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Abstract

Events in text documents are interrelated in complex ways. In this paper, we study two types
of relation: Event Coreference and Event Sequencing. We show that the popular tree-like
decoding structure for automated Event Coreference is not suitable for Event Sequencing. To
this end, we propose a graph-based decoding algorithm that is applicable to both tasks. The new
decoding algorithm supports flexible feature sets for both tasks. Empirically, our event coreference
system has achieved state-of-the-art performance on the TAC-KBP 2015 event coreference task
and our event sequencing system beats a strong temporal-based, oracle-informed baseline. We
discuss the challenges of studying these event relations.

Title and Abstract in Chinese

基于图的事件共指消解以及依序关系解码算法

文本中提及的事件之间常存在着复杂的关系。在这篇文章中，我们主要研究两种关系：
事件间的共指关系以及依序关系。我们指出，常被应用在事件指代消歧上的传统的树结
构解码方式并不适用于解决事件依序问题。为了解决这个问题，我们提出了一种适用于
两种情况的新的图结构解码算法。这个算法让我们可以为这两个任务设计灵活的特征。
在实验上，我们的事件共指消解系统在TAC-KBP 2015的共指消解任务上达到了目前最佳
的水平。同时，我们的依序关系系统的结果超过了一个基于时间分析并有部分正确答案
的基线系统。最后我们分析了结果，并讨论了事件关系判别任务的一些挑战。

1 Introduction

Events are important building blocks of documents. They play a key role in document understanding
tasks, such as information extraction (Chambers and Jurafsky, 2011), news summarization (Vossen and
Caselli, 2015), story understanding (Mostafazadeh et al., 2016). Conceptually, events correspond to state
changes and normally include a location, a time interval, and several entities/participants. In a text, events
are realized as text spans, normally as verbs and nouns that indicate state changes (Vendler, 1957). The
text spans are often referred to as event mentions or event nuggets (We use the term event mention in
this paper.). The textual mentions of events have rich relations among them, and collectively convey the
meaning of one or more related documents. In this paper, we study two different types of relation: Event
Hopper Coreference (EH) and Event Sequencing (ES).

Event Coreference: There is a rich literature on the Event Coreference problem (Liu et al., 2014;
Cybulska and Vossen, 2014; Lu et al., 2016; Peng et al., 2016; Lu and Ng, 2017; Araki, 2018). By
analogy to entity coreference, the “same” conceptual event may be realized by multiple text spans (event
mentions). The coreference problem aims at identifying these relations to recover events from the text
spans. The Event Hopper Coreference task in the TAC-KBP evaluation campaign defines coreference
links as follows (Mitamura et al., 2018): Two event mentions are considered coreferent if they refer to
the conceptually same underlying event, even if their arguments are not strictly identical. For example,
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Figure 1: Example of Event Coreference and Sequence relations. Red lines are coreference links; solid
blue arrows represent Subevent relations; dotted green arrows represent After relations.

mentions that share similar temporal and location scope, though not necessarily the same expression, are
considered to be coreferent (Attack in Baghdad on Thursday vs. Bombing in the Green Zone last week).
This means that the event arguments of coreferential events mentions can be non-coreferential (18 killed
vs. dozens killed), as long as they refer to the same event, judging from the available evidence.

Event Sequencing: The coreference relations build up events from scattered mentions. On the basis of
events, various other types of relations can then be established between them. The Event Sequencing task
studies one such relation. The task is motivated by Schank’s scripts (Schank and Abelson, 1977), which
suggests that human organize information through procedural data structures, reassembling sequences of
events. For example, the list of verbs order, eat, pay, leave may trigger the restaurant script. A human can
conduct reasoning with a typical ordering of these events based on common sense (e.g., order should be
the first event, leave should be the last event).

The ES task studies how to group and order events from text documents belonging to the same script.
Figure 1 shows some annotation examples. Conceptually, event sequencing relations hold between the
events, while coreference relations hold between textual event mentions. Given a document, the ES
task requires systems to identify events within the same script and classify their inter-relations. These
relations can be represented as labeled Directed Acyclic Graphs (DAGs). There are two types of relations1:
After relations connect events following script orders (e.g. order followed by eating); Subevent relations
connect events to a larger event that contains them. In this paper, we focus only on the After relations.

Since script-based understanding is built in the ES task, it has some unique properties comparing to
pure temporal ordering: 1) event sequences from different scripts provide separate logical divisions of text,
while temporal ordering considers all events to lie on a single timeline; 2) temporal relations for events
occurring at similar time points may be complicated. Script-based relations may alleviate the problem. For
example, if a bombing kills some people, the temporal relation of the bombing and kill may be
“inclusion” or “after”. This is considered an After relation in ES because bombing causes the killing.

