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Abstract

Language change across space and time is one of the main concerns in historical linguistics. In
this paper, we develop a language evolution simulator: a web-based tool for word form produc-
tion to assist in historical linguistics, in studying the evolution of the languages. Given a word in
a source language, the system automatically predicts how the word evolves in a target language.
The method that we propose is language-agnostic and does not use any external knowledge,
except for the training word pairs.

1 Introduction

Natural languages are living eco-systems, they are constantly in contact and, by consequence, they
change continuously. Two of the fundamental questions in historical linguistics are the following (Rama
and Borin, 2014): i) How are languages related? and ii) How do languages change across space and
time?. In this paper, we focus on the second question. More specifically, we investigate how words enter
a target language from a source language.

Traditionally, both problems were investigated with comparative linguistics instruments (Campbell,
1998) and required a manual process. Most of the previous approaches to word form production relied on
phonetic transcriptions. They built on the idea that, given the phonological context, sound changes follow
certain regularities across the entire vocabulary of a language. The proposed methods (Eastlack, 1977;
Hartman, 1981) required a list of known sound correspondences as input, collected from dictionaries or
published studies.

Modern approaches impose the use and development of quantitative and computational methods in
this field (McMahon et al., 2005; Heggarty, 2012; Atkinson, 2013), or even cross-disciplinary meth-
ods (such as those borrowed from biology). Nowadays, given the development of the machine learning
techniques, computers are able to learn sound or character correspondences automatically from pairs of
known related words. Beinborn et al. (2013) proposed such a method for cognate production, using the
orthographic form of the words, and applying a machine translation method based on characters instead
of words. The orthographic approach relies on the idea that sound changes leave traces in the orthogra-
phy and alphabetic character correspondences represent, to a fairly large extent, sound correspondences
(Delmestri and Cristianini, 2010). Aligning the related words to extract orthographic changes from one
language to another has proven very effective, when applied to both the orthographic (Gomes and Lopes,
2011) and the phonetic (Kondrak, 2000) form of the words . For the task of cognate production based
on the orthography of the words, besides the character-based machine translation approach mentioned
above, another contribution belongs to Mulloni (2007), who introduced an algorithm for cognate pro-
duction based on edit distance alignment and the identification of orthographic cues when words enter a
new language. Another probabilistic approach to word form production is based on building generative
models from the phylogenetic tree of languages, modeling the evolution of the languages and capturing
various aspects of language change (Bouchard-Côté et al., 2009; Hall and Klein, 2010).
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2 Simulating Language Evolution

We propose a method for word form production based on the orthography of the words, building on the
idea that orthographic changes represent sound correspondences to a fairly large extent (Delmestri and
Cristianini, 2010). Given the form of a word u in a source language L1, our system predicts the form v
of the word u in a target language L2, in the hypothesis that the word v will be derived in L2 from the
word u.

From the alignment of the related words in the training set we learn orthographic cues and patterns
for the changes in spelling. We use the alignment as input for a sequence labeling system (assigning
a sequence of labels to a sequence of tokens), based on an approach that has been proven useful for
cognate production (Ciobanu, 2016; Dinu and Ciobanu, 2017), proto-word reconstruction (Ciobanu and
Dinu, 2018) and for generating transliterations (Ammar et al., 2012).

We conduct our experiments on Romanian as a target language, and experiment with 10 source lan-
guages from which words entered in Romanian.

2.1 Word Alignment
To align pairs of words we employ the Needleman-Wunsch global alignment algorithm (Needleman
and Wunsch, 1970), with the orthographic form of the words as input sequences and a very simple
substitution matrix, which gives equal scores to all substitutions, disregarding diacritics (e.g., we ensure
that e and é are matched). For example, for the Romanian word descifrabil (meaning decipherable),
borrowed from the French word déchiffrable, the alignment is as follows:

d é - c h i f f r a b - l e
d e s c - i f̆ - r a b i l -

2.2 Sequence Labeling
The words in the source language are the sequences, and the characters are the tokens. Our purpose is to
obtain, for each input word, a sequence of characters that compose its related word in the target language.
To this end, we use first- and second-order conditional random fields (CRFs) (Lafferty et al., 2001). For
each character in the source word (after the alignment), the corresponding label is the character which
occurs on the same position in the target word. In case of insertions, the characters are added to the
previous label. We account for affixes separately: we add two extra characters B and E, marking the
beginning and the end of an input word. In order to reduce the number of labels, for input tokens that are
identical to their labels we replace the label with *. For the previous example, the labels are as follows:

B d é c h i f f r a b l e E
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
* * es * - * * - * * bi * - *

As features for the sequence labeling system, we use character n-grams in a window of size w around
the current token.

