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Abstract

In this paper, we present LTV , a website and an API that generate labeled topic classifications
based on the Dewey Decimal Classification (DDC), an international standard for topic classifi-
cation in libraries. We introduce nnDDC, a largely language-independent neural network-based
classifier for DDC-related topic classification, which we optimized using a wide range of linguis-
tic features to achieve an F-score of 87,4%. To show that our approach is language-independent,
we evaluate nnDDC using up to 40 different languages. We derive a topic model based on
nnDDC, which generates probability distributions over semantic units for any input on sense-,
word- and text-level. Unlike related approaches, however, these probabilities are estimated by
means of nnDDC so that each dimension of the resulting vector representation is uniquely labeled
by a DDC class. In this way, we introduce a neural network-based Classifier-Induced Semantic
Space (nnCISS).

1 Introduction

We present a model for calculating neural network-based Classifier-Induced Semantic Spaces (nnCISS)
using the Dewey Decimal Classification (DDC), that is, an international standard for topic classification
in libraries. Based on this model, input units on the sense-, word-, sentence- or text level can be mapped
onto the same feature space to compute, for example, their semantic similarity (Bär et al., 2012; Pilehvar
and Navigli, 2015). Such an approach is needed whenever multiresolutional semantic information has to
be processed to interrelate, for example, units of different levels of linguistic resolution (e.g., words or
phrases to texts).

Contrary to related approaches (Landauer and Dumais, 1997; Blei et al., 2003) we use classifiers to
define the dimensions of CISS, which are directly labeled by the underlying target class. This has the
advantage that embeddings of linguistic units in semantic spaces can be interpreted directly in relation to
the class labels.

In order to demonstrate the expressiveness of nnCISS, we conduct two classification tasks and show
that using nnCISS-based feature vectors improve any of these classifications.

We generate several DDC corpora by exploring information from Wikidata, Wikipedia and the Inte-
grated Authority File (Gemeinsame Normdatei – GND) of the German National Library. Any Wikipedia
article in such a corpus is linked to an entry in Wikidata, which contains a property1 attribute referring to
the DDC, or to a GND page containing a corresponding DDC tag2. Since many Wikipedia articles refer
to Wikidata or the GND, we were able to explore these articles as training examples of the corresponding
DDC classes. The DDC includes three levels of thematic resolution: The first level distinguishes 10 main
topics, each of which is subdivided into maximally 10 topics on the 2nd level (99 classes), which in turn
are subdivided into maximally 10 topics on the 3rd level (915 classes). We use the 2nd and 3rd level of
DDC as two alternative classification schemes.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1https://www.wikidata.org/wiki/Property:P1036
2e.g., https://d-nb.info/gnd/4176546-1
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Wikipedia is offered for a wide range of languages, which allows us to create such corpora for different
languages. In addition, translations provided by both Wikipedia and Wikidata enable the creation of
language-specific training corpora by evaluating translation relationships between articles assigned to
the DDC and articles for which these assignments do not exist. In this paper, we focus on Arabic,
English, French, German, Spanish, and Turkish while performing a deeper analysis by example of the
German corpus (#articles 15 136, #tokens per article 1 228, #classes 2nd level 98 and #classes 3rd level
641). Additionally we select more Wikipedias from the List of Wikipedias3, where depth >= 50 and
#articles >= 10 000, to be available through our LTV API.

2 Classification Model

The architecture of the LTV framework consists of four steps:

1. We use TextImager (Hemati et al., 2016) for preprocessing (lemmatization, part of speech tagging)
the German Wikipedia and perform Word Sense Disambiguation (WSD) by means of fastSense
(Uslu et al., 2018a), a WSD tool that is trained on the entire German Wikipedia. Our approach
is in line with (Pilehvar and Navigli, 2015) and, thus, disambiguates input words to obtain sense
representations as input for calculating sense embeddings.

2. The disambiguated Wikipedia corpus is then used to create sense embeddings by means of word2vec
(Mikolov et al., 2013) using all sentences as input.

3. The aim is to obtain disambiguated articles and sense embeddings for training a DDC classifier
and thus generating nnDDC. For this we enrich the disambiguated Wikipedia articles with DDC
information using Wikidata/GND. We use (Uslu et al., 2018b) to classify an input on the sense-,
word, sentence- or document-level regarding the DDC as the target classification. In this paper, we
optimize this classifier with respect to feature selection and extend it by alternatively using sense
embeddings combined with a disambiguated corpus.

4. Next we utilize nnDDC to generate nnCISS for a given input in this way, that each input unit on the
sense-, word- or text-level can be mapped onto an n-dimensional feature vector whose dimensions
correspond to DDC classes. nnCISS generates a probability distribution over the DDC classes (of
either the 2nd or 3rd level).

