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Abstract. The purpose of this paper is to help linguists contruct a consistent, 

sufficient and less redundant syntax of language. 

An acceptable string corresponds to an expression or an utterance: it may 

be a natural text, a string of morphemes, a tree structure or any kind of 

representation. A sharp distinction is made between the syntactic function 

which is an attrib trin s and the distribution class which is a set of 

strings. Syntactic function of a continuous or discontinuous string is defined 

as the set of all the acceptable contexts of the string, and is called a com- 

plete neighborhood. Two contexts are equivalent if they accept or reject any 

given string at the same time. An elementary neighborhood is the set of all 

contexts equivalent to one context. 

Four simple distribution classes are proposed and their properties are discussed. 

Concatenation rules of a language can be described in terms of concatenated 

complete neighborhoods or concatenated distribution classes. Some possible 

representations and their consequences are discussed. 

Transformational rules are also described in a similar way. However, 

there is another problem of correspondence of original strings to their trans- 

forms. It is useful to establish subsets of elementary neighborhoods and this 

subclassification may contribute to a simplification of the clumsy represent- 

ation of derivational history. 

Finally, some trivial but practically useful conventions are described. 

1. Introduction. 

~he grammar of a language should be consistent throughout its whole 

system. No features should be left unformulated in order that the grammar be 

a complete one. At the same time, it is desirable to prepare the grammar as 

compact as possible. These are important requirements especially when the 

grammar is a machine-oriented one. The knowledge on the formal properties of 

syntax will help us construct an objective system of grammar. Every term used 

in a description should be rigorously defined and no ambiguous expressions are 

allowed. If the consequence of grammar rules deviates from the proper usage 

of the language~ we will be able to trace back the definitions and locate the 

source of trouble. 

When the grammar rules are given in terms of concatenated symbols, we 

must know the formal definition of the symbols before writing a program by 

which the rules are applied to the text. If a grammar rule describes the 

nature of a P-marker, the label given to each node in the P-marker must have 

an unambiguous definition which relates the meaning of the symbol to the strings 

supplied as texts. 
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We need, at least, an objective criterion by which we can specify a 

language. This criterion will be a dichotomous decision whether or not a 

given symbol string belongs to the language in question. We leave the decision 

to native speakers and consider the acceptable strings undefined. A substring 

of an acceptable string is said to have a syntactic function or a part of 

speech. The syntactic function of a s~boi string is considered as the set 

of all acceptable utterances in which the string occurs. We eliminate the 

string in question and define its syntactic function as the set of all accept- 

able contexts of the string. The set of all acceptable contexts of a string 

is called a complete neighborhood. 

A distribution class can be defined as a set of strings whose complete 

neighborhoods are related to a given set of contexts in a specified way. We 

propose four simple definitions of distribution classes. 

With these fundamental concepts of parts of speech and distribution classes, 

we can proceed to a more formal system of syntactic description. However, a 

few questions may be immediately raised. Is it really possible to construct 

a grammar in such an elementary way? How can we list the elements of a set 

picking them up out of a practically infinite nmmber of strings even though 

each string is assumed to be of finite length? Is it not useless to establish 

such sets for a natural language, most of which are likely to have only one 

element? Etc. Etc. 

We should be better off if we were to create a new languaze by preparing 

a grammar and a lexicon. Unfortunately the situation is quite contrary when 

we are to handle a natural language. The language exists. We want to find 

out a grammar that accounts for all and only the acceptable strings of the 

language. We regard a language L as a set of strings generated by a machine M, 

whose internal structure is not known to us. We can observe only a part of 

the set of generated strings in a limited length of time. We want to construct 

a hypothetical machanism M' that generates all and only the strings in L. The 

internal structure of M and ~'~ may not be the same. ~%e output of M' is 

checked if it is an element of L, and strings are supplied to M' to see if M' 

accepts a string if and only if it is an element of L. To do this, we must 

have the set L, or a mechanism which tells us whether or not the given string 

belongs to L. We call this mechanism a normative device. It is a native 

speaker if a natural language is to be discussed. We simplify the situation 

by assuming a few separate strata in the mechanism. A string generated is 

supposed to have been transferred from a stratum to another before it becomes 

a string of natural language. An utterance has a few different forms corres- 
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ponding to the strata. Each form has its own grammar. The normative device 

will be a linguist in this case. 

Since the number of strings is practically infinite, a linguist trying 

to constuct a grammar will find it advantageous to establish rules that hold 

for a set of strings or for a set of relevant facts. A linguistic phenomenon 

may be analyzed from various points of view which will help him avoid listing 

a tremendous number of phenomena and rules. He will attach certain markers 

to the stringm according to the way he considers consistent with his usage of 

language. He will then write down the rules in terms of the markers. He may 

also establish his rules in terms of sets of strings which share some common 

features in their mai~ers. The procedure of using these rules consists of two 

parts. ~%e one is a routine that compares a rule with the text and decides 

whether or not the rule is to be applied. The other is a transfer routine by 

which the relevant infon~ation is read out of the applicable rules and trans- 

ferred to the text. In these procedures, both comparison and transfer are 

carried out with the coded markers. It is important that the meaning of the 

codes is unambiguously defined so that the code obtained in the text is exactly 

what the linguist wants to mean. 

Some of his rules may account for a certain n~mber of texts he has examined 

but may fail to account for some others or to rule out similar but inconsistent 

facts. He will test his rules by applying them to a natural text or by generat- 

ing strings. The normative device will tell him whether or not a string sup- 

plied to it is acceptable but not tell him why. It is obvious that these pro- 

cedures can not be carried out practically on every string that may be supplied 

to a machine in the future, and that nobody will be able to predict what can 

occur when an arbitrary string is supplied to the machine. Nevertheless, it 

is required that a grammar may deal with most of the texts supplied in the 

future. 

His ~rammar is inevitably affected by the nature of the normative device. 

If the normative device is so strict as to reject every string which fails to 

meet such requirements as that its style must be just an ordinary one, the 

statement must be logically correct, the lexical usage must conform with the 

regular way of the language, etc., etc., then the linguist must prepare a 

separate rule for almost every string. He can break down the decision pro- 

cedure into a few separate steps. The first device will accept a string if it 

finds the internal relationship of the string is acceptable, regardless of the 

reality the string designates. If the grammar is to be applied to input texts 
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whose structure is always grammatically correct and unambiguous, a grammar 

which satisfies the requirement of this device ~ wl~ be enough. However, it 

will give many unusual strings if it is used in random generation and many 

ambiguous alternatives if it is used for analysis, ~h¢ second device may 

reject tl%ose strings whose structure shows an unallowable combination of lexical 

elements, thus eliminating some of the ambiguous alternatives in analysis and 

suppressing the output with improper usage of lexical elements in synthesis. 

The third device may reject as unacceptable those strings which are not logic- 

ally consistent. If one wants to have more rigorous grammar that may be used 

for random generation of only non-surprising sentences, he may add more devices 

to the preceding ones, so that the grammar may be tested from such points of 

view. He will prepare his grammar keeping the characteristics of his normative 

device in mind. A number of digits will be assigned to the coded form of 

markers corresponding to each step of decision. ~ne procedure will be pro- 

grammed so as to handle these digits independently, thus allowing a number of 

rules to be applied to the same string, if certain digits are related to each 

other, and a particular combination ,of codes is to obey a particular rule, the 

rule will be prepared independently and the general procedure will be prohibit- 

ed. ~nis is done by a simple technique in coding and programming. 

As we see on the following pages, a number of similar but different 

representaions are possible. If we are not ready to understand the exact 

meaning of codes and rules and to prepare the right program for the represent- 

ation chosen, the rules established on the basis of ad hoc definitions will 

result in a chaos. The formal property is not confined to a certain language, 

but it is common to many, probably to all, languages. A grammar will not 

deviate greatly from its proper constuction if its formal property is carefully 

examined. 

~. Symbo!~ String; Language. 

2.__~I. Symbol is an undefined term. Morphs, morphemes, lexes, lexemes, or some 

other units may be regarded as symbols. Any unit consisting of a number of 

symbols is called a string. All the strings are possible strings. If a string 

is considered " ~ ~ meanln~u±, then it is an acceptable string. Each acceptable 

string is an undefined term. 

These definitions are quite fon~al. If we confine ourselves to the 

problems in morphotactics, the symbols are morphs and the acceptable strings 

are what are called expressions or utterances. A symbol may be a morpheme and 

a linear arrangement of morphemes is an acceptable string if it is reco~jnized 



as a mori:,hemio =,j ::'osentaticn of an u-ctu:'-.,<=e'. A string need not always be a 

linear a,~ra~gemen% of "~ ~-- " a l~mo. We may rega~t.~ labeled tree called a P-marker 

as a string~ and a labeled node as a re-0resu~rlon of the subsZrin~{ dominated 

by the node~ al~ouZ~.. ~e term strin~ seems inadequate in this oa~e A node 

represents a P-marRer consistin/ of all +~.he terminal and non-terminal nodes 

it dominates. We can regard a P-marker as a L='ee-l/ice strin Z of P-markers 

dominated by the former. "'- ~'~ .... " ~ ..... ,"~ :~o~e. x~nc of . . . . . . . . . .  es may be added to the syn- 

tactic tree in order Zo indicate the re!ationshi3 a~=on 1%he constituents. We 

call this renresentation a net~ provisionally. We l:~a y reoard a net as a 

string co~."sisting ~: ...... "~ -~ " ........... e. of labeled nouns, w;:ose arrangement is shovm by 

two kinds of branches. 

We define a langua='e as a see of accei=table .... ihc ~" ,. -'- _ s ~r~_njs. acce.n=a3~e string 

of a natural - ' a , " - : , ' < ~  is considered =o have as ..... ~ " .... ..ly versions as the nusoer of 

strata established "bLr linouist. Ear=. v,~-.>;ion of at. accen, table s~cz~ing is an 

element of the language defined on the st,.~atm= i.n ou=,=~:;.,on. A transfer from 

one version to another is essentially a translation. 

2.p. Su~o'.~ose we have a Linear sz, r:Ln:j. !,',e ~,n°cer'r'a~oD the sLrzng by delet.n~ 

some of the s~.:ools therein and ..~. ~ ......... ~...n o" -" a s:p~bol of absence "to each point of 

deletion, if a symbol,, o- absence is foiio',Jed by another .,.,,,e&lauu.y, ~ .... "" ~"~' -~ne,y are 

contracted to one. A ~< .... . ..... e~z strin~ is continuous if it is not interrupted 

,%- ~ 
~±~ the nodes in a syntactic tree are palatially ordered. A node includes 

a~ot~ ~ .... ...... if the linear str~_ng . . . . .  covered 0y zne latter ms a part of the linear 

s~l~,a covered by the for='~er. A t:cee-iike strmn[~] is continuous~ if and only 

if (i] all the nodes of the sLrin~ are included in one node D, and (2) there 

are no o d:er nodes which are not included ir~ D° 

• ~.~ • .~ ~*~ ~ • I 

A ;%et strln< is continuous, 4~ and only m~ ~.~e s~jntactmo tree is continu- 

ous and no branches of ~ne second ' 4 " -"~' ~'" ,~.nQ are broW<ell o.~. 