2.3 Experiments
We run experiments on a dataset of word-etymon pairs (Ciobanu and Dinu, 2014), from which we ex-
tract Romanian words having etymons in 10 languages. The dataset was built from an aggregation of
machine-readable dictionaries1 that contains information about the etymology of the words.The dataset
is structured as a list of word pairs having the form: w1(L1) → w2(L2), where word w2 entered L2 from
the L1 word w1. Example: victoria (Latin) → victorie (Romanian). We use subsets of 800 word pairs
for each language, to have an equal size that allows a comparison between source languages. The results
are reported in Table 1. In Table 2 we show examples of our system’s output.

We split the datasets in subsets for training, development and testing with a ratio of 3:1:1. We use the
CRF implementation provided by the Mallet toolkit for machine learning (McCallum, 2002). We perform

1https://dexonline.ro
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Source language
Baseline Our system

EDIT EDIT EDIT EDIT

(un-normalized) (normalized) (un-normalized) (normalized)
English 2.04 0.23 1.33 0.15
French 2.16 0.24 1.42 0.15
Italian 2.60 0.32 1.62 0.23
Latin 2.75 0.34 1.76 0.22
Neo-Greek 2.39 0.29 1.82 0.24
Old Slavic 2.34 0.33 1.84 0.27
German 2.36 0.32 2.00 0.29
Turkish 1.88 0.27 2.01 0.29
Portuguese 2.95 0.52 2.50 0.43
Spanish 3.22 0.53 3.06 0.50

Table 1: Word form production for Romanian words.

a grid search for the number of iterations in {1, 5, 10, 25, 50, 100} and for the size of the window w in
{1, 2, 3}. We use a “majority class” type of baseline that does not take context into account, as described
by Ciobanu (2016).

We use the edit distance (Levenshtein, 1965) between the produced words and the gold standard to
evaluate the performance of our method. We use both an un-normalized and a normalized version of the
edit distance. To obtain the normalization, we divide the edit distance by the length of the longer string.

We use lemmas (dictionary word forms) as input. We further experiment with some additional pre-
processing steps on the input data (diacritics removal and stemming). The results are slightly improved
when diacritics are not taken into account. Stemming does not improve performance, which shows that
Romanian is a complex language, and foreign influences, in the case of new words entering the language,
occur in the root of the words as well. Our system obtains the best results for English and French as
source languages. The languages ranked higher are those with which Romanian had the most intense
cultural collaboration, either more recently (English, for example), or in the past (Italian and French).
The word production performance is lower even for related languages (as Portuguese and Spanish); these
languages are more remote from Romania, from a geographical point of view, and this might have made
the contact between languages more difficult.

Source language Word 5-best productions
English immunopathology imunopatologie, immunopatologie, imunopafologie,

imunopatologi, imunopathologie
French opaliser opalizare, opaliza, opalizară, opalizat, opalizăre
Italian nivellazione nivellaţie, nivellaţieu, nivelaţie, nivellaţiea, nivellaţiune
Latin desideratum desiderat, deziderat, desiderati, desideratu, deziderati
Neo-Greek atherina atherină, aterină, atherina, aterina, atherinire
Old Slavic stihija stihie, stihii, stihi, stihij, stihij
German schabotte şabottă, şabot, şabott, şabotă, şabotte
Turkish pes̆kes̆ peşkeş, pes̆cheş, peşcheş, peşkşs̆, peşkes̆
Portuguese terneça tinereţe, tinereçă, tinereţă, tinereçe, tereţe
Spanish sainete sainet, sainetă, sainete, săinet, saine

Table 2: Examples of word form production for Romanian words. We highlight the correct productions
in bold.
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3 A Tool for Historical Linguistics

We built a web application2 to expose our system for word production. Its purpose is to assist linguists
studying language evolution and language change, by providing n-best lists of possible word produc-
tions, when words enter a target language from a given source language. Its main impact is that it will
narrow down the possibilities worth investigating when reconstructing a language, or when investigating
language evolution.

The users of the application enter the source word, select the source language (from the possible
10 languages) and the system simulates the evolution of the word in Romanian. The web interface is
rendered in Figure 1, along with an example produced by our system: given the source French word
documentaire, the system produces a 10-best list of word forms in Romanian, having the correct word
(documentar) on the first position.

Input word
Source language

First production
(which is the correct one here)

N-best list of productions

Figure 1: Language evolution simulator tool.

4 Conclusions

In this paper, we presented an automatic method for word form production, based on the orthography
of the words. We experimented with Romanian as a target language and multiple source languages.
We developed a language evolution simulator: a tool to be used in historical linguistics, to help in the
investigation of language evolution. Given words in a source language, the system automatically predicts
how they evolve in a target language.

As future work, we intend to enhance the system with more target languages, as we gain access to
more data, to extend the user interface to handle blocks of text, not only single words as input, and to
incorporate more types of relationships between words (cognate production and proto-word production)
into the application.
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