
I. Introduction 

To a great extent, the lack of large-scale effective solutions to 

problems of computatlonal linguistics can be traced to the lack of an 

adequate linguistic theory that could be used as a framework for computa- 

tional work. Most of the linguistic theorizing that has taken place in 

the United States has been done under the banner of Transformational 

grammar. Fundamental to transformational theory is the sharp distinc- 

tion between 'competence' and !performance'. 

This distinction between competence and performance provides for 

transformatlonallsts the platform from which to make their statements 

about transformations. 'Competence', according to Chomsky is what the 

speaker-hearer knows about his language, as opposed to his use of that 

knowledge, labeled 'performance'. Chomsky includes in his discussion of 

what a 'performance' model should do, factors such as memory limitations, 

inattentlon~ distraction, and non-linguistlc knowledge. He thus leaves 

for 'competence' the formalization of linguistic processes representative 

of the speaker-hearer's knowledge of the language. 

This relegation of competence makes a basic mistake however. It 

is necessary to differentiate the problem of formalization of linguistic 

knowledge and processes, i.e., competence, from the simulation of lin- 

guistic knowledge and processes, which we shall call 'simulative perfor- 

mance'. There is a difference between the simulation of knowledge and 

processes ('simulative performance') and the simulation of actual ver- 

J 
bal behavior (Chomsky's 'performance'). It is here that we must speak, 

as chomsky does, of the ideal speaker-hearer. Clearly the ideal speaker- 

hearer is not inattentive or distracted. He does however have memory 
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limitations and non-linguistle knowledge. This is certainly what must 

be simulated as an inclusive part of linguistic theory. The kind of 

theory of 'performance' of which Chomsky speaks may well be in the far 

distant future to which Chomsky relegates it (1965). However, a theory 

of simulative performance is not so far off. It would seem very reason- 

able that the possibility of the construction of a linguistic theory that 

both accounts for the data and does this in such a way as to appear to 

be consonant with the human method for doing so, is not so remote. Clear- 

ly, such a theory must deal with non-linguistic knowledge and problems 

of human memory as well as the problems that Chomsky designates as 'com- 

petence'. Thus, it seems that the sharp distinction between competence 

and performance is artificial at best. In particular, after elimina- 

tion of some of the behavioristic problems such as distraction, we can 

expect to find a linguistic theory that is neither one of 'competence' 

nor 'performance' but something in between and therefore inclusive of 

both. 

Chomsky (1965:139) has stated: 

'thus it seems absurd to suppose that the speaker first 
forms a generalized Phrase-marker by base rules and then 
tests it for well-formedness by applying transformational 
rules to see if it gives, finally, a well-formed sentence. 
But this absurdity is simply a corollary to the deeper ab- 
surdity of regarding the system of generative rules as a 
point-by-point model for the actual construction of a sen- 
tence by a speaker." 

We could, on the other hand, attempt to formulate a system of 

rules that are a point-by-point model for the actual construction of a 

sentence by a speaker. Furthermore, we might expect that that system 

could also be a point-by-polnt model for the actual analysis of a sen- 

tenee by a hearer. These claims, however, would be largely unverifiable 
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except by the use of computers as simulative devices. 

Chomsky (1965:141) has further stated that: 

'She gralmnar does not, in itself, provide any sensible 
procedure for finding the deep structure of a given sentence, 
or for producing a given sentence, just as it provides no 
sensible procedure for finding a paraphrase to a given sen- 
tence. It merely defines these tasks in a precise way. A 
performance model must certainly incorporate a grammar; it 
is not to be confused with grammar." 