For structure prediction, decoding — recovering the complex structure from local decisions — is one of
the core problems. The most successful decoding algorithm for coreference nowadays is mention ranking
based (Björkelund and Kuhn, 2014; Durrett and Klein, 2014; Lee et al., 2017). These models rank the
antecedents (mentions that appear earlier in discourse) and recover the full coreference clusters from local
decisions. However, unlike coreference relations, sequencing relations are directed. Coreference decoding
algorithms cannot be directly applied to such relations (§3.1). To solve this problem, we propose a unified
graph-based framework that tackles both event coreference and event sequencing. Our method achieves
state-of-the-art results on the event coreference task (§4.4) and beats an informed baseline on the event
sequencing task (§4.5). Finally, we analyze the results and discuss the difficult challenges for both tasks
(§5). Detailed definitions of these tasks can be found in the corresponding task documents2.

2 Related Work

Many researchers have worked on event coreference tasks since Humphreys et al. (1997). Recent advances
in event coreference have been promoted by the availability of annotated corpora. However, due to

1Detailed definition of relations can be found in http://cairo.lti.cs.cmu.edu/kbp/2016/after/
2http://cairo.lti.cs.cmu.edu/kbp/2017/event/documents



3647

the complex nature of events, approaches to event coreference adopt quite different assumptions and
definitions. Most of event coreference researches are conducted on the popular ACE corpus (Chen and Ji,
2009; Chen et al., 2009; Sangeetha and Arock, 2012; Chen and Ng, 2013; Chen and Ng, 2015). Unlike the
TAC KBP setting, the definition of event coreference in the ACE corpus requires strict argument matching.
Work on the Intelligence Community (IC) Corpus (Hovy et al., 2013; Cybulska and Vossen, 2012; Liu et
al., 2014; Araki et al., 2014) considers event relations on a restricted domain (i.e., terrorist events). Works
on the ECB corpus (Lee et al., 2012; Cybulska and Vossen, 2014) focuses on both within-document and
cross-document coreference.

Our work follows the line of work promoted by the TAC-KBP event nugget tasks (Mitamura et al.,
2015). There is a small but growing amount of work on conducting event coreference on the TAC-KBP
datasets (Lu et al., 2016; Peng et al., 2016; Lu and Ng, 2017). The TAC dataset uses a relaxed coreference
definition comparing to other corpora, requiring two event mentions to intuitively refer to the same
real-world event despite differences of their participants.

For event sequencing, there are few supervised methods on script-like relation classification due to
the lack of data. To the best of our knowledge, the only work in this direction is by Araki et al. (2014).
This work focuses on the other type of relations in the event sequencing task: Subevent relations. There
is also a rich literature on unsupervised script induction (Chambers and Jurafsky, 2008; Cheung et al.,
2013; Rudinger et al., 2015; Pichotta and Mooney, 2016; Ferraro and Durme, 2016) that extracts scripts
as a type of common-sense knowledge from raw documents. The focus of this work is to make use of
massive collections of text documents to mine event co-occurrence patterns. In contrast, our work focuses
on parsing the detailed relations between event mentions in each document.

Another line of work closely related to event sequencing is to detect other temporal relations between
events. Recent computational approaches for temporal detection are mainly conducted on the TimeBank
corpus (Pustejovsky et al., 2002). There have been several studies on building automatic temporal
reasoning systems (Uzzaman and Allen, 2010; Do et al., 2012; Chambers et al., 2014). In comparison, the
Event Sequencing task is motivated by the Script theory, which places more emphasis on common-sense
knowledge about event chronology.

3 Model

3.1 Graph-Based Decoding Model
In the Latent Antecedent Tree (LAT) model popularly used for entity coreference decoding (Fernandes et
al., 2012; Björkelund and Kuhn, 2014), each node represents an event mention and each arc a coreference
relation, and new mentions are connected to some past mention considered most similar. Thus the LAT
model represents the decoding structure as a tree. This can represent any coreference cluster, because
coreference relations are by definition equivalence relations3.

In contrast, tree structures cannot always fully cover an Event Sequence relation graph, because 1) the
After links are directed, not symmetric, and 2) multiple event nodes can link to one node, resulting in
multiple parents.

To solve this problem, we extend the LAT model and propose its graph version, namely the Latent
Antecedent Graph (LAG) model. Figure 2 contrast LAT and LAG with decoding examples. The left box
shows two example decoded trees in LAT, where each node has one single parent. The right box shows
two example decoded trees in LAG, where each node can be linked to multiple parents.