Any o. ~ ....... ~ ~. -~ ~,I ........ s 3~ a sLrin Z is called a se&~nent, it may be either continu- 

ous or U~CO~uoZnUOGo. ~ discoP.tiZlUOUS sec',',~enL consists of a few nar~s se.na- 

rated from each otl.er. Each o~,z~t of se<':::e:<% ::s Ca~__~,~ a fra-~,,lent which is 

necessarily con'~inuous (~-az-l<er-i.~-.odes~ itdl). 

~. boll ~el{ ~ : . . . . . . . . .  ( ,~_ ,,.,,, ~,.  

5 . £ = -  C o n t e x t  i : 2 . c c e ' - ' - , < : 3 _ e  C o n b e : , : = .  

Let r be a strin~ an& ~eL s be a seonenu of r. ~:,e s~.~,~ r may be con- 

tinuous or discontinuous. ;lhe other :taru~ c of z" _~s called the co~-'~c.~.~ of s 

. . . . . .  ~.~.~u .... ~.~ Lf.eZ:i We ;.sa~, r c ~.s &i% ~c,..,.z.,~,_~u.~,~ OOl%Le]<L O-" S~ or c 

is ....... -~ - acc~i~u~m~ to s. 
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• f the discussion is confined to a co~.~-:.ee cr.rase scruczurc _an:Cu~je, 

it seems more convenient to modify the concepts acceptable string and context; 

any immediate constituent of an acceptable szring is also acceptable, and a 

context is acceptable to a string if the string, its context and the whole 

string are all acceptable, if the constituents are continuous, the situation 

becomes simpler. ~ne context c = r()t is acceptable to s, if r, s, t, aud rst 

are all acceptable. Either r or t may be absent. 

3.2. Neighborhood. 

A context is an interrupted string which becomes a continuous string if 

an appropriate segment is supplied to its points of interruption. Let 

y = set(cl,c2,---,c n) 

be a set of contexts and let s be a string. If all the contexts in y become 

acceptable strings when s is supplied to them, then the set y defines a pro- 

perty of s. We call the set y an acceptable neighborhood of s. If y is an 

acceptable neighborhood of strings Sl, s 2, s 3, for instance, then we say y is 

an acceptable neighborhood of 

S = set(sl,s2,s3), 

and we consider the set y represents a syntactic property common to all the 

strings in S. ~ote that our neighborhood is not the same as the okrjestnostj 

(Kulagina, 1958). A set of acceptable strings with a string s is called a 

paradigm of s (Parker-Rhodes, 1961); our neighborhood is a paradigm in which 

the string s is lacking. 

4. Eouivalence of Contexts. 

Let c and c be two contexts. Suppose a string s is acceptable to both 
z 3 

c and c., and another ..... "~ ~ • ~ing t is not acceptable to c. or c.. In this case, 
! j i ,] 

we can not tell the difference between c. and c as far as the acceptance of 
l 3 

the strings s and t are concerned. We say these contexts are equivalent to 

each other and write 

c i eqv c j, 

if the condition "c is acce~tabie to ~ ~ring s, if and only if c is accept- 

able to s" is satisfied for every possible string s of the language. ?he 

relation of equivalence is symmetric, reflexive, and transitive: 

(i) c. ecv c.; 

(2) if c i eqv cj, then c~ eqv ci; 
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(3) if c i eqv c. and c eqv Ck, then c. eQv c k- j .i " 

~. Complete Neighborhood. 

~u~. Let y be an arbitrary set of contexts, it may include contexts which 

are not equivalent to each other and may not include all the contexts which 

are equivalent to some context in it. ~he comolete, n-'ei ''~..~o~nooa'~ " N(y) of y is 

the set of all contexts equivalent to some context c' in y: 

N(y) = set(c: c eqv c' ~ "~ C' in ~o~ s o m e  y;. 

A set of contexts is complete or is a complete neighborhood if and only if it 

is the complete neighborhood of itself. Take a string s and let C(s) be the 

set of all the contexts acceptable to it. We show ~u ~ C(s) is ~ . a ~  complete. 

( l )  

(2) 

If 

af 

then 

then 

then 

then 

therefore 

c 6 C(s), then c £ W(C(s)); that is C(s) c 

c A N(c(s)),  

c eqv c' for some c' in C(s), 

c eqv c' and c' is acceptable to s, 

c is acceptable to s, 

o g c(s), 

N(c(s)) C(s). 
From (i) and (2), we have 

: c(s). 

Therefore, C(s) is complete. We call C(s) the complete neighborhood of the 

string s. 

We may pick up an arbitrary segment of an acceptable string, call the 

other part the context of the segment and establish a complete neighborhood of 

the segment. This kind of complete neighborhood contributes nothing to a 

grammar but some redundant rules. These practically nonsensical complete 

neighborhoods give rise to no trouble, because they never appear in any rule 

of the language. 

?he complete neighborhood C(s) of a string s is considered to correspond 

to the syntactic function or the Dart of speech of the string s. The elements 

of C(s) shire a common property that every one of them can be an acceptable 

context of s, while no other context~ which do not belong to C(s) are acceptable 

to s. ?his property of C(s) leads us to the application of complete neighbor- 

hood to a given set of contexts supplied as text. 

Let S be an arbitrary set of contexts. Some elements of S may be accepted 

by s and some others may not. The elements accepted by s must, at the same 

time, belong ~o C(s), that is, Co C(s)~ S. If 
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C(s) ~ s = 0, 

then the string s can not occur under the contextual condition defined by S, 

and vice versa. If 

C(s) D S = C(t) ~ S, 

then we have no means to distinguish the syntactic function of s and t with 

respect to the given S. If S is the set of all the possible contexts of the 

language, then 

c ( s )  N s = c ( s )  

for any string s. If 

c(s) = c(t), 

then we have no means to d~stlngmlsn zne s~tactic function of s and t so far 

as only the acceptability is concerned. 

5.2. It occurs very often that a string r behaves like a string s under a 

certain condition, and like t under another condition. This phenomenon will 

be restated as follows: 

for some set S' of contexts, 

C(r) N s' = c(s) O s,, 
and for another set S" of contexts, 

C(r) n s,, = c(t) N s,,. 

We put x = C(r), 

y = C(s), 

z = c(t). 

~,~en, x N  ~ ' N  s , , =  y q s ,  N s,, 

and x N s ' N  s " =  ~O s ' , q  s". 

Taking the union of these two, we have 

x(' l  s, .q s,, = ( y d  ~ ) N s ' l q  s,,. 

This means that r acce~ots every context in ~' ~ S" ~ if it is acceptable to s or 

t. Now, we will see the behavior of r with respect to the context set 

S = S' ~ S". 

xN s = x ~ ( s ' d  s") 

= ( x q s ' ) 1 9  ( x O s " )  

= (yNS')U(z~s") 

~_(y.qS) U (zNS) 
t 

= (y U 7) O s. 

This result su~'>e~+~oo _~ that the behavior of r may be interpreted in terms of y 

and z, and that y and z may account for something lacking in x with respect to 

S. 



(yd z) ,q s = ( y d z )  ~ ( s , d  s,,) 

C ̧  ~ _ "  

= (yns')d (YO, s")W (z,~s') O(z Gs") 

: C< Ds') 0 (y ,~s,,) d (z f~s,) d (x ~O s,,) 

-= (x 0 (s' U ~')) O (y D s") U (z ~ s') 

, ' r =  H ~< q'.~ ,.., y,% - ~. ~ ] . , . < i g : : ' . t a ~ F  ' • . 

o._. We zlave seen above Bhat a co:;:piete ;;eishborhood 

x : c(:~) 

is ir.~erpreted in te:m;~s of 

y : c(s) 

and z : ~< u). 

: ' , ' e  ca'~ ex~pect ~s) and " "  ~e a ~kL; : r a y  re-~-~ese=zazmon O7 a s',mp.er aria more 

specific syntactic func-cion, if 

C(r) : c(s) O c ( t ) ,  

c(~) / c ( t ) ,  

c(~) I o, 

c(~) I o, 

then, for some c in C(s) and some c in C(t), we have 

c. noz ecv c~. 
]- o 

6.2. k se~ o£ all ....... ~- ,.ut~z~j equivalent contexts, called an elementary neighbor- 

hood, leads us to a concept of the ultimate unit of syntactic function. Given 

the elementary neighborhood e(i) with c. as an element is defined 
! 

a context ci, 

as 

e(i) = set(c: c eqv c.). 
l 

Since the equivalence is symmetric, reflexive and transitive, any two distinct 

ele::;e-=~ary neizhborhoods have no elements in common. 

6.__~. Let x be a co,mi~iete neid_borhood and e(i) an elementary neighborhood. 

~ an element c in x ~s a ::,emoer of e(i)~ then 

e(i) r- ::, 

b~cause x is co'.rSie~e '" ~- . in " • ~a.~ an element c x; then there ms an e(i) such 
]_ 

that 

• (). C ~ e i 

x : Ue(i) 

for all ek~)'s ~=ving at leas~ one element in x. Every elementary 
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neighborhood is complete. An intersection of complete neighborhoods is complete. 

Every union of elementary neighborhoods is a complete neighborhood. 

2" Distribution Class. 

We have thus far discussed the syntactic function of symbol strings in 

terms of their acceptable contexts. A context is an environmental condition 

in which a string occurs. Given a context, we can classify the strings into 

two distinct categories: the one is a class of strings that can occur in the 

given environment and the other is the class of strings that can not occur 

therein. 

If there exists at least one context c in which both s and t can occur, 

then c ~C(s) and c ~C(t), 

that is c ~ C(s)N C(t) # O. 

We define the set of all strings t, that can replace s in some contexts, as 

G(C(s)) = set(t: C(t) N C(s) # 0). 

We introduce a convention 

A(=)B 

which means that the intersection of the two sets A and B is not empty: 

G(C(s)) = set(t: C(t) (=) C(s)). 

Suppose a string t can occur wherever s can occur, but s can not always 

occur in the contexts accepted by t. In this case, 

c(t) o C(s). 

We define 

H(C(s)) = set(t: C(t) O C(s)). 

The distribution class I(C(s)) is a set of all the strings t that can be 

always replaced by s: 

I(C(s)) = set(t: C(t) c C(s)). 

That the two strings s and t are mutually replaceable means that s can 

occur wherever t can occur and conversely t can occur wherever s can occur. 

In other words, any context c is accepted by t, if and only if it is accepted 

by s: 

c g C(t) if and only if c ~C(s), 

or C(t) = C(s). 

We indicate the set of such strings t by 

J(C(s)) = set(t: C(t) = C(s)). 

Other distribution classes are defined as sets of strings whose complete 

neighborhoods are related to a certain complete neighborhood in a specified 

way. Let x be an arbitrary complete neighborhood. The simple types of 



Sakai ll 

distribution classes mentioned above are written as 

G(x) = set(t: C(t) (=) x), 

H(x) = set(t: C(t) 2 x), 

I(x) = set(t: C(t) ~x), 

J(x) = set(t: C(t) = x). 