Insofar as the notion of a performance model here can be taken as 

being somewhere between Chomsky's notion of competence and performance, 

our notion of grammar also lies somewhere between Chomsky's notion of 

a grammar and the incorporation of a grammar. 
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II. Conceptual Dependency 

The Conceptual Dependency framework (see Schank [ 1969] ) is a 

stratified linguistic system that attempts to provide a computational 

theory of simulative performance. The highest level of the stratifi- 

catlonal system (similar to Lanab [ 1966], Sgall [1965] and others) em- 

ployed by the Conceptual Dependency framework is an interlingua consis- 

ting of a network of language-free dependent concepts, where a concept 

may be considered to be an unambiguous word-sense, (except see Schank,[1968]). 

(The notion of dependency used here is related to those of Hays (1964) 

and Klein (1965), however, the dependencies are not at all restricted 

to any syntactic criterion.) The graumaar of a language is defined by 

the framework as consisting of Realization Rules that map conceptual 

constructs into syntactically correct language on the 'sentential level' 

The linguistic process can be thought of, in Conceptual Dependency 

terms, as a mapping into and out of some mental representation. This 

mental representation consists of concepts related to each other by var- 

ious meaning-contingent dependency links. Each concept in the inter- 

lingual network may be associated with some word that is its realizate 

on a sentential level. 

The conceptual dependency representation is a linked network that 

can be said to characterize the conceptualization inherent in a piece 

of wrltten language. The rule of thumb in representing concepts as 

dependent on other concepts is to see if the dependen t concept will fur- 

ther explain its governor and if the dependent concept cannot make sense 

without its governor. 

For example, in the sentence, '~he big man steals the red book 
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from the girl." the analysis is as follows: 'The' is stored for use in 

connecting sentences in paragraphs, i.e., 'the' specifies that 'man' may 

have been referred to previously. 'Big' refers to the concept 'big' 

which cannot stand alone conceptually. The concept 'man' can stand 

alone and is modified, conceptually by 'big', so it is realized in the 

network as a governor with its dependent. 'Steals' denotes an action 

that is dependent on the concept that is doing the acting. A conceptual- 

ization (a proposition about a conceptual actor) cannot be complete 

without a concept acting (or an attribute statement), so a two-way depen- 

dency link may be said to exist between 'man' and 'steal' That is, they 

are dependent on each other and govern each other. Every conceptualiza- 

tion must have a two-way dependency llnk. 'Book' governs 'red' attribu- 

tively and the whole entity is placed as objectively dependent on 'steals'. 

The construction 'from the girl' is realized as being dependent on the 

action through the conceptual object. This is a different type of de- 

pendency (denoted by 4). There are different forms of this 'prepositional 

dependency', each of which is noted by writing the preposition over the 

llnk to indicate the kind of prepositional relationship. (Although a 

language may use inflections or nothing at all instead of prepositions 

to indicate prepositional dependency, we are discussing a language-free 

system here and it is only the relation of the parts conceptually that 

is under consideration.) 

The conceptual network representation of this sentence is then 

as follows: 
from 

man ~ steals ~ book ~ , girl 
t t 

big r ed  
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The conceptual level works with a system of rules (shown in the 

Appendix) that operate on conceptual categories. These rules generate 

all the permissible dependencies in a conceptualization. Multiple 

combinatlon of conceptualizations in various relationships are intended 

to account for the totality of human language activity at the conceptual 

level. 

The conceptual categories are divided into governing and assisting 

groups: 

Governin~ Categories 

PP 

ACT 

LOC 

T 

Assisting Categories 

PA 

AA 

An actor or object; corresponds syntactically 
(in English) to concrete nominal nouns or noun 
forms. 

An action; corresponds syntactically (in English) 
to verbs, verbal nouns, and most abstract nouns. 

A location of a conceptualization. 

A time of conceptualization; often has variant 
forms consisting of parts of a conceptualization. 

Attribute of a PP; corresponds (in English) to 
adjectives and some abstract nouns. 

Attribute of an ACT; corresponds (in English) to 
adverbs and indirectly objective abstract nouns. 

