunction level then we have both: People who know Bill"
like him~ and People who knowhim~like Bill~ if we have an adjunction
level and a containment level, we again have both: People who know
Bil~ want to help him°and People who knowhim~want to help Bill~
and if we have two successive containment levels, we have John'asked
Bill to tell Mary to see hi'but not He" asked Bill to tell Mary to
see John5 etc. S

* For further details see Joshi (1969).

- 24 -

!

/
/

/

C

c_. A ~ may be defined such that it not only deforms the adjunct
string aj but also deforms ~he host string a i. Since the host a i
can also-be deformed by such a or, the precise definition of how
generation proceeds in the Generation Scheme, Gs, becomes complicated.
Such ~ 's can be used to obtain from the same* container string
--contained string pair~two related sentences such as, e.g., Ths__ tt

he came surprised me and it surprised me that he came, etc.

d_. Sets of related l's to cover certain zeroings which have as
their d~nain the container and the contained strings, e.g., I
promised him to come ~ I promised him that I would come, etc. One
may also include here zeroing of 'appropriate' verbs, Vamp, e.g.,
I expect him ~ I expect him to Vap p where Vap p = ~_, ~rrive, etc.];

perhaps also I shall ~o ~ I promise you that I shall ~o (Harris (1968).

3.9.6

From Theorem 3.3.1 we know that for every NAG there is an
equivalent DAG which can be effectively found. This means that we
can eliminate the nonterminal S as far as weak generative capacity
is concerned. Of course, we don't choose to eliminate S, but it is
interesing to see the implications of this theorem. If one examines
the proof of this theorem, we notice that in effect for every complex
basic string, say, a i = abSc and for every elementary basic string,
say, pq, which is a replacer for ai~,@we set up an 8djunction rule
(in this case a distributed rule) such as (pq, (ab)(c), ~ir2). Thus
we will have to consider I know that in I know that John went h~ne
as an adjunct of John went home. Now (in the spirit of the discus-
sion in Section 3.4) adjuncts are obtained by deforming a string in
Fe; also adjuncts have a certain degree of mobility within the host.
This is perhaps the reason why in some cases we come close to reali-
zing this, e.g., (i) I hope that John will win: we can obtain a
sentence and a semi-sentence, John will win} I hope so or a sentence
and sentence adjunct, John, I hope, will win, (2) That John passed
the examination sur2rised me: John passed the examination} it sur-
~rised me, John passed the examination t to mY surprise, etc.

* This avoids having two distinct strings in G generating strings
which a r e paraphrases of each other. If, however, we allow this
possibility the structure of G s can be considerably simplified. We
do not follow this approach but the nature of these simplifications
is discussed in Joshi (1969). In a different context and in a
different framework, Keenan (1969) has made a similar comment.

- 25 -

d

3.9.7

In section 3.~, in G S = (G, A) we imposed on G the condition
that ~ = ~. Then in G' (equivalent to Gs) every adjunct string
is obtained by deforming some string in Ec(= E) in G. However,
adjuncts such as, e.g., quite in quite forgot, ~ry in very long,
sc~e quantifiers (all, sc~e, etc.), sc~e occurences of articles,
sc~e time and manner adverbials, etc. pose a problem here. There
are a couple of ways around this problem.

One solution is to consider these adjuncts as primitively
adjoined in G (i.e., regard them as a sort of primitive adjuncts
in G)*. G, of course, will no longer quite satisfy the condition
E=E . c

Another more attractive solution (certainly, motivated by some
current trends in transformational theory) whichwill maintain the
condition that every basic string is also a basic center string is
to construct (i) another NAG, G", by retaining all strings in ~e
in G, excluding the primitive adjuncts in G, but adding new complex
basic center strings (these will now more and more become infra-
~entence forms), and also adding new adjunction and replacement
rules, and (2) a new Generation Scheme Gs" = (G", A"), where A"
is a new deformation set, and G" satisfies the condition ~" = Zc" ,
such that Gs" is equivalent to G. (At this point, we may also
remove the tenses, auxiliaries, and prepositions. Basic strings
in G" will then be strings of N's, V's (including isA and isN)
and S's). Thus we have the alternating sequence of MAG's and
Generation Schemes**.