A distribution class is said to be real if it is not empty, and imaginary 

if it is empty. 

able strings 

and only these. 

and their contexts 

Suppose, for instance, that a language consists of the accept- 

they are (flying/red/making) planes, 

a (flying/red) saucer is an object, 

(flying/making) planes is an industry, 

We observe the strings 

s I = flying, 

s 2 = red, 

s 3 = making 

c I = they are () planes, 

c 2 = a () saucer is an object, 

c 3 = () planes is an industry. 

The complete neighborhoods of the strings are 

C(s l) = C(flying) = set(cl,c2~c3), 

C(s 2) = C(red) = set(cl, c2), 

C(s 3) = C(making) = set(cl,c3). 

The distribution classes are determined by these neighborhoods. 

types above are given in the table below. 

i: s I C(s.) G(C(s.)) I(c(s.)) 
l l l ! 

i: flying (Cl,C2,C 3) (Sl,S2,S 3) (s l) (Sl,S2,S3) 

2: red (Cl,C 2) (Sl,S2,S3) (Sl,S 2) (s 2) 

3: making (ci,c3) (Sl,S2,S3) (Sl,S3) (s 3) 

The simple 

J(C(s.)) 
l 

(s a) 

(s 3) 
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The elementary neighborhoods 

e(i) = set(c: c eqv ci), i = i, 2, 3 

are found by consulting the table below, where "+" on the i-th row and J-th 

column means "cj is acceptable to si". 

: c I c 2 .c~ 
Sl: + ÷ + 

s2: + + - 

s3: + - + 

e(1) = set(c: c eqv c I) = set(cl), 

e(2) = set(c2), 

e(3) = set(c3). 

Therefore, 

C(s l) = e(1) ~e(2) ~ e(3), 

C(s 2) = e(1) U e(2), 

C(s~) = e(1) U e(3). 

,i. 

( i) J(x) = H(x),q Z(x); 

(2) H(x) U z(x) ~_ G(x), 
Proof. 

(1) t ~ J(x), 

if and only if C(t) = x, 

" C(t) ~ x and 

" t 6 H(x) and 

" t ~ H(x) N i(x). 

(2) t 6_ H(x) U Z(x), 
if and only if t ~ H(x) or 

" C(t) ~ x 

x#O. 

C(t) c x, 

t 6 I(x), 

t d i(x), 

or C(t):'x, 

for x / O, then C(t) (=) x 

if and only if t ~ G(x). 

7.2. Ale equality C(t) = C(s) of two sets is symmetric, reflexive and 

transitive. ~erefore, 

J(x) = J(y) 

if and only if J(x) (=) J(y). 

This means that any two different sets have no elements in common and, con- 

sequently, that every element belongs to one and only one set of the form J(x). 
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If X is an elementary neighborhood, then 

G(x) = set(t: C(t) (=) x) 

= set(t: C(t) ~ x) 
m 

= :~(x) 

if x/ O; 

I(x) = set(t: C(t) C x) 

= set(t: C(t) = x) 

: J(x), 

so that C(t) is also elementary. 

7.3.2. 

then 

if 
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If x is any complete neighborhood and if C(t) is elementary for all t, 

G(x) = set(t: C(t) (=) x) 

= set(t: C(t) ~ x) 
m 

= I(x); 

H(x) = set(t: C(t) D x) 
m 

= set(t: C(t) = x) 

: J(x) 

x / O, 

so that x is also elementary. 

7._~_~. If C(t) is elementary for all t and x is also elementary and non- 

empty, then 

7-4. If 

(1) 

(2) 

(3) 

Proof. 

(1) 

if and only if 

I! 

I! 

I! 

(2) 

if and only if 

I! 

G(x) = ~(x) = I(x) = J(x). 

X = y U z, then 

G(x) = G(y) U G(z), 

H(x) = a(y) ~ ~(z) ,  

I(x) ~ i (y)  O I (z ) .  

t ~ G(x) = G(y ~ z), 

C(t) (=) x = y ~ z, 

c(t) (:) y or c(t) (:) z, 

t ~ G(y) or t ~ G(z), 

t 6 G(y) U G(z). 

t £ H(x), 

C(t) ox = yUz, 

C(t) 2Y and C(t)_Oz, 

t6H(y) and t~(z), 



I t  

(3) 
if and only if 

then 

if and only if 

~.~A. 
(l) 

(2) 

Proof. 

(l) 

if and only if 

l! 

then 

if and only if 

(2) 

if and only if 

T! 

11 

I! 

8. 

8.1. 

t ~H(y) ~H(z). 

t~I(y) U I(z), 

c(t) ~ y or 

c(t) ~ y ~ z : x, 

t £ Z(x). 

If x : yN z, then 

G(x) ~ G(y) ~ G(z), 

Z(x) = Z(y) N Z(z). 

C(t) ~ z, 

t £ G(x), 

C(t) ~ x # O, 

c(t)  ~ y ~ z / o, 

C(t) ~{ y # 0 and 

t ~G(y)  ~ d ( z ) .  

t ~ I(x), 

c( t )C_x  = y A z ,  

C(t) ~y and , C(t)~ z, 

t ~ I(y) and t ~ I (z) ,  

t E l ( y )  ~ Z(z). 

-----~ r n 
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Concatenation. 

Cqncatenation of Strings. 

Let p be a string and let r I, r 2, 

c~t) ~ z # 0, 

be segments of p which do not 

mutually overlap. A segment t consisting of r l, r 2, ---, rn is the concaten- 

ation of these segments. It is a segment of p, consisting of fragments of 

--- arranged in their relative order in the original string p. It r l, r 2, ,r n 

is convenient to assign a definite notational order to a concatenation in order 

to specify the arrangement of fragments. 

8.2. Concatenation of Contexts. 

Let 

r l, r 2, ---, r n 

be segments of p with no fragments in common. 

c (r) of r in p, 
p l l 

i = i, 2, ---, n 

correspond uniquely to the segments ri, 

'l~e contexts 

respectively, and so does c (t) to 
P 

the concatenation 
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We write 

t = rlr2---r n. 

Cp(ri)Cp(r2)---Cp(r n) = Cp(t) 

if and only if t = rlr2---rn in 

8.3. Concatenation of Sets. 

Let a, b, c, --- be elements of sets. 

p. 

We call an ordered string of these 

elements a concatenation. Let A, B, C, --- be sets. We define the concate- 

nation,of sets as 

AB---D = set(ab---d: a~ A, b ~B, ---, d ~ D). 

In our present discussion, the elements are either all strings or all contexts. 

8.3.1. We confine ourselves to binary concatenations for simplicity. The fol- 

lawing discussions can be easily generalized to longer concatenations. An un- 

ambiguous concatenation, ABCD for instance, is considered as one of the three 

binary concatenations 

A(BCD), (AB)(CD), (ABC)D 

when the discussion is strictly binary. In a morphographemic description, 

however, this is not very important. One may assume one of these three accept- 

able and discard the other two as unacceptable. In a morphotactic description, 

some one of these three will be chosen so as to make the whole description of 

the language simpler. If any one of the sets which constitute a concatenation 

is empty, then the concatenation is also empty. 

We assume that the binary concatenations required by the grammar are 

(AB)(CD), A(BC), (BC)D 

and only these. The possible binary tree structures of ABCD are covered by 

ABCD = A(BCD) U (AB)(CD) U (ABC)D. 

Since we are to handle binary concatenations only, we consider two concatenations 

of elements are different if their structures are not the same: 

Then, the condition 

yields 

(i) 

(2) 

(3) 

By assumDtion , 

(AB)(CD) N A(BCD) = O, 

(AB)(CD) ~ (ABC)D = O. 

ABCD : (AB)(CD) 

(AB)(CO) I O, 



~erefore, 

(4) 

45) 
because 

Similarly, 

(6) 

(7) 
From (2), 

By (7) and (6), 

or, 

(8) 

From (3), 

By (4) and (5), 

(9) 
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A(~C) J O, 

(A~)C : O, 

A(BC) N (,~)C : O. 

BCD = B(CD)[_) (BC)D = (BC)D, 

(BC)D ~ O, 

B(CD) : O. 

A(BCD) : A(B(CD) h) (Be)D) : O. 

A(BCD) : 0 0 A((BC)D) : o, 

A # O, (~C)O # O, A((BC)O) : O. 

(ABC)D : (A(BC) O (AB)C)D : O. 

(ABC)D = (A(BC) ~ O)O : (A(BC))D = O, 

A(BC) # O, D # O, (A(BC))D = 0. 

Now, we can describe the syntax of these strings in terms of binary concate- 

nations only, if we establish the rules numbered from (1) to (9). 

8.3.2. The following formulas are frequently used. 

(1) AB = CD, if and only if A = C and B = D, 

because, for any ab in AB, 

AB = CD 

if and only if Cab ~ AB if and only if ab~ CD) 

" ((a ~ A, b@ B) if and only if (a ~ C, b~ D)) 

I! 

(a) 

because 

i f  and o n l y  i f  

I ,  

II 

r! 

(3) Similarly, 

(4) 

b e c a u s e  

if and only if 

V! 

11 

(a~ A if and only if a ~ C, 

bE B if and only if b ~ D) 

A = C and B = D. 

A(BU C) = ABU AC, 

ab ~ A(B U C) 

a 6A an~ b6BUC 

(a ~ A and b ~B) or 

ab 6 AB or ab 6 AC 

ab ~ AB ~ AC. 

(AOB)C: ACUBC. 

ABDCD= (Af]C)(BDD), 

ab ~ AB tO CO 

ab ~ AB and ab ~ CD 

a ~ A and b ~ B and 

a~ A~C and 

(a ~ A and b 6 C) 

a&C 

b~B~D 

and b ~ D 



strings r and s, such that 

C(r) : x 

and C(s) = y. 

By definition, 
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" ab ~ (A N C)(B lq D). 

Concatenation of Complete Neighborhoods.. 

If the distribution classes J(x) and J(y) are real, then there exist 

p(r i) = ---r.---l 

with the segment r. in it is acceptable if and only if 

p(r) .... r--- 

is acceptable, and the string 

p(s.) .... 2°--- 
3 3 

.is acceptable if and only if 

p(s) .... s--- 

is acceptable. Suppose 

P(ris j) = ---ri---sj--- 

is a string with both r. and s. in it. Any such string ix acceptable if and 
l j 

only if the string 

p(r.s) : ---r.---s--- 
l l 

is acceptable, and P(ris) is acceptable if and only if 

p(rs) .... r---s--- 

is acceptable. ~nerefore, P(ris j) is acceptable if and only if p(rs) is 

acceptable. That is 

C(ris j) = C(rs). 

We define the concatenation C(r)C(s) of complete neighborhoods as the complete 
I % neighborhood C(rs) of the concatenated strings. Generally, we put 

xy : c(rs), r ~ J(x), s 6 J(y) 

for any com~plete neighborhoods x and y, where J(x) and J(y) may be real or 

imaginary. Note, however, that 

if x : C(r), y : c(s), 

C(r i) = x for all rl in J(x) 

and C(sj) = y for all s3 in J(y). 

Any string 
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then xy = C(rs), 

while xy = C(rs) 

does not always result in 

x : C(r) or y = C(s). 

We have generalized and transferred the concatenation of strings to 

concatenated sets of strings and then to concatenated complete neighborhoods. 