Thus, the categories assigned in the above network correspond closely to 

their syntactic correlates: 

PP ~ ACT ~ PP ~ PP 

PA PA 

However, in the sentence, 'Visiting relatives can be a nuisance', the 

syntactic categories often do not correspond with the conceptual actors 
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and actions. The ambiguous interpretations of this sentence are: 

one PP 

(I) ~ ~ bother ~ one ~ ~ ACT ~ PP 

visit ACT 

relatives PP 

(Here we use the conditional present [denoted 
by c] form of the two-way dependency link, 
one of eight posslble tense-mood forms.) 

relatives ~ bother ~ one PP ~ ACT ~ PP (2) % $ 

visit ACT 

relatives PP 

(3) bother,  one $ 
visit ACT 

one PP 

A conceptualization is written in a conceptual dependency analysis 

on a straight line. Dependents written perpendicular to the line are 

attributes of their governor except when they are part of another con- 

ceptualization line. Whole conceptualizations can relate to other con- 

ceptualizations as actors ([i] and [3]) or attributes ([2] where ~ in- 

dicates that the PP at its head is the actor in a main and subordinate 

conceptualization [ ~ is the subordinate, written below the line]). 

The Conceptual Dependency framework, at the conceptual level, is 

thus responsible for representing the meaning of a piece of written 

language in language-free terms. The representation is in terms of 

actor-action-object conceptualizations in a topic-cogent form. Thus, 

words that have many syntactic forms will have only one conceptual form. 

This is true interlinguistically as well as intralinguistically. The 
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meaning of a construction is always the consideration used in represen- 

tation. For example, 'of' in 'a chp of water' is realized as '~-~ con- 

talns X' where X is water. 

cup 

contains 

water 

Simi la r ly ,  in  ' J o h n ' s  love i s  good ' ,  ' l o v e '  i s  r e a l i z e d  conceptua l ly  as 

X = loves ~Y. 

John 
~ good 

love 
t 

one 

In order to make this framework serve as a generative theory, 

semantics and realization rules must be added. The realization rules are 

used in conjunction with a dictionary of realizates. These rules map 

pieces of the network in accord with the granmaar. Thus, a simple rule 

in English might be: 

PP 
= Adj + N 

PA 

In facts the rules are not this simple since criteria of usualness and 

context enter into each application of a rule. These problems are dis- 

cussed elsewhere (Sehank [1969] ) and are not the point of this paper. 

The semantics that Conceptual Dependency employs is a conceptual 

semantics in that it serves only to limit the range of conceptualizations 

in such a way as to make them consonant with experience. The form and 

major content of this semantics is thus universal, but Since we are deal- 

ing with experience we are required to speak of someone's experience. 
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We will thus begin to talk about some arbitrary human's experience, or 

since we are dealing with a computer, we can talk of the systems' ex- 

perience. Thus, the conceptual semantics consists of lists of potential 

dependents for any given concept. These lists are listed with respect 

to semantic categories if there is a generalization that can be made on 

that basis. 
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III. The Parser 

The Conceptual Dependency framework is used for a natural language 

parser by reversing the realization rules and using the semantics as a 

check with reality. The system for analyzing a sentence into its con- 

ceptual representation operates on pieces of a sentence looking up the 

potential conceptual realizates. 

All conceptualizations are checked against a list of experiences 

to see if that particular part of the construction has occurred before. 

If the construction has not occurred, or has occurred only in some 

peculiar context, this is noted. Thus, in the construction 'ideas 

sleep', it is discovered that this connection has never been made before, 

and is therefore meaningless to the system. If the user says that this 

construction is all right, it is added to the memory; otherwise the con- 

struction is looked up in a metaphor list or aborted. The system thus 

employs a record of what it has heard before in order to analyze what 

it is presently hearing. 