3 Evaluation

3.1 Evaluating nnDDC

Language DDC 2 DDC 3
German 87,4% 78,1%
English 79,8% 72,6%
Arabic 79,8% 68,8%
Turkish 78,9% 67,5%
French 79,4% 68,1%
Spanish 79,7% 70,5%

Figure 1: F-scores for different languages for 2nd
and 3rd level DDC.

We evaluate nnDDC regarding the question
which features are most successful in DDC-
oriented text classification.

We have trained and evaluated different docu-
ment inputs (articles, sections, paragraphs and
sentences as well as disambiguations and em-
beddings) and features like lemmatization of in-
put token, included POS info, removed func-
tion words, sub-word units or n-gram features.
We have also conducted a parameter study on
various training hyperparameters like number of
epochs and learning rate. In this way, we have
increased the F-score to 87,4%.

Table 1 shows that though nnDDC performs worse in the case of the other languages compared to
German, the results for the 2nd level of the DDC are nevertheless close to 80%. Evaluating the about
40 more languages we achieve an average score of 71%. Since corpus generation for these languages is

3https://en.wikipedia.org/wiki/List_of_Wikipedias#Detailed_list
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straightforward, this also demonstrates that our approach is largely language independent at least what
concerns languages that are sufficiently manifested by language specific releases of Wikipedia.

Switching to the 3rd level of DDC, we observe a drop in F-score, while in case of the German
Wikipedia we still perform at about 78% and any topic vector is now enriched by providing more detailed
information.

3.2 Evaluating nnCISS

Input DBpedia AG News
Text without nnCISS 97,89% 89,88%
Text + nnCISS (DDC 2) 98,00% 90,18%
Text + nnCISS (DDC 3) 98,06% 90,33%

Figure 2: F-Scores in the DBpedia and AG News
classification tasks.

To show that our DDC-based topic model im-
proves classification, we have performed clas-
sification tasks on two data sets: The DBpedia
Ontology Classification Dataset4 and the AG’s
news corpus5. To be independent of the clas-
sifier, this experiment was conducted by means
of StarSpace (Wu et al., 2017). Table 2 shows
the results and the impact of nnCISS, and while
the improvements are not very large, with such
a high classification quality every percentage is important.

4 LTV Software Demonstration

We offer the classifier (nnDDC) and the DDC topic model (nnCISS) for all above mentioned languages
on https://textimager.hucompute.org/DDC/. It is directly accessible as a REST API or via
the UI on the website. We have implemented the classifier for LTV as an UIMA annotator, this allows us
to seamlessly integrate into TextImager and utilize the pipeline feature to process the input text. In the
pipeline we first preprocess the text in exactly the way we prepared our training data and then perform
the classification via our annotator. This eliminates the need for the user to preprocess the input and
also makes the results reproducible. To use the API one performs a POST request which contains the
input text to classify as well as some information about the format and the pipeline to use. All available
pipelines are listed on the site. For example:

{ ” i n p u t T e x t ” : ” B e i s p i e l ü b e r Angela Doro thea Merkel , . . . ” ,
” i n p u t F o r m a t ” : ” p l a i n ” , ” o u t p u t F o r m a t ” : ” ddc j s o n ” , ” o p t i o n s ” : [
{ ” de ” : [

” LanguageToolSegmenter ” , ” P a r a g r a p h S p l i t t e r ” ,
”MarMoTLemma” , ” MarMoTTagger ” ,
” FastTextDDC 2 LemmaNoPunctPOSNoFunct ionwordsWithCategories

T e x t I m a g e r S e r v i c e ” ] } ] }
This request returns an JSON object containing:

{ ” ddc ” : [
{” prob ” : 0 . 9 9 0 2 3 4 , ” l a b e l ” : ” l a b e l d d c 3 2 0 ” , ” t a g s ” : [ ” ddc2 ” ]} ,
. . . ] ,

” s u c c e s s ” : t r u e , ” l a n g u a g e ” : ” de ” }
The website provides an easy access to the API, requiring no programming skills to use. Users can paste
text to classify and select the DDC level and language (it also tries to autodectect the language of the
input text and selects a suitable pipeline for you). The UI then displays the results providing the DDC
description, see Figure 3.

5 Conclusion

We presented a website and API to access and use a neural network based classifier to categorize DDC
classes. For this we have used various features and resources to achieve the best possible classification,

4www.wiki.dbpedia.org/data-set-2014
5www.di.unipi.it/˜gulli/AG_corpus_of_news_articles.html
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Figure 3: Screenshot of the LTV website

managing to achieve a quality of over 87% (and considering the top three classes, we even exceed 96%).
For a given text, the classifier generates a probability distribution over the DDC classes and thus a vector.
This vector can be used as input for other classification tasks and we have shown that improvements can
be achieved.
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