The complete neighborhood representation provides us with a less complicated 

approach, especially when the strings are syntactically ambiguous. The dis- 

tribution class J(x) means the narrowest classification of strings and no 

further subclassification is possible, while its complete neighborhood x can 

be subclassified if x is not an elementary neighborhood. If 

rg J(x) and x = y Uz, 

then we can talk about imaginary strings r' and r", such that 

C(r') = y and C(r") = z. 

These imaginary strings, always referred to implicitly in terms of distribution 

classes, can be discussed explicitly in terms of complete neighborhoods. 

9.2. We make distinction between the concatenation 

xy : c(r)c(s) 

of complete neighborhoods and the complete neighborhood 

z : C(rs). 

~%e former means a set consisting of concatenated contexts. The properties of 

the language is introduced when it is written in the form 

xy= z 

or C(r)C(s) : C(rs), 

where the property x of r and the property y of s result in another property 

z of rs. Thus, z can be an empty set even if neither x nor y is empty, and 

ambiguous even if neither x nor y is ambiguous. 

9.3. We find it advantageous to have a system which represents every complete 

neighborhood in a unified way. We saw that a complete neighborhood x can be 

represented by a union of elementary neighborhoods e(i): 

x = Oe(i) with x ~ e(i) ~ O. 

Let us introduce coefficients x(i), such that 

x(i) : o if 

= i if 

and no other cases possibly occur. 

x(i)e(i) = e(i) 

=0 

e(i),Ox =o, 

e(i) -- x; 

We put 

if x¢i) : l, 

if x(i) : o. 
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In virtue of these coefficients, we can write 

(1) If 

then 

If 

then 

~]erefore, for 

we have 

(2) If 

then 

x = Dx(i)e(i), 

y = ~y(j)e(j), 

z = Uz(k)e(k). 

z=xOy, 

x U Y = (U x(i)e(i)) U (Oy(j)e(j)) 

= U(x(k) + y(k))e(k) 

= U z(k)e(k). 

e(k) c_ x or e(k) ~ y, 

e(k) ~_ z. 

x(k) + y(k) = z(k), 

0~-0=0, 

l+O =0 +l= 1 +l= 1. 

z = xy, 

z = (Ux(i)e(i))(~y(j)e(j)) 

= DU x(i)y(j)e(i)e(j) 

= UU z(i,j)e(i)e(j). 

By the definition of concatenation, 

e(i)e(j) ~ xy 

if and only if 

That is, 

if and only if 

Therefore, for 

we have 

e(i) C x and 

z(i, j) = 1 

x(i) = y(j) = 1. 

x(i)y(j) = z(i,j), 

1Xl=l, 

0 XO =0 Xl= IXO = O. 

e(j) c y. 

Writing 

we have 

if and only if e(i)e(j) ~ z 

Therefore, for the expression 

z(i,j)a(i,j,k) = z(k), 

we have 1 X 1 = l, 

e(i)e(j) = Ua(i,j,k)e(k)" 

Z = xy 

= U~ z(i,j)e(i)e(j) 

: UUU z(i,j)a(i,j,k)e(k) 

= Uz(k)e(k), 

e(k) ~ z 

and e(k) ~ e(i)e(j). 

(3) A concatenation of two elementary neighborhoods is a complete neighbor- 

hood, and it is also a union of elementary neighborhoods: 
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10. 

i0. i. 

be cause 

i f  and o n l y  i f  

11 

I! 

t h e n  

, i f  and o n l y  i f  

l0.2. 

because 

i f  and o n l y  i f  

II  

It 

II 

I! 

then 

i f  and o n l y  i f  

lo._.._5.5. 
because 

i f  and o n l y  i f  

II 

It 

II 

I1 

then 

i f  and o n l y  i f  

10.4. 

b e c a u s e  

if and only if 

11 

!I 

t h e n  

if and only if 

0 XO =OXI= 1XO =0. 

Concatenation of Distribution Classes. 

G(u)G(v) ~G(uv), 

r~ £ G(u)~(v) 

r £ G(u) and s £ G(v) 

C(r) N U / 0 and C(s) ~ V / 0 

(C(r) ~ u)(C(s) ~ v) = C(r)C(s) N uv / o 

C(rs) ~uvJ0 

rs £G(uv). 

H(u)H(v) c ~(uv), 

rs E ~(u)~(v) 

r ~ H(u) and s g H(v) 

C(r) D u and C(s) ~ v 

C(r) ~ u =u and ~C(s) ~ v = v 

(C(r) ~ u)(C(s) N v) = C(r)C(s) N uv : uv 

C(r)C(s) ~ uv 

C(rs) 2 uv 

rs ~ H(uv). 

I(u)I(v) ~ I(uv), 

rs £ I(u)I(v) 

r ~ I(u) and s ~ I(v) 

C(r) c u and C(s) ~ v 

C(r) ~ u = C(r) and C(s) ~ v = C(s) 

(C(r) ~ u)(C(s) D v) : C(r)C(s) D uv : C(r)C(s) 

C(r)C(s) c uv 
m 

C(rs) c uv 
N 

rs 6 I(uv). 

J(u)J(v) C J(uv), 

rs ~ J(u)J(v) 

r ~ J(u) and 

C(r) = u and 

C(r)C(s) = uv 

C(rs) : uv 

rs £ J(uv). 

s 6 J(v) 

C(s) = v 



Sakai 21 

i!. Rules for Recognition and Generation. 

Each rule of a grammar indicates the arrangement of a few items to be 

concatenated, accompanied by some other necessary informations. We assume the 

items arranged in a rule are either complete neighborhoods or distribution 

classes. Let us see what happens during the generation and recognition of a 

string of symbols. 

In case a grammar is given in terms of complete neighborhoods, the input 

text is converted to a string of complete neighborhoods before the syntactic 

analysis begins. At the very end of generation, a terminal node accompanied 

by a complete neighborhood x is replaced by a string s whose complete neigh- 

borhood C(s) shares at least one elementary neighborhood with x. 

~nen the syntactic rules are expressed in terms of sets of strings, the 

input text to be analyzed is replaced by a string of distribution classes. 

If a symbol string belongs to more than two sets of strings, their meet 

replaces the symbol string. At the end of a generation, the synthesized out- 

put string is obtained by replacing the set of strings on @ach terminal node 

by a string which is a member of the' set. 

ll.1. An acceptable string can be generated and analyzed making use of a tree 

with its nodes marked by complete neighborhoods. The expansion of a node z 

to a concatenation xy of nodes x and y implies z ~ xy, because otherwise 

further expansion of x and y may yield a structure which can not be accepted 

by z. Transformational rules can be a}?plied more freely because a trans- 

formation does not imply such a restriction. However, attention ahould be 

paid not to add any other contexts to the complete neighborhoods attached to 

the nodes already generated. Finally, each terminal node is replaced by a 

lexical element. ~%e string obtained after applying all the obligatory 

rules must be an acceptable string. 

~ne analysis is carried out by testing all the possible transformations 

and trying all the possible contractions. At any rate, both generation and 

analysis can be carried out if we have a set of rules which gives concatenation 

z = x---y for any x, ---,y of the language, and the transform y(1)y(2)---y(n) 

of any string x(1)x(2)---X(m) of complete neighborhoods. 

ll.2. Acceptable strings are also generated by starting from the node P(O) 

which is the set of all acceptable strings. It is replaced by its subset 

P(1)P(2)---P(i)---P(m) ~ P(O) 

which is a concatenation of nodes P(i)'s. Each node P(i) also represents a 

set of strings, and it may or may not be replaced again by 

P(il)---P(ij)---P(in) ~ P(i). 
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On each step of expansion, a choice is made by taking a subset of strings. 

~e possible choice becomes narrower and narrower. It is expected that the 

string obtained by applying obligatory rules and by replacing each terminal 

node by a lexical element is an acceptable string. 

~is is not always true if the replacement of a node is independent of 

the other nodes already generated. %his difficulty is overcome by executing 

a syntactic analysis after every step of expansion. If the analysis does not 

prove the possibility of obtaining an acceotable string, another subset should 

be chosen as a candidate. ~ne check by analysis should be tried after a 

transformation if it is a local or a generalized one. All the nodes, terminal 

and non-terminal, are sets of symbol strings. A generated string of nodes is 

analyzed by tracing back the path of generation. If the analysis goes back to 

P(O) which covers the whole string, the generation is acceptable, and not 

acceptable if otherwise. 

Any given string can be analyzed by applying rules to the string, in 

this case, however, the tree structure is not known. Rules should be tested 

on every possible combination of terminal and non-terminal nodes, so that the 

whole string may be covered by a single node and the possible derivational 

history may be accounted for by the concatenationai and transformational rules. 

11.3. ~ihe Rules for generation and those for recognition are essentially the 

same. They may be prepared in terms of complete neighborhoods or distribution 

classes. ~le rules will be prepared without any formal ambiguity if their 

definitions are carefully observed. Some formal systems are given in the 

following pages as examples of sin:pie types of grammar. 

. . . .  Re,,resen~.~<~on ~ Concatenation Rklles !2. Conu~lete Neighborhood ~ ~-~ c ~ ,. 

We say a set of concatenation rules is con~plete if it gives the concate- 

nation 

Z = xy 

of any complete neighborhoods x and y of the language. It is not necessary, 

however, to list all the ioossible x's and y's. Much less number of rules 

can cover all ~he ~ossible com!iete nei~3hborhoods if their use is y rcper!y 

pro gramme d. 

We consider a rule f(uv;w) represents a relation between the concatenated 

complete neighborhoods uv and another complete neighborhood w. Each rule 



Sakai 23 

u v  (=) w ,  

UV :D W, 

UV ~ W, 

will give information to xy if x (=) u and y (=) v: 

(xN u)(yNv) : xy uv; 

which is a part of xy = z. 

In order to obtain th~ given concatenation xy, we determine a set R(xy) 

of rules applicable to xy. Each rule is decided whether or not it is applic- 

able to xy by the condition g, so that 

f(uv;w) 6 R(xy) 
if and only if g(x;u) and g(y;v). 

~%e term w is read out of the rules in R(xy) so that z = xy may be 

determined, it is obvious that there exist certain restrictions in choosing 

the type f of rules, the condition g for determining R(xy), and the procedure 

of finding z. We have to specify these three for the grammar to be written. 

When the complete neighborhood z is given and its expansion xy is to be 

found, the set E(z) of applicable rules is determined by the condition h(z;w): 

R(z) = set(f(uv;w): h(z;w)). 

The situation is a little complicated in this case. We can possibly expect a 

case where both 

z = xlY 1 and z = x2Y 2 

are true under the condition 

x I ~ x 2 = 0 and/or Yl ~ Y2 = O. 

Note that this is not the case of formal concatenation of sets 

N CO = (A N C)(BN O). 

The concatenations xiY I and x2Y 2 happened to be z by the syntactic reason of 

the language being studied. A storage space is assigned to each xiY i as soon 

as any rule in R(z) proves a possibility, and xiY i is modified every time a 

rule is applied to it. However, if 

x. ~ x. and Yi ~Yj' i - ~ 

then either xiY i or xjyj is just trivial. The choice depends upon the type of 

rules and the program which applies the rules to the text. Finally, we have 

a set of x i~ accompanied by the subset R(z;i) of R(z). Possible types of 

rules for this purpose will not be discussed here, because the principle is 

similar to the case of finding z from x and y. 