In order for the system to choose between two analyses of a sen- 

tence both of which are feasible with respect to the conceptual rules 

(see Appendix) the conceptual semantics is incorporated. The conceptual 

semantics limits the possible conceptual dependencies to statements con- 

sonant with the system's knowledge of the real world. The definition of 

each concept is composed of records organized by dependency type and by 

the conceptual category of the dependent. For each type of dependency, 

semantic categories (such as animate object, human institution, animal 

motion) are delimited with respect to the conceptual category of a 

given concept, and defining characteristics are inserted when they are 

- I0- 



known. For example, concepts in the semantic category 'physical object' 

all have the characteristic 'shape' Sometimes this information is in- 

trinsic to the particular concept involved, for example, 'balls are 

round' 

The semantic categories are organized into hierarchical structures 

in which limitations on any category are assumed to apply as well to all 

categories subordinate to it. The system of semantic categories and a 

method of constructing semantic files is discussed more fully in Schank 

(1969). 

In the present system, the files are constructed by incorporating 

information derived from rules presented as English sentences. The 

program parses each of these sentences and observes which dependencies 

are new and then adds them to the files. 

As an example of the use of the conceptual semantics, consider 

the parse of 'the tall boy went to the park with the girl'. At the 

point in the parse where the network is 

boy ~ go ~ park 

t 
tall 

we are faced with the problem of where to attach the construct ~ ~tb girl. 

A problem exists since at least two realization rules may apply: 'ArT 

PR~P ~: 1 ~ 3 ;  '~P P~EP ~P: ~2 ' The problem is resolved by the 

3 
conceptual semantics. The semantics for 'go' contains a llst of concep- 

tual prepositions. Under 'with' is listed 'anyl movable physical object' 

and since a girl is a physical object the dependency is allowed. The 

semantics for 'park' are also checked. Under 'with' for 'park' are 

listed the various items that parks are known to contain, e.g., statues, 
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junglegyms, etc. 'Girl' is not found so the network (I) is allowed 

while (e) is aborted. 

(I) boy g go ~to park <with girl 

tall 

(2) boy g go <t=o park 

t 
tall ~with 

g i r l  

Although ,~ ' th g i r l '  is dependent on 'go'  i t  is dependent through 

'park'. That is, these are not isolated dependencies since we would 

want to be able to answer the question 'Did the girl go to the park?' 

affirmatively. In (2) the below-the-line notation indicates that it is 

the 'park with a girl' as opposed to another 'park'. Now it may well be 

the case that this is what was intended. The conceptual semantics func- 

tions as an experience file in that it limits conceptualization to ones 

consonant with the system's past experience. Since it has never encoun- 

tered 'parks with girls' it will assume that this is not the meaning 

intended. It is possible, as it is in an ordinary conversation, for the 

user to correct the system if an error was made. That is, if (2) were 

the intended network it might become apparent to the user that the 

system had misunderstood and a correction could easily be made. The 

system would then learn the new permissible construct and would add it 

to its semantics. The system can always learn from the user (as des- 

cribed in Schank [1968] ) and in fact the semantics were originally input 

in this way, by noticing occurrences in sample sentences. 

Thus, the system purports to be analyzing a sentence in a way 
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analogous to the human method. It handles input one word at a time as 

it is encountered checks potential linkings with its ~n knowledge of the 

world and past experience, and places its output into a language-free 

formulation that can be operated on, realized in a paraphrase, or trans- 

lated. 

Thus the Coneeputal Dependency parser is a conceptual analyzer 

rather than a syntactic parser. It is primarily concerned with expli- 

cating the underlying meaning and conceptual relationships present in 

a piece of discourse in any natural language. The parser described here 

bears some similarity to certain deep structure parsers (Kay [1967] , 

Thorne et al [ 1968] and Walker [1966] ) only insofar as all these parsers 

are concerned to some extent with the meaning of the piece of discourse 

being operated upon. However, the parser is not limited by the problems 

inherent in transformational grammar (such as the difficulty in revers- 

ing transformational rules and the notion that semantics is something 

that 'operates' on syntactic output). Also, the parser does not have 

as a goal the testing of a previously formulated grammar [as does 

Walker (1966) for example) so that the theory underlying the parser has 

been able to be changed as was warranted'by obstacles that we encountered. 