G G s = (G", ~") ~ G : Gs(G , ~) ~ G '

and

T,(G") : L(%") = L(G) : LCGs) = T,(G')

* Note that there are very strong restrictions on the repeatability
of these primitive adjuncts.

~* In principle, we could consider arbitrarily many intermediate
stages, between the first and the last MAG's. However, there would
not be much point in considering such sequences, unless each inter-

. . L •

mediate stage has some reasonable llnguistlc interpretatlon.

- 26 -

where G" underlies G and G underlies G'. Further development
of these ideas in so~e detail will be reported in Joshi (1969).

Ap~ndix: Fig. A, su~narizes the hierarchy of certain subclasses
of AL's and MAL's in relation to the phrase structure hierarchy.
(The replacement rule in an NAG can be generalized in such a way
that all occurences of S in a complex basic string are simultaneously
replaced by a specified set of replacer strings. We call such a
grammar an MAG with simultaneot~ replaceme~rul_ess, MsAG , and the
corresponding language, MsAL. It can be shown that MAL ~ MsAL

CSL. An MsAL has the property that the lengths of the strings
in it (assuming an ordering in terms of increasing lengths) grow
no faster than an exponential. The whole class of MsAG's as such
does not appear to be linguistically relevant.)

~ - - 27 -

/
r

CSL

CFU
% ~nr- L P,~-

/ / LsI~

L A L A I ~

/. e n9 ~.e.Dg~.)

I,c| ,~;., , w~/, Co,dec'~",e'~ ET'~'lc*..y

F,~. /~.

- 2 8 -

References

i. N. Chcmsky (1963) , Formal Properties of Grammars , Handbook of
Mathematical Psychology, John Wiley (1963), Ch. 12.

2. N. Chc~sky, M. P. Sch{]tzenberger, (1963), Algebraic Theory of
Contextfree Languages, Computer Prograu~ing and Formal Systems,
North Holland, Amsterdam.

3. N. Chomsky (1965) , Aspects of Theory of Syntax, M.I.T. Press.

4. S. Ginsburg (1966), Mathematical Theory of Context-free
Languages, McGraw-Hill.

5. Z. S. Harris (1962), String Analysis of Language Structure, Mouton,
The Hague.

6. Z. S. Harris (196~), Elementary Transformations, Transformations
and Discourse Analysis Papers, No. 54, University of Pennsylvania.

7- Z. S. Harris (1965), Transformational Theory, Language, Vol. 41.

8. Z. S. Harris (1968), Mathematical Structures of Language,
Interscience Publishers.

9. H. Hiz (1967) , Computable and Uncomputabl~lemants of Syntax,
Logic, Methodology and Philosophy of Science III, Nort h Holland,
Amsterdam.

iO. D. Hi~, A. K. Joshi (1967), Transformational Decomposition,
Proc. IFIP Int. Conf. on Computational Linguistics, Grenoble.

Ii. A. K. Joshi (1966), String Representation of Transformations,
Transformations and Discourse Analysis Papers, No. ~8,
University of Pennsylvania.

12. A. K. Joshi (1968), Transformational Analysis by Computer, Proc.
NIH Seminar on Computational Linguistics, Bethesda (1966),
Published in 1968, U.S. Dept. H.E.W.

13. A. K. Joshi, S. Kosaraju, H. Yamada (1968), String Adjunct
Grammars, Transformations and Discourse Analysis Papers, No. 75.
(revised February 1969)

14.~. K. Joshi (1969) , String Adjunct Gran~ars and Transformational
Gra-~ars, Transformations and Discourse Analysis Papers, No. 75112
University of Pennsylvania (under preparation).

- 29 -

15.

16.

18.

19.

E. L. Keenan (1969), A Logical Base for a Transformational
Grammar of English, Ph.D. dissertation, University of
Pennsylvania.

J. J. Robinson (1968), Dependency Structures and Transfor-
mational Rules, IBM Watson Research Center~ Research Report,
July (196~).

J. R. Ross (1967), Constraints on Variables in Syntax, Ph.D.
dissertation, M.I.T.

N. Sager (1967) , Syntactic Analysis of Natural Language,
Advances in Computers, Academic Press, Vol. 8.

M. P. Sch~tzenberger (1961), Some remarks on Ch~nsky's Context-
free Languages, M.I.T. Quarterly Progress Report, October 1961.

" 30-