In order to see some properties of rules, we assume simple forms of f(uv;w): 
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(i) 

if and only if 

T! 

(a) 

if and only if 

I! 

I'I 

(3) similarly, 

if and only if 

UV = W. 

The condition g will be assumed simply as 

(=), o_, c_, or =. 

The condition of constituents can be replaced by a condition imposed on 

the whole concatenation: 

xy (=) uv 

xyNuv = (x~ u)(yDv) /0 

x (=) u and y (=) v; 

xy E uv 

xyZ uv = (x~ u)(y Nv) = uv 

(4) 

if and only if 

u=xNu 

xDu 

xy ~_ uv 

X~ U 

xy = UV 

X = U 

and v = y ~ v 

and y~ v; 

and y ~ v; 

and y = v. 

12.1. Suppose we have the rules of the form 

uv (=) w, 

applicable to xy if 

x (=) u and y (=) v. 

Then, for such a rule, we have 

xy (=) uv (=) w. 

We can also assume the rules are applicable if 

xy ~ uv, 

xy ~_ uv, 

xy = UV. 

We can not decide which part of w belongs to uv, unless some other information 

is available. 

12.2. 

then 

12.2.1. 

UV ~ W 

be applicable to xy if and only if 

x ~ u and y ~_ v. 

~en xy ~ uv~w. 

This is true for any rule in 

R(xy) = set(uv ~ w: xy~uv). 

If each rule represents the relation 

uv~ w 
u 

(x~ u)(y~v) = xy~ uv~xyn w. 

Let the rules of the form 



If the set R(x~ has sufficient rules to give 

xy : Uw, 

we can find xy by simply taking the union of all the w's in R(xy). 

12~2,2. If the rule~ are applicable to xy when 
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x ~_ u and y c_ v, 

xy c uv = w. 

We le%ow that a concatenation xy of any two neighborhoods is broken 

then 

doom to the concatenations of elementary neighborhoods e(i)e(j) and that each 

e(i)e(j) is represented as a union of elementary neighborhoeds. 

If x = e(1), 

y = e(2) 0 e(3) ~ e(4), 

for instance, and if we have the rules 

e(1)e(2) ~ e(5) 0 e(6), 

e(1)e(3) ~ e(5) 

and e(1)e(4) ~ e(6), 

then xy ~ e(5) U e(6). 

These rules will be broken down as 

e(1)e(2) ~ e(5) 

e(1)e(2) ~ e(6) 

e(1)e(3) ~ e(5) 

e(i)e(4) ~ e(6), 

and then contracted as 

e(l)(e(2) (+) e(3)) D e(5) 

e(1)(e(2) (t) e(4)) ~ e(6), 

where the symbol (+) means an alternative choice. 

~e number of elementary neighborhoods increases rapidly as the linguistic 

analysis becomes more precise, and hence a grammar prepared in terms of 

e~ementary neighborhoods comprises a great number of entries. However, this 

type of rules is preferred when a particular technique is available on machine 

(Opler et al., 1963). 

12_~.. Let us consider a set of rules of the form 

uv ~ W. 

We assume a rule is applicable to xy if 

x (:) u and  y (:) v. 

We have, then, 

u)(y v) :xyOuv xy w. 



Sakai 26 

12.3.1. Suppose the rules of the form 

uv _~w 

are applicable to xy if and only if 

x ~ u and y ~ v. 

For all the rules in the set R(xy) of applicable rules, we have 

xy ~_ uv c w. 

12.3.2. Let the set R(xy) of applicable rules be 

R(xy) = set(uv~ w: x ~ u, y~ v). 

Then, for each rule in R(xy), we have 

xy ~ uv ~ w. 

Taking all the rules in R(xy), we can expect 

xy = Dw, 

and, if the set of rules is prepared so as to meet this condition, we can find 

xy by taking the intersection of w's in R(xy). 

12.4. Let the rules be given in the form 

UV = W~ 

and let R(xy) be the set of rules such that 

x (=) u and y (=) v. 

12.4.1. If R(xy) is the set of all the rules satisfying the condition 

x o u and y ~_ v, 

then we have 

xy ~ uv = w 

for all the rules in R(xy). Then, 

xy ~_ Uuv = U w, 

where the union is to cover all the rules in R(xy); if the rules are prepared 

so that 

xy = U uv, 

then we can find the concatenation simD1y by taking the union of w's of the 

rules in R(xy). 

12.4.2. if the rules are pre~fared so that they may be applied to xy when 

x ~_ u and y C v, 

then xy ~_ uv = w. 

If xy = ~ uv 

is true for all the rules in R(xy), then we can find the desired concatenation 

by 

xy = Nw. 

12.4.3. T= ~ the rules are represented in terms of elementary neighborhoods in 
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the form 

e(i)e(j) = w(i,j), 

then, in virtue of the coefficients x(i) and y(j), we have 

x ~ U = X ~ e(i) = x(i)e(i), 

y ~ v y S e(j) ' )e(j) = = ykj , 

(X D u)(y~ V) = x(i)y(j)e(i)e(j). 

Therefore, a rule is applicable to ~y if 

x(i) = y(j) = i. 

The result z = xy is obtained as the union of all the w(i,j)'s of the 

applicable rules: 

z = Uw = ~x(i)y(j)w(i4j). 

12.5. The rules are prepared and used more freely according to the given 

condition and requirement. In the following scheme (S'akai, 1961), a com- 

plete neighborhood is represented by a code consisting of a number of digits 

and each digit is checked, modifiedand transferred independently. 

Suppose x and y are given and their concatenation z = xy is required. 

Both x and y can be syntactically ambiguous and their ambiguity is to be 

reduced in the course of finding z. Initially, z is assumed to be the set 

of all the possible contexts, x, y and z are transferred to a temporary 

storage space (xl,Yl,Zl). A rule is applicable if 

x (=) u, y (=) v and z (=) w, 

and the set (xl,Yl,Z l) is modified everytime a rule is applied. If a rule 

proves 

x I (=) u, Yl (=) v, z I0 w = O, 

then the rule is not applied to this set, and another set (x2,Y2,Z2) is 

stored in another storage space as another possible result. All the applic- 

able rules are applied one after another to all the possible sets of 

(xi,Yi,Zi). Similar procedure is repeated over again on two languages 

simultaneously, so that the syntactic structure can be transferred from the 

tree structure in one language to that of another language. ~he form of the 

tree is preserved but their nodes are marked by the labels specific to each 

language, input, intermediate or output language. 

13. Distribution Class Representation of Concatenation Rules. 

Possible concatenation of a language can be formulated as concatenated 

sets of strings. Let 

R = set(r: h(r)) 
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and S = set(s: h(s)) 

be sets of strings satisfying the conditions h(r) and h(s), respectively, and 

let their concatenation have the property k(rs), so that 

rs E T = set(t: k(t)). 

We consider the concatenation rules of the form 

RS ~ T, 

which reads : 

if 

• then 

r 6 R and s £ S, 

rs K T. 

The point of this representation is that, 

and s 6 S h~ S i~--- OS k, 

then as many rules are applicable to rs and they give 

rs E N --- S% : 

The intersection T' has less number of elements and, if the rules are precise, 

the character of the strings in it is determined as precisely as required. Of 

course, these procedures are not to be done by listing up all the members of 

the sets. Each set in the rules is represented by a code. Every entry of the 

lexicon has a code and it can be determined whether or not the string belongs 

to any given set. These codes are to be generated and attached to rs to 

indicate that it belongs to the set T'. 

Practically, it is convenient to classify the strings in terms of their 

complete neighborhoods: 

R = set(r: h(C(r);u)) = R(u), 

S = set(s: h(C(s);v)) = S(v), 

T = set(t: k(C(t);w)) = T(w). 

A grammar of concatenation will be given as a set of rules of the form 

R(u)S(v) c 

with a relation 

f(uv;w), 

and the rules can be described in a number of different ways according to the 

choice of R(u)S(v), T(w) and f(uv;w). In order to see the principle, we 

simplify the situation by making use of the distribution classes G, H, I and 

J, and by assuming the relation f(uv;w) as 

uv(=)w, 

UV~ W~ 
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EV ~ w, 

or uv = w. 

lhe type of T(w) is chosen so that the grammar may describe the language 

adequately. 

13.___~1. G Renresentation. 

If 

then 

then 

If 

then 

then 

If 

then 

If 

then 

Pu t  

~(u) = G(u), 

r E G(u), s E G(v), 

r s  E G(u)G(v)  ~ G(uv) ,  

C(rs) (=) uv (=) w. 

r ~ G(u) ,  s ~ G(v) ,  uv ~ w, 

rs E G(u)G(v)  c G(uv) ,  

C(rs) (:) uv ~ w. 

r E G(u) ,  s ~ ~ ( v ) ,  uv ~ w, 

r s  6 S ( u ) G ( v )  C G(uv) c G(w).  

r E G(u) ,  s g G(v) ,  uv = w, 

rs ~G(u)G(v) ~ G(UV) = G(w). 

s(v) = G(v). 

uv (=) w, 

necessarily elementary. 

13.2. H Re-oresentation. 

Put 

~(u) = :~(u), S(v) = ~(v). 

Even if a few rules are applicable to rs in these cases, that is, 

rs E G(w~) ~ G(w i) ~ --- ~ G(wx), 

we have no simple way to find C(rs) from w's. We can not specify a set of 

less members which adequately indic'ates the property of rs, unless more spe- 

cific information is available. 

13.1.1. Suppose, however, u and v are elementary. 

If C(r) (=) u and C(s) (=) v, 

then C(r) ~ u, C(s)~v. 

That is, r ~ G(u) = H(u), s ~G(v) = H(v). 

For further discussion, see "H Representation", where u or v is not necessa- 

rily elementary. 

13.1.2. Assume C(r) and C(s) are elementary. 

If C(r) (=) u and C(s) (=) v, 

then C(r) ~ u and C(s) ~ v. 

That is, r ~ l(u) and s E I(v). 

For further discussion, see " I Representation", where no neighborhoods are 



if 

then 

.z,3.2..l. 
then 

then 

then 

then 

We put 

If 

r ~ H(u), s 6H(v), 

rs 6 H(u)~(v) _~ H(uv). 

uv (=) w, 

rs ~ H(u)H(v) ~ H(uv), 

C(r~) o_ uv (=) w, 

C(rs) (=) w, 

rs 6 G(w). 
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~(w) = Q(w). 

However, there is no simple procedure of finding the intersection of G(w)'s. 

We can not specify the features of the strings by finding more rules applicable 

to rs, unless more specific informa{ion is available. 

13.2.2. If uv ~ w, 

then rs ~ H(u)H(v) ~ H(uv) ~ H(w), 

because H(uv) = H(w U wi) = H(w) ~ H(w') ~ H(w). 