The parser's output is a language-free network consisting of unambiguous 

concepts and their relations to other concepts. Pieces of discourse 

with identical meanings, whether in the same or different languages, 

parse into the same conceptual network. 

The parser is being used to understand natural language state- 

ments in Colby's (1967) on-line dialogue program for psychiatric inter- 

viewing, but is not restricted to this context. In interviewing 
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programs llke Colby's, as well as in question-answering programs, a 

discourse-generating algorithm must be incorporated to reverse the 

function of the parser. The conceptual parser is based on a linguistic 

theory that uses the same rules for both parsing and generating, thus 

facilitating man-machine dialogues. 

In an interviewing program, the input may contain words that the 

program has never encountered, or which it has encountered only in 

different environments. The input may deal with a conceptual structure 

that is outside the range of experience of the program, or even use a 

syntactic combination that is unknown. The program is designed to 

learn new words and word-senses, new semantic possibilities, and new 

rules of syntax both by encountering new examples during the dialogue 

and by receiving explicit instruction. 
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IV. Implementation 

The parser is presently operating in a limited form. It is 

coded in MLISP for the iPDP-iO and can be adapted to other LISP processors 

with minor revisions. 

Rather than attaching new dependencies to a growing network during 

the parse, the program determines all the dependencies present in the 

network and then assembles the entire network at the end. Thus, the 

sentence 'The big boy gives apples to the pig.' is parsed into: 

i) ~ boy 

t 
big 

2) boy ~ give 

3) gives ~ apples 

~) give <~ pig 

and then these are assembled into: 

boy ~ give ~ apples ~ pig 
t 

big 

The input sentence is processed word-by-word. After "hearing" 

each word, the program attempts to determine as much as it c~n about the 

sentence before "listening" for more. To this end, dependencies are 

discovered as each word is processed. Furthermore, the program antici- 

pates what kinds of concepts and structures may be expected later in the 

sentence. If what it hears does not conform wlth its anticipation, it 

may be"confused", "surprised", or even "amused". 

In case of semantic or syntactic ambiguity, the program should 

determine which of several possible interpretations was intended by the 

"speaker". It first selects one interpretation by means of miscellaneous 
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heuristics and stacks the rests. In case later tests and further input 

refute or cast doubt upon the initial guess, that guess is discarded or 

shelved, and a different interpretation is removed from the stack to be 

processed. To process an interpretation, it may be necessary to back up 

the scan to an earlier point in the sentence and rescan several words. 

To avoid repetitious work during rescans, any information learned about 

the words of the sentence is kept in core memory. 

The parse involves five steps: the dictionary lookup, the appli- 

cation of realization rules, the elimination of idioms, the rewriting 

of abstracts~ and the check against the conceptual semantics. 

The dictionary of words is kept mostly on the disk, but the most 

frequently encountered words remain in core memory to minimize processing 

time. Under each word are listed all its senses. "Senses" are defined 

pragmatically as interpretations of the word that can lead to different 

network structures or that denote different concepts. For example, 

some of the senses of "fly" are: 

fly I - (intransitive ACT): what a passenger does in an airplane. 

fly 2 - (intransitive ACT): what an airplane or bird does in the 
air. 

fly 3 - (PP): an insect 

fly 4 - (transitive ACT): what a pilot does by operating an airplane. 

fly 5 - (intransitive AcT--metaphoric): to go fast. 

fly 6 - (PP): a flap as on trousers. 

If ther~ are several senses from which to choose, the program 

sees whether it was anticipating a concept or connective from some spe- 

cific category; if so it restricts its first guesses to senses in that 

category. Recent contextual usage of some sense also can serve to prefer 
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one interpretation over others. To choose among several senses with 

otherwise equal likelihoods, the sense with lowest subscript is chosen 

first. Thus, by ordering senses in the dictionary according to their 

empirical frequency of occurrence, the system can try to improve its 

guessing ability. 

The realization rules that apply to each word sense are referenced 

in the dictionary under each sense. Most of the rules fall into cate- 

gories that cover large conceptual classes and are referenced by many 

concepts. Such categories are PP, PA, AA, PPloc, PPt, LOC, T, simply 

transitive ACT, intransitive ACT, ACT that can take an entire concep- 

tualization as direct object ("state ACT") and ACT that can take an 

indirect object without a preposition ("transport ACT"). In contrast 

to most concepts, each connective (e.g., an auxiliary, preposition, or 

determiner) tends to have its own rules or to share its rules with a 

few other words. 

A realization rule consists of two parts: a recognizer and a 

dependency chart. The recognizer determines whether the rule applies 

and the dependency chart shows the dependencies that exist when it does. 

In the recognizer are specified the ordering, categories, and Inflection 

of the concepts and connectives that normally would appear in a sentence 

if the rule applied. If certain concepts or connectives are omissible 

in the input, the rule can specify what to assume when they are missing. 

Agreement of inflected words can be specified in an absolute (e.g., 

"plural") or a relative manner (e.g., "same tease"). Rules for a 

language like English have a preponderance of word order specifications 

while rules for a more highly inflected language would have a preponderance 
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of inflection specifications. 

Realization rules are used both to fit concepts into the network 

as they are encountered and to anticipate further concepts and their 

potential realizates in the network. When a rule is selected for the 

current word sense, it is compared with the rules of preceding word 

senses to find one that "fits". For example, if "very hot" is heard, 

one realization rule for "very" is: 

vdry 

where the tags "0" and "i" indicate the relative order of the word sense 

in the recognizer and identify them for reference by the dependency 

chart; '~" means the current word. One rule for "hot" is: 

0 
AA PA : 
-i0-i 

The program notices that "very" fits in the "-i" slot of the "hot" rule 

and verifies that "hot" fits in the "i" slot of the "very" rule. There- 

fore, the dependency suggested by the chart can he postulated for the 

network: 

hot (PA) 

very (AA) 

After the rules for two adjacent word senses are processed, other 

rules are tried, and more distant word senses are checked. 

Whenever a dependency is postulated, it is looked up in an idiom 

file to see if it is an idiom or a proper name and should be restructured. 

Thus, the construct: 

make 

up 
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is reduced to the single concept 

make-up 

This idiom will be detected by the parser even if several words inter- 

vene between '~make" and "up" in the sentence. 

After eliminating idioms from the network, there still may be 

constructs that do not reflect language-free conceptions. The most 

conspicuous eases are caused in English by abstract nouns. Most such 

nouns do not correspond to PP's but rather are abbreviations for con- 

ceptualizations in which the concept represented is actually an ACT or 

a PA. 

The program treats an abstract noun as a PP temporarily in order 

to obtain its dependents, because abstract nouns have the syntax not of 

ACT's but of PP's. After obtaining its dependents, the PP is rewritten 

as an entire conceptualization according to rules obtained from an ab- 

stract file. These rules also specify what to do with the dependents of 

the PP; they may be dependent on the entire conceptualization , dependent 

on the ACT only, or appear elsewhere in the conceptualization. 

By way of example, the sentence: 

Tom's love for Sue is beautiful. 

leads to the following dependencies; 

love (PP) love (PP) 

for 

Tom (PP) Sue 

After hearing "is", the program expects no mor~ dependents for "love" 

(by a heuristic in the program), so it checks the abstract file and 

finds rules for "love" including: 
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off,for : 
PP PP 
(a) (b) 

where "(a)" and "(b)" identify concepts without reference to senten~al 

order. The network Is now rewritten: 

Tom 

love 
t 

Sue 

where the h o r i z o n t a l  main l i n k  r e p r e s e n t s  " i s " ,  wa i t i ng  for  a r i g h t - h a n d  

concept .  When ' b e a u t i f u l "  I s  heard ,  the network i s  complete ,  g i v i n g :  

Tom 

~ b e a u t i f u l  

love 

t 
Sue 

The network above may be realized alternative~ as either of the 

paraphrases: 

That Tom loves Sue is beautiful. 