We put T(w) = H(w) 

to have the rules of the form 

If a number of rules are applicable and 

rs £ H(uh)~(v h) c_ X(w,n) 

rs 6 H(ui)H(v i) ~-H(w i) 

rs ~ X(uk)~:(v k) c_ ~(wk), 

then rs £ H(w h) ~ H(w i) ~ - - -  OH(w k) 

= :~(wh C wi U - - -  Owk ) '  

then C(rs) O_ w h U w iU --- Ow k" 

The rules of this type are essentially the same as the rules of 

complete neighborhoods 

xy ~ uv ~ w, 

although they are encoded as the sets of strings; 

13.2. 7 . If uv ~_ w, 

then C(rs) ~_ uv~_ w, 

then rs 6 G(w). 

13.2.4. Put 

UV = W. 

Then rs ~ H(u)H(v) ~ H(uv) = H(w). 
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The situation is the same as the case above, where uv ~ w. 

13.3. ,I, Re, presentation., 

Put 

R(u) = i(u), S(v) = l(v). 

If r £ i(u), s 6 i(v), 

then rs ~ I(u)I(v) ~ l(uv). 

!3.3.1. If uv (=) w, 

then C(rs) c uv (=) w. 

No relationship is relevant between C(rs) and w. 

13.3.2. If urn_w, 

then C(rs) c uv ~ w. 
m 

No definite T(w) is available, such that I(u)l(v) ~_ T(w). 

13._~3.. We consider the rules of tie type 

i(u)I(v) 

with uv ~ w. 

If r£ i(u), s£1<v), 

then rs { I(uv) = i(w). 

If a nmmber of rules are applicable to rs, 

then rs £ I(w h) N I(wi)~ --- O I(wk) 

= I(w h ~ w i~ --- ~Wk). 

%herefore, the rules of this type are equivalent to those of the type 

xy C uv C w. 

13.3.4. Put 

• Then 

U V  = W ,  

rs ~ I(u)i(v) ~ I(uv) = I(w). 

This is the same to the case mentioned above. 

13.4. J Reoresentation. 

Put 

~(u) = J(u), S(v) = J(v). 

This type of grammar is not practical because every real distribution class 

J of the language must be listed in the rules, k~:is condition corresponds 

to the com}~lete neighborhood representation of rules f(uv;w) applicable to 

xy only if 

x = u and y = v. 

13.5. Practically, the rules can be written more freely and the program 

can be more flexible and efficient, provided that a more sophisticated 
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scheme is introduced to the G Representation and the condition f(uv;w). ~is 

is realized by representing the sets of strings by codes, so that the union 

and the intersection of any two sets are determined by the operation on the 

codes. 

14. Some Remarks on Transformation. 

14.1. It is generally agreed that we generate acceptable strings by starting with 

an axiom and expanding it repeatedly into a string of constituents. This pro- 

cedure is taken care of by concatenation rules. After generating one or more 

strings by this procedure, they are transformed to yield another string. 

Let us imagine another function of our normative device. We give it a 

pair 

r = (r',r") 

of acceptable strings 

r' = r'(1)r'(2)---r'(i')---r'(m') 

and r" = r"(1)r"(2)---r"(i")---r"(m"). 

The pair r will be referred to as a string 

r = r(1)r(2)---r(i)---r(m) 

with m = m' + m". 

We put m" = 0 

if the string r" is absent. We then give it another acceptable string 

s = s(1)s(2)---s(j)---s(n), 

and ask it whether or not the string s as an expression is true if both r' 

and r" are true. If the device says "yes", we consider the string s is gene- 

rated from r by a transformation. We call r the original string and s its 

orano_o~.n. If it says ~'no", no such transformation exists. Conversely, we 

ask it whether or not r' and r" are true if s is true. If the device says 

T~Xr~f ~ , we consider an inverse transformation exists, such that s is expressed 

by r' and r". We can find many cases in which the device would say "yes" for 

transformation but "no" for inverse transformation. Some information is sup- 

posed to have been lost in generating the string s, which can not be retrieved 

unless appropriate, possibly non-linguistic, information is supplied. ~%is 

situation is beyond the scope of Syntaetics. 

A transformation or an inverse transformation is called singularly if r" 

in r is absent, and it is a generalized one if both r' and r" are present. If 

it is an embedding transformation, r' and r" are called matrix and constituent 

strings, respectively. 

If we understand the transformation in the sense mentioned above, the 

transfer of syntactic structure from one language to another is also a trans- 
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formation (Gross, 1962). 

14.2. If it is known that r is transfor~ed to s, then ..... ~n~o fact ms used to 

generate a particular string. If r is known to be an inverse transform of s, 

then this is used to recognize s, giving a possible derivational history. 

if no other such transformations are found, r is the only nearest history. 

Otherwise, the ambiguous history is to be accounted for by other rules. 

If we find r and s such that r is true if and only if s is true, then we 

say r and s are equivalent and write 

r eqv s. 

Obviously, this equivalence is symmetric, reflexive, and transitive. A 

transformation that transforms a string into an equivalent string is called 

an equivalence transformation, if we have a grammar consisting of equivalence 

transformations only, it can be used for both synthesis and analysis. 

Let us confine ourselves to the equivalence transformations in order to 

simplify the discussion, and assume we have a set of rules or a normative 

device. A generalized transformation transforms a oair r = (r' r") of strings 

into one strin~ s. ~e inverse transformation by the same rule dissolves a 

string s into a pair of strings (r',r"). ~en, r' or r" is regarded as an s, 

and, if we find an appropriate rule, it is again dissolved into two acceptable 

strings. By repeating the same, we have a number of equivalence relations 

which can be arranged as a tree: 

s eqv (r(1),r(2)); 

r(1) eqv (r(ll),r(12)); 

r(2) eqv (r(21),r(22)); 

r(ll) eqv (r(lll),r(ll2)); 

r(12) eqv (r(121),r(122)); 

If an acceptable string t can no longer be dissolved into two acceptable 

strings, we call t a terminal or an atomic acceptable string. ~nroughout 

this procedure, the strings are expected to become shorter and simpler, because 

equivalent information is expressed by many separate strings. It will be 

still possible to transform an atomic string to another atomic string by means 

of a singulary transformation. We have different atomic strings which are 

mutually equivalent. We may pick up one of them and call it a kernel string. 

1~e sequence of inverse transformations is not always uniquely determined. 

There can be other orders of dissolving a given string into atomic strings. 

We can make the grammar less redundant by studying the possible sequences of 
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inverse transformations. If the rules are all equivalence rules, there is no 

theoretical problem of ambiguity• ~ne investigation of these problems requires 

quite a different treatment, and will not be included in this paper. 

14.3. Sometimes, it is considered more linguistically reasonable to assume 

" S ~rln~ or that a string is not acceptable but its transform is an acceptable ~ " ~ 
~. 

a constituent of an acceptable string, in some other cases, a s~ing may be 

an acceptable string and its transform may not be an acceptable string or a 

constituent thereof In other wo~as, a transformation is applied to an un- 

acceptable string or a transformation results in an m%acceptable string. We 

may prepare the rules in such a way that a sequence of obligatory transform- 

ations is contracted to a single ~ale. This seems formally simpler and con- 

sistent. However~ it will result in a more entangled system of grammar. We 

admit some of such strings as potentially acceptable and indicate it by a 

marker, This convention is somet~nes useful not merely as a technique but also 

as a consistent and more plausible derivation of acceptable strings. It is 

known that a string of a Chinese dialect marked potentially acceptable for the 

derivation of apparently inconsistent strings is quite acceptable in another 

dialect (Wang, 1964). 

14.4. A generalized transformational rule consists of terms u and v, where 

u = (u',u") 

= u(1)u(2)---u(i)---u(m), 
u '  = u,(1)u'(2)---u'(i ')---u'(m'), 
u" = u,(1)u"(2)---u"(i")---u"(m"), 
m = m r. ~ m ~r, 

u becomes v~ 

v = v(!)v(2)---v(j)---v(n). 

Most rules are accompanied by a number of restrictions imposed on the 

original strings and their transforms as well as some manipulations of strings. 

~ese are classified into a few types and subroutines are to be prepared for 

them. Some of the operations are listed below, which have been picked up 

sporadically from the rules for generating Chinese strings (Hasimoto, 1964). 

(0) A routine supervising the subroutines takes care of the whole procedure 

of applying the rules to a string, if the rules are prepared in a defin- 

ite format, they are automatically checked and applied to the given string. 

(I) Certain segments r(h) and r(i) in the original string must or must not 

share a certain feature in common and/or a segment r(j) must or must not 

have a certain feature. 
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(2) The segment r(i) of the original string and the segment ~(o) of the trans- 

form must or must not have the same feature specified by the rule. 

(3) Some segments in the transform must satisfy the condition similar to (I). 

(4) Absence and/or presence of particular segments must be ~ cne c~ed. 

(5) Positions of certain segments in the string must be found. 

(6) A check of the derivational history somet~les decides the recursive 

application of the rule~ 

(7) The tree structure must or must not be changed by the final procedure of 

a transformation. 

~ .  No rule describes a transformation of an individual string r into an 

individual string s. The rule says, if the string r has the feature 

u : u(1)u(2)---u(i)---u(m), 

then it is transformed to another string s which has the feature 

v : v(1)v(2)---v(j)---v(n). 

What are these features? They must be defined on the basis of the 

answers of our normative device. The program must be consistent with the 

features defined. Once a program is written and decided to be used, the 

program is the definition. If the program is modified, the rules and the 

lexicon are to be modified. 

Since the transformations are applied to P-markers, a string is considered 

to be a tree-like string, if it is a linear string of terminal nodes, the 

other non-terminal nodes and the branches are to be determined by virtue of 

the concatenation rules. We consider the labels u(i) and v(j) are complete 

neighborhoods, if the concatenation rules are written in terms of complete 

neighborhoods. If the concatenation rules are written in terms of distribution 

classes, u(i)'s and v(j)'s are considered to be distribution classes. 

14.6. The complete neighborhoods are defined on the basis of concatenated 

strings and we have to associate them with the labels given to the nodes of 

our transformational rules in order that the kernel strings can be transformed. 

Let us see what happens when the nodes are assumed to be complete neighbor- 

hoods. 

Let 

p = (p',p") 

be a pair of acceptable strings p' and p", and let 

r = r(1)---r(i)---r(m) 

be a segment of p. The pair p is transformed by T into 
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q = T(p), 

and the segment appears in q as 

s = s(1)---s(j)---s(n). 

Some strings may have been added and some others may have been deleted. 

Put 

x(i) : C(r(i)), 

x : C(r)~ 

y(j) = C(s(j)), 

y : C(s). 

By definition, 

x : x(1)---x(i)---x(m), 

y = y(1)---y(j)---y(n). 

Any string belongs to one and only one distribution class J. 

instead of 

Therefore, 

T(r(1)---r(i)---r(n)) = s(1)---s(j)---s(n), 

we write 

T(J(x(1))---J(x(i))---J(x(m))) 

= J(y(1))---J(y(j))---J(y(n)). 

Since all the elements in a J has the same complete neighborhood, we rewrite 

the above as 

T(x(1)---x(i)---x(m)) = y(1)---y(j)---y(n). 

This is rewritten again by breaking down in the form 

X = x(1)---x(i)---x(m), 

y : T(x) 

= y(1)---y(j)---y(n). 