For Tom to love Sue is beautiful. 

In conceptual dependency theory, connectives like "that", "for", "to"~ 

and "of" are cues to the structure of the network and need not appear 

in the network at all. The network above demonstrates such a situation. 

Conversely, portions of the network may be absent from the sentence. 

For example, the sentence: 

It is good to hit the ball near the fence. 
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is parsed as: 

one 
~ good 

hit 
t 

ball 
to 

fence n~arPlaee 

Here, "one" and "place" are not realized. Notice that the relevant 

realization rule for "it" is: 
- ] (al)Ione) 
If°r PP it be PA ACT: 2 
~a0) (al) 0 i 2 3 

The square brackets indicate optional words. The tags "(a0)" and "(al)" 

indicate that "for" precedes the "PP" but the whole phrase may occur in 

any position of the construct. "(al)!one" in the dependency chart means 

that if "(al)", i.e., "for PP", is omitted, and the subject of the action 

is not obvious from context, then the concept "one" is to be assumed. 

The conceptual network should reflect the Beliefs inherent in 

the original discourse in a language-free representation. The inter- 

linguistic file of conceptual semantics is checked to verify that the 

dependencies are indeed acceptable. This check is made after abstracts 

have been rewritten. 

After the five parsing steps are completed, the program proceeds 

to the next word. At the end of the sentence, it outputs the final net- 

work in two dimensions on a printed page or on a display console. 
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V. Examples of Algorithm 

Only a few of the relevant realization rules will be shown in 

the examples. 

Example I 

'John saw birds flying to California. 

Realization Rule Patterns 
Words (for posslble senses) 

John 1: (all PP patterns) 
saw I: (all PP patterns 

2: (tO see, past tense) 

PP ACT PP: "i ~ 0 ~- i 
-i 0 I 

PP ACT ~ PP: 2 ~ 0 ~ I 
-i0 Y 2 

Dependencies 
(rectangle around new dependencies 

~ohn ~"see[~ Pe 

(note: "to"means "tense of ACT 
Number O) 

3: (to saw):..,  e t c .  

b i r d s  1: ( a l l  PP p a t t e r n s )  
 ying l:a) A -Ing: 1 o 

l:b) ACT PP ACT-Ing : 
0 i 2 

[ s ee  ,- birds_~ 

~birds ~ ~l~ I 

But now t h e r e  a r e  two main l i n k s  
on one l l n e  so go back and t r y  as  
o b j e c t  of  ' s e e ' .  

I 

b i r d s  

see  ~ f~ly 

i: ACT to PPLoc-I ~ i 

-I 0 I 

2: to ACT ~ i 
0 1 

e t c .  

fly ~ PPLoc 
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California I: (all PPLoc patterns) 

Final output: 

fly <to California 

birds 
g John see ,- $ 

fly 

ton 
California 

Example 2 

'John saw Texas flying to California.' 

Words Patterns 

John I: (all PP patterns ) 
saw (as above) 

Texas I: (all PPLoc patterns) 

flying (as above) 

(rest as above) 

Final Output: 

John ~ see ~ Texas 

P 
John ~ fly<t=°California 

Dependencies 

J~nl ~ see!~ PP 

Texas ~ fly: rejected by 
semantics. Laugh and go 
back and try (Ib): 

J ° h n F I s e e  

"" p 

l John! [fl d 

Example 

'Jane ate the hamburgers in the park.' 

Words , Patterns 

Jane I: (all PP patterns) 
ate i: (eat - past tense) 

PP ACT PP: -it~O0 ~ I 
-I 0 1 

Dependencies 

John ~ e a t  

eat ~ PP 

e tc. 
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Words 

hamburgers 

in the park 

Patterns 

i: (all PP patterns) 

I: ACT In PP: -i 0¢_ i 
-I O i 

2: PP in PP: -I 
-1 0 1  0 ~ 

1 

3: PP ~2A~ in PP • 
-3 " " 0 1 LOC" 

-2 
-3 ~ ° -i 

i 

Dependencies 

eat ~ hamburgers 

eat ~ park: rejected by 
semantics 

hamburgers 
~in 
park 

set aside as unlikely 
(would accept if not other 
alternatives) 

P 
John ~ eat 

in II 
park 
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VI. Examples of Parses 

'Flying planes can be dangerous.' 

planes g dangerous 

fly 

one 

g dangerous 
fly 

t 
plane 

'The shooting of the hunters was terrible.' 

hunters 

~ terrible 

shoot 

o n e  

~ terrible 

shoot 
t 

hunters 

'John, who was in the park yesterday, wanted to hit Fred in the 

mouth today'. 

today 

John ~ want 

John ~ hit ~ Fred park ~ be <~ mouth 
t ay of 

yesterday Fred 

'John was persuaded by the doctor in New York to be easy to please.' 

doctor ~ persuaded ~ John 

n one ~ please ~ John 

New York easy 

'The girl i llke left.' 

glrl ~ leave 

I ~ like 
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Vll. Conclusion 

Before computers can understand natural language they must be able 

to make a decision as to preclsely what has been said. The conceptual 

parser described here is intended to take a natural language input and 

place the concepts derivable from that input into a network that expli- 

cates the relations between those concepts. The conceptual network that 

is then formed is not intended to point out the syntactic relations 

present and there is some question as to why any system would want this 

information. Although Chomsky's deep structures convey a good deal 

more information than just syntactic relations, it is clear that a parser 

that uses deep structures for output would be oriented syntactically. 

We see no point in limiting our system by trying to test out a previously 

formulated grammar. The output of a transformational parser, while 

making explicit some important aspects of the meaning of the sentence, 

does not make explicit all the conceptual relationships that are to be 

found, does not limit its parses with a check with reality, and most 

importantly is syntax based. The parser presented here is semantics 

based. We aver that the system that humans employ is also semantics 

based. It seems clear to us that our parser satisfies the requirements 

that a parser must satisfy and in so doing points out the advantages of 

regarding language from a Conceptual Dependency point of view. 
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APPENDIX 

I. Conceptual Rules (permissible dependencies): 

PP * ACT; PP = PP; PP * PA; ACT ~ PP; ACT'~PP; 

PP PP ACT PA AA PA T IDC ACT 

~ ;  t ;  t ;  t ;  ~; ~; ~ ;  , ;  ~ ; ~ .  
PP PA AA PA PA PP c~ ~ o 

II. Realization Rules 

There are about I00 of these rules, presently. 

here. 

A few are shown 

PP ACT : I ~ 2 ; PP ACT to ACT : 1 @ 2 ; PA PP : 2 ; 
i 2 1 2 3 t 1 2 ¢ 

i~3 I 

ACT PP PP : i "~2 ~-3 ; PP Prep PP : i 
1 2  3 1 2 3 ,'~'2 ; 

3 

PP ACT Prep PP : i ~ 2 ~4 for I ~2 ; PP PP ACT ACT: i ~4; 

l 2 3 ~ ~3 i e 3 4 
2~3 

l 
ACT PP ACT-lug : ~ ; PP who ACT ACT : i * 3 
i 2 3 2~3 i ~ 3 % 

2 

III. A Sample of the Conceptual Semantics for 'ball'. 

bal l ,  

inanimate motion object 
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~-PA PP 

size any in phys obj 
shape round on phys obj 
color any for phys obj 
texture usually smooth by place 
elasticity bounces of animal 

at no 
to no 

ACT 

specific 
motion object 
concrete 
any 

bounce 
roll, come, spin 
fall, hit ... 
begin, cause ... 
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