If we have a complete set of rules which gives the concatenation of any 

complete neighborhoods of the language, then we can find the complete neigh- 

borhood x. The transformation takes place when x is changed to y. The string 

y is to be generated in virtue of the information brought forward from x and 

the structural requirement of y itself. A transformation is then interpreted 

as: 

~ne complete neighborhood x of the node dominating the string 

x(!)---x(i)---x(m) 

of complete neighborhoods is transformed to another complete neighborhood y of 

the node dominating the string 

y(1)---y(j)---y(n). 
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This interpretation, however, suggests a few problems, 

14_~. We know that 

J(x(1))---J(x(i))---J(x(m)) (J(x), 

J(y(1))---J(y(j))---J(y(n)) m J(Y)" 

The statement "x is transformed to y" is a generalization of the original 

fact, and this generalization is not always true. The text should be checked 

before a transformational rule is applied to it. Some separate steps for this 

purpose will save the machine time. 

(1) 

(2) 

(3) 

14.8. 

A text to be parsed must consist of segments specified by the rule. The 

correct segmentation can be done by finding the tree structure of the ! 

text. Therefore, the concatenation rules must be prepared so as to ~ 

account for the structure of any acceptable strinG. 

Not all the trees of the specified form undergo the inverse transformation 

so that the derivational history may be traced back. The nodes are 

labeled. A tree of a form can correspond to a number of trees whose nodes 

have different labels. 

When a string is being synthesized, the text is given as a pair of P- 

markers. A rule can be applied only if the P-markers meet the condition 

specified by the rule. 

We may regard the structure mentioned above as a representation of 

derivational history. The history can be recorded by listing all the deriv- 

ational steps the string has experienced. This representation, however, will 

be redundant and inefficient, because it is likely to occur that an identical 

series of transformations is applied to strings of different history. On the 

other hand, it is also possible that the strings p and q of different histories 

result in an identical string s by a transformation and the string s is am- 

biguous in that the s from p can undergo a sequence of transformations and the 

s from q another; thus the structure itself can not be an absolutely reliable 

marker. 

We think it more practical to associate the rules with the features in 

the P-marker to which the rules are applied. '~lese features should correspond 

to the series of transformations applicable to the P-marker in case of syn- 

thesis and the series of inverse transformations in case of analysis. We have 

some rules with notes on the type of transformations to which the resultant 

strings may be exposed (Hasimoto, 1964). 

15. Complete Neighborhppds and Transformational. Rules. 

Let us assume u(i)'s and v(j)'s are complete neighborhoods. 
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~ .  Two strings r and s may replace th~ same non-terminal node to yield a 

longer acceptable string. However, when a transformation T is to be applied, 

they must hav~ the specified structure; thu~ the str!n~ p with r a~ a ~e~ment 

in it may be transformed by T, while the string q which differs from p only in 

that it has the segment s in the place of r may not. The lack of q by T means 

C(r) / C(s). 
1_~,2. Because  o f  t h i s  c o m p l e x i t y  i n v o l v e d  i n  n a t u r a l  l a n g u a g e s ,  we e n c o u n t e r  

a difficulty when we try to prepare a set of syntactic data for practical 

purposes. We refine the definition of complete neighborhood in such a way that 

C(r) of a string r is the set of all contexts of r which appear in the strings 

to which no transformations have ever been applied during their derivation. 

The difference between r and s is found in their internal structure, if the 

machine is given only the input string to be parsed. In order to indicate this 

difference, we put 

c(r) U O(r) = 

where C(r) is defined over ~.,e sez of kernel strings, 

D(r) is defined over the set of transforms, 

E(r) is defined over the set of kernel strings and 

transforms. 

Let c(i) be an elementary neighborhood defined over the set of kernel 

strings, and let r be a real or imaginary string such that 

C(r) = o(i). 

Let d(i;j) be the elementary neighborhood defined over the set of all the 

possible transforms of which r is a segment, where j corresponds to the 

possible sequence of transformations. Putting 

c(i)~ d(i;j) = e(i;j), 

we have the elementary neighborhood e(i;j) defined over the set of kernel 

strings and transforms. These e(i;j)'s are no longer necessarily disjoint: 

e(i;j) ~e(i;j') ~ c(i). 

l_l_l~. ~e separation of kernel strings and transforms still involves a con- 

siderable complexity. Let q be a transform. It is a transform generated by 

a transformation in a sequence of transformations and it can be an original 

string to be transformed by the following transformation. 

A transformation is accompanied by the set P of original strings and the 

set Q of transforms: 

P = set(p: T is applicable to p), 
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Q = set(q: q = T(p), p in P). 

We simplify the situation by defining the complete neighborhoods over P and 

over Q. The feature of T is shown more explicitly in this way. Let A be a 

node and imagine a derivation by the context sensitive rules 

A ~> BC 

B F / ---C 

c--> G / B--- 

where the s~nbols are assumed to be complete neighborhoods. Let B be replaced 

by F first to yield FC, and the third rule can no longer be applied because of 

the lack of its necessary environment B---. When these rules are to be used 

in analysis, none of the contexts ---C or B--- is relevant in the given string 

FG of complete neighborhoods. We can get rid of this difficulty by defining 

B and C over a set of strings and F and G over another, and by considering a 

transformation from BC to FG, prohibiting the operations on the strings FCand 

BG. 

l~t 

p = p(1)---p(i)---p(m) 

be a string in P, and let 

q = q(1)---q(j)---q(n) 

= T(p) 

be the transform of p by T. We define the complete neighborhood of ~(i) over 

P and that of q(j) over Q. By modifying the meaning of the notation, we put 

x(i) = C(p(i)) over P, 

y(j) = D(q(j)) over Q. 

The requirement that p(i) should appear as q(j) in Q gives 

p(i) = q(j), 

c(p(i)) # o, 

O(q(j)) 0; 

if p(i) does not occur in Q, then 

x(i) = C(p(i)) over P 

= E(p(i)) over P ~ Q; 

if q(j) does not occur in P, then 

y(j) = D(q(j)) over Q 

= E(q(j)) over P ~ Q. 

The relational conditions imposed on the segments p(i) of the original string 



Sakai 40 

and q(j) of the transform are indicated in terms of E(p(i)) and E(q(j)), or 

by a relation between C(p(i)) and D(q(j)). 

be set Q can include a part of the set P' of original strings to which 

another transformation T' can be applied. ~hus, we can classify the strings 

with respect to possible transformations. We have no positive grounds to 

assume any natural language has a stratified system of layers arranged one over 

another. • -~ 

15.4. Let 

u = (u' u") 

= u(i)---u(i)---u(z) 

be a pair of concatenations 

u' = u'(1)---u'(i')---u'(m') 

. a n d  u "  = u " ( 1 ) - - - u " ( i " ) - - - u " ( m " )  

of complete neighborhoods u'(i')'s and u"(i")'s defined over P. If the string 

is linear, the non-terminal nodes are to be determined by concatenation 

rules. We assume the rules of the form 

f(T(u);v) 

mean, over Q, a relation between T(u) and v. We assume further a rule is 

applicable to the given pair of concatenated complete neighborhoods 

x = (x',x") 

= x(1)---x(i)---x(m) 

if the condition g(x;u) holds. That is, 

if g(x;u) over P, 

then f(T(u);v) over Q. 

We expect to find the transform T(x) in terms of v of the rules in the set 

R(x) = set(f(T(u);v): g(x;u)) 

of the applicable rules. 

Given the rules of the same form and a string represented by a concate- 

nation 

y = y(1)---y(j)---y(n) 

of complete neighborhoods, an inverse transformation is to be carried out by 

finding the set 

R(y) = set(f(T(u);v): h(y;v)) 

of applicable rules. 

With all the linguistic difference between the concatenation rules and 

transformational rules, they exhibit formal similarities when the labels are 
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assumed to be the sets of contexts. We will not repeat a similar discussion 

on the choice of f(T(u);v), g(x;u), h(y;v) or the algorithm for finding x or 

y. 

16. Distribution Classes and Transformational Rules. 

Let p be a string and T(p) its transfo~n by the transformation T. Let P 

be a set of strings p to which T is applicable. We defined the transform T(P) 

of P as the set of all T(p)'s: 

T(P) = set(T(p): p in P). 

A rule will be written in the form 

f(T(P);Q) 

to indicate a relation between the sets T(P) and Q. 

In order to specify the sets a little closer to the form of rules usually 

prepared by linguists, we put 

p = p(1)p(a)---p(i)---p(m) 

q = q(1)q(2)---q(j)---q(n), 

where p(i)'s and q(j)'s are segments in p and q, respectively. Then we put 

P : P(1)---P(i)---P(m) 

Q = Q(1)---Q(j)---Q(n), 

which are to be understood as concatenated sets if strings. 

A rule of the form f(T(P);Q) is applicable to the string p, if 

p(i) ~ P(i) for i = i, 2, ---, m, 

giving T(p) 6 T(P), 

so that f(T(P);Q) 

provides us with the information governed by this rule. Each string in the 

lexicon and each constituent in the string under analysis or synthesis is 

given a marker which indicates whether or not it belongs to any set of strings, 

provided that the sets are established systematically. Because of the ambiguous 

property of real strings, the markers will be given interms of complete neigh- 

borhoods defined over the set of (potentially) acceptable strings. 

17. Establish!~ent and Representation of Complete Neighborhoods. 

A syntactic function is called a complete neighborhood if it is defined 

as a set of contexts. We use conventional terms and redefine them as symbols 

assigned to complete neighborhoods.. 

17.1. In establishing a set of complete neighborhoods of a natural language, 

we assize a few of them as undefined terms and derive the others by hypothetical 

concatenation rules. Sometimes, there will be a choice among a few hypothetical 
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rules. We take one of them to define a complete neighgorhood and regard the 

others as the property of the complete neighborhood defined by the former. 

Thus, we distinguish two kinds of rules: definition rules and property rules. 

Let 

axb = c 

and xd = f 

be hypothetical rules. If one decides to regard the former as the definition 

of x, the latter is a property of x. ~%is method is applied not only to phrase 

structure grammar but also to transformational o~ammar, because both trans- 

formations and inverse transformations are applied to a (pair of) P-marker(s) to 

yield another (pair of) P-marker(s). 

Every time a definition rule is established as a hypothesis, it must be tested 

as to whether or not it contradicts any other definition rules. "~ ~,o property 

rules should contradict any other rules. %~nenever a contradiction is found, 

the source of trouble must be found out by tracing back the definition rules, 

and the hypothesis that has given rise to the trouble must be modified. 

17.___~2. The complete neighborhoods of all the acceptable strings (as distin- 

guished from the other ambiguous interpretations of the same string) are 

identical to each other and consist of one element indicating that the strings 

are acceptable. It seems adequate, for most of the natural languages, to 

admit two complete neighborhoods, nominals and verbals, although there are no 

rigid grounds. Many others are derived from hypothetical concatenations that 

can occur in acceptable strings. 

The prepositions in many European languages are subclassified by the case of 

thenominals they govern, and the nominals by their case, gender and number. 

A rule for yielding prepositional phrases will be stated as follows: a pre- 

position that governs nominals of case c, followed by a nominal of case c', 

of any gender and of any number, results in a prepositional phrase, provided 

the cases c and c' are the same. As suggested in this example, subclassific- 

ation and desubclassification are useful to describe syntax. A number of 

indices are made use of in subclassifying a broadly defined complete neighbor- 

hood. The example above will be rewritten, by introducing the indices c for 

case, g for gender and n for nu~nber, and a coefficient d(c,c'), in the form 

prep(c) n(c';g;n) = d(c,c') prep-n, 

where d(c,c') = 1 if c = c', 

= 0 if c ~ c'. 
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%he indices g and n are arbitrary if the preposition in question takes nominals 

of any gender and of any number. 

Usually, a linguist will define complete n,~g~noornoocs broadly so that 

the majority of acceptable ..... ....... ~rmn~ may be generated and recognized correctly. 

As his analysis proceeds further in c~eoa1~, he ~ill take an exa~mT~le that is 

not generated or recognized correctly by his broadly defined complete neigh- 

borhoods: generation may give him some unacceptable strings or the syntactic 

analysis may give him erroneous or unnecessarily ambiguous interpretations. 

He will then trace back the definitions and find out some of his rules hold in 

his example with respect to a subset of one of his complete neighborhoods. 

Suppose he has a set R(xy) of rules to concatenate x and y. His new example 

will indicate that the rules are not always true. He may then establish the 

subsets x', x", y', y", and a new set of rules which allows x'y' and x"y ~', 

for instance, but not x'y" or x"y'. 

17.3. Let a broadly classified complete neighborhood be shown by a symbol, 

say, v. If a subclassification thereof is desired, we introduce an index p, 

such that 

v : v(p l) U v(p 2) U--- Uv(pn). 

When the subclassification is not necessary, we put p = O; 

v(o) : Uv(pi ), i : l, e, ---, n. 

The union of a few subsets are written as 

v<Pl,P3,P 5) : v(P I) U v(P 3) U V(Ps), 

etc. 

If a complete neighborhood is to be subclassified from a few different points 

of view, ~s many indices are introduced: 

v(p;q), v(p;q;r), etc; 

v(Pl,P2; q) = v(Pl; q) ~ v(P2;q), 

v(p;ql,q a) : v(~;q l) U v(p;qa), 

v(p;o) n v<o;q) : (Uv(p~qj)) ~ (Uv(pi~q)) 

= v(p;q), 

etc. 

Hence, for the distribution classes 

~(V(Pl,pa;~)) : H(V(~l;q)) N X(v(Pa;q)), 

I(v(p;q)) = !(v<p;o)) ~]i(v(o;q)), 
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etc. 

Sometimes, an index depends upon other indices: 

v(p;q(r;~;t)), 

for example. ~%e meanings of r, s and t depend upon the meaning of q. 

The above scheme may be further generalized. Let a complete neighborhood 

be represented by a number of indices 

(a;b;c;---;n), 

where the broad class symbol is one of the indices and each index represents 

a classification from a certain point Of view. 

It will be of interest to compare these indices with the concept of 

"razbijenije", "okrjestnostj" (Kulagina, 1958) or "sememe" (lamb, 1962). ~nis 

kind of representation, used by many research groups, enables us to describe 

the syntax of a language systematically. Each digit can be regarded as an 

indication of a certain feature common to some elementary neighborhoods, and 

classifies them according to their specific features. 

1_~.4. Suppose a concatenation rule f(uv;w) is to be applied to a text xyof 

complete neighborhoods to determine z = xy, and the complete neighborhoods are 

represented by the indices in the form 

x = (a(x);b(x);---;n(x)), 

y = (a(y);b(y);---;n(y)), 

z = (a(z);b(z);---;n(z)), 

u : (a(u);b(u);---;n(u)), 

v = (a(v);b(v);---;n(v)), 

w = (a(w);b(w);v--;n(w)). 

If a rule indicates the relation between the pair (i(u),j(v)) of indices and 

an index k(w), and if all the others are independent of these, we have 

u = (o;---;o;i(u);O;---;o), 

v : (o;---;O;j(v);O;---;O), 

F 
w = (O;---;O;k~w);O;---;O). 

If the pairs (i(x),i(u)), (j(y),j(v)) and (k(z),k(w)) satisfy the condition 

specified by the grammar system being used, the rule is applied to xy and 

gives a z modified by this rule. ~ne rule gives no information as for the 

other indices. This information should not be lost if it is in x or y. 

We have to indicate in the rule how to transfer the information to z from x 

or y. A simple method was used in a translation program (Sakai, 1961). 

A transformational rule requires that certain features of the original 



Sakai 45 

string are carried forward to its transform. ~lis requirement is usually 

indicated by the identity of features of certain segments in the original 

string and its transform. The use of rules is to be programmed in such a way 

that, if the rules are applicable to the string regardless of a certain index, 

the value of the index in the original string is transferred to the corres- 

ponding index of the transform, and vice versa in case of an inverse trans- 

formation. 

17_~.. An extremely simplified example is given. %~ne complete neighborhoods 

are no longer treated as sets. The symbol ~'+" means "or". The symbol "=" 

does not necessarily mean an identity: it can be replaced by an arrow. The 

segments of the string 

~hey are red ~ianes 

1 2 3 4 

are rePresented in the form (h,k): 

(i,i) = they, 

(1,3) = they are red 

(2,3) = are red, 

etc. 

Both (h,i)(j,k) and (h,i) * (j,k) mean the concatenation of the strings (h,i) 

and (j,k). The following abbreviations are used. 

adj: adjective 

adj-pred: adjectival predicate 

anim: animate 

compl: complement 

inanim: inanimate 

m: masculine 

n: nominal 

n/n: modifier of nominal 

nom: nominative 

pl: plural 

pn: pronoun 

s: sentence 

v: verbal 

-k: ends with k 

-t: ends with t 
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Input Langua ~e ..... 

(l,4)(v;s) = (l,1)(pn;3rd "'~),~.- ~ (2,2)(v;be;pres;3rd;pl) * (3,4)(n;p!) 

(3,4)(n;pl) : (~,3)(ac, j) ~ (4,~)(:~,;'?l) 

Intermediate Renresentaion. 

(l,4)(v) = (i,l)(pn;3rd',p-,;'nom) '~ (2,2)(conula;pres). * (3,&)(n;compl;p i) 

(3,4)(n;comp!;pl) = (3~3)(n/n) * (4,4)(n;compi;pi) 

Output Lan~ua{e (Russian) 

(i,l)(pn;3rd;pl;nom) = on(Dl;nom) = oni 

(2,2)(copula;pres) = () 

(3,3)(red)(n/n) = krasn(adj;hard) 

(4,4) (plane)(n;comp!;}l) = (rubank(-k) ~ samoljet(-t))(n;m;pl;nom) 

= (rubanki + samcijety)(n;m;pi;nom) 

(3,4)(n;compl;pl) = (b,b)ta~:;na;~J ~ (4, ~)(n;m;pl;nom) = (3,3)-yje(4,4) 

' . . . . . .  ' " " I"UO~'.-~ -i- = , ') = ~ samoljety) (i,4)(v) (i,i)~,~,)<~ . onto k~'asnvje ( ....... 

Output L ~ n , ' : u a : : e  :- " " 

(1,1)(pn;Srd;pl;nom) = (i~are(anim) ~ sore(inanim))(pn;pl;nom) 

(2,2)(copula;pres) = ar(v;%;pres:final) = ar-u 

(3,3) (red)(n/n) = aka(adj-pred~n/n) 

(4,4) (plane) (n;compl;p!) = (keimen ¢ hikooki) (n;inanim;compl) 

(3,4)(n;compl;pl) = ((3,.-5)-i(4,4))(n;inanim)-de 

(l,4)(V) = (l,!)(anim,:inanim~pn;pi;nom) * (~,4)(n;inanim)-de * 

( 2,2 ) (v; %; lores ; ~inai) 

= (l,i)tlnan~m;pn;ip;nomj * <p,4)(u;mz~onmm)-~e * (2,2)(v;4;pres;final) 

= sorera (ga ~ wa) akai (heimen + hikooki) de aru 

17.6. We observe in ~he above example ~hat the index of an animate or an 

inanimate object affects the choice of a lexicai element in Japanese while it 

is not relevant in ~zlzsn. if'his phenomenon may be considered syntactic in 

one lauguage and semantic in another. Take two languages A and B, and suppose 

A has a syntactic marker o '~ qender and '5 does not. The gender is considered 

syntactic in A and sema:r~ic iu S. The syntactic genders are sometimes arbi- 

trary and can not be al'.~-,?/~ nrcse::'vec i'a the ~ranszer process from one language 

to another. We will ,:~v~ -~= t;o --'~*e.,~ar<.~~: - ~ two se;oarate_ procedures for handling 

.~r;.~ ....... armse ~.~.~ res::~ec~ to ozher indices gender. Si::;ilar ~-" - ~ ...... : 

~e choice of iexical elements de]cends greatly upon the habitual usage 

~.~on is si;t;iiar when we observe some combinations of of language, k~ne =-' ~ ....... 

longer constituents.. The ch,:,.ice of constituents is limited by logical, 

semantic or habitual reasons as indicated by the branches of' the second kind 
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in the net strings. Sometimes the choice is quite capricious. It seems more 

practical to handle this kind of information separately (Matthews, 1965), 

corresponding to the separate normative devices the lin&~ist has conjectured. 
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Appendices. 

A-I. Sets. 

a ~ A; ~ in A: ~ is an element of the set A; ~ belongs to A; ~ is in A. 

a~A; ~ not in A: a~A is not true. 

A (=) B: there is at least one element which belongs to both A and B. 

A~ B; B~ A: if a ~ A, then a~ B; A is a subset of B; B is a superset of A. 

A = B: a ~ A if and only if a ~ B; A~B and A~B. 

A # B: A = B is not true. 

A = O: there is no element in the set A; the set A is empty. 

A = set(a,b,c,d): A is a set whose elements are a,b,c and d. 

A = set(ai: i = 1,2,---): A = set(al,a2,---). 

A = set(a: f(a)): a~ A if and only if f(a) is true. 

A = B ~ C: A = set(a: a ~ B or a ~ C); A is the union of B and C. 

A = Us  i ,  i = l , a , - - - :  ~ : B I U  B 2 U - - -  • 

A = U B for f(B): A is the union of all B's satisfying f(B). 

A = B~ C: A = set(a: a ~ B and a ~ C); A is the intersection or meet of B and C. 

A = D i' i = 1,2,---: , = n B 2 n -- 

A = ~B for f(B): A is the intersection of all B's satisjying f(B). 

A-2. Boolean Coefficients. 

We introduce coefficients which indicate presence or absence of sets. 

The value of a coeffi- 

ax = 0 = empty set, if a = O, 

=x, if a =!. 

The sum a ÷ b and the product ab = a X b are determined by 

axU bx = (a + b)x = x, if a = I or b : l, 

= O, if a = b = O, 

and ax ~ by = ab(x D Y) = (a X b)(x ~ y) = x D Y, if a = b : i, 

= O, if a = 0 or b = O. 

Therefore, the coefficients are Boolean: 

0 + 0 = O, 0 + i = i + 0 = i + i = i, 

0 X 0 = 0 X I = i X 0 = O, I X i = i. 

Consequently, for concatenation, we have 

(ax)(by) = abxy. 

Let a, b, etc. be the coefficients and x, y, etc. sets. 

cient is either 0 or i: 
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