Formally, we define the series of (pre-extracted) event mentions of the document as M =
{m0,m1, ...,mn}, following their discourse order. m0 is an artificial root node preceding all men-
tions. For each mention mj , let Aj be the set of its potential antecedents: Aj = {m0,m1, ...,mj−1}. Let
A denotes the set of antecedents for all the mentions in the sequence {A0, A1, ..., An}. The two tasks
in question can be considered as finding the appropriate antecedent(s) from A. Similarly, we define the
gold antecedent set Ã = {Ã0, Ã1, ..., Ãn}, where Ãi represent the set of antecedents of mi allowed by
the gold standard. In the coreference task, Ãi contains all antecedents that are coreferent with mi. In the
sequencing task, Ãi contains all antecedents that have an After relation to mi.

3An equivalence relation is reflexive, symmetric and transitive.
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Figure 2: Latent Tree Model (left): tree structure formed by undirected links. Latent Graph Model (right):
a DAG form by directed links. Dashed red links highlight the discrepancy between prediction and gold
standard. The dotted yellow link (bottom right) can be inferred from other links.

We can now describe the decoding process. We represent each arc as 〈mi,mj , r〉(i < j), where r is the
relation name. The relation direction can be specified in the relation name r (e.g. r can be after.forward or
after.backward). Further, an arc from the root node m0 to node mj represents that mj does not have any
antecedent. The score of the arc is the dot product between the weight parameter ~w and a feature vector
Φ(〈mi,mj , r〉), where Φ is an arc-wise feature function. The decoded graph z can be determined by a set
of binary variables ~z, where ~zijr = 1 if there is an arc 〈mi,mj , r〉 or 0 otherwise. The final score of z is
the sum of scores of all arcs:

score(z) =
∑
i,j,r

~zijr ~w · Φ(〈mi,mj , r〉) (1)

The decoding step is to find the output ẑ that maximizes the scoring function:

ẑ = arg max
z∈Z(A)

score(z) (2)

where Z(A) denotes all possible decoding structures given the antecedent sets A. It is useful to note that
the decoding step can be applied in the same way to the gold antecedent set Ã.

Algorithm 1 shows the Passive-Aggressive training algorithm (Crammer et al., 2006) used in our
decoding framework. Line 8 decodes the maximum scored structure from all possible gold standard
structures using the current parameters ~w. Intuitively, this step tries to find the “easiest” correct graph —
the correct graph with the highest score — for the current model. Several important components remain
unspecified in algorithm 1: (1) the decoding step (line 6, 8); (2) the match criteria: whether to consider
the system decoding structure as correct (line 7); (3) feature delta: computation of feature difference (line
9); (4) loss computation (line 10). We detail the actual implementation of these steps in §3.1.2.

3.1.1 Minimum Decoding Structure
Similar to the LAT model, there may be many decoding structures representing the same configuration. In
LAT, since there is exactly one link per node, the number of links in different decoding structures is the
same, hence comparable. In LAG, however, one node is allowed to link to multiple antecedents, creating
a potential problem for decoding. For example, consider the sequence m1

after−−→ m2
after−−→ m3, both of the

following structures are correct:

1. 〈m1,m2, after〉, 〈m2,m3, after〉

2. 〈m1,m2, after〉, 〈m2,m3, after〉, 〈m1,m3, after〉

However, the last relation in the second decoding structure can actually be inferred via transitivity. We
do not intend to spend the modeling power on such cases. We empirically avoid such redundant cases
by using the transitive reduction graph for each structure. For a directed acyclic graph, a transitive
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Algorithm 1: PA algorithm for training

1 Input: Training data D, number of iterations T
2 Output: Weight vector ~w
3 ~w = ~0;
4 〈A, Ã〉 ∈ D;
5 for t← 1..T do
6 ẑ = arg maxZ(A) score(z);
7 if ¬Match(ẑ, Ã) then
8 z̃ = arg maxZ(Ã) score(z);
9 ∆ = FeatureDelta(z̃, ẑ);

10 τ = loss(z̃,ẑ)
||∆||2 ;

11 w = w + τ∆;

12 return w;

reduction graph contains the fewest possible edges that have the same reachability relation as the original
graph. In the example above, structure 1 is a transitive reduction graph for structure 2. We call the
decoding structures that corresponding to the reduction graphs as minimum decoding structures. For LAG,
we further restrict Z(A) to contain only minimum decoding structures.

3.1.2 Training Details in Latent Antecedent Graph
In this section, we describe the decoding details for LAG. Note that if we enforce a single antecedent for
each node (as in our coreference model), it falls back to the LAT model (Björkelund and Kuhn, 2014).

Decoding: We use a greedy best-first decoder (Ng and Cardie, 2002), which makes a left-to-right
pass over the mentions. The decoding step is the same for line 6 and 8. The only difference is that we will
use gold antecedent set (Ã) at line 8. For each node mj , we keep all links that score higher than the root
link 〈0,mj , r〉.

Cycle and Structure Check: Incremental decoding a DAG may introduce cycles to the graph, or
violate the minimum decoding structure criterion. To solve this, we maintain a set R(mi) that is reachable
from mi during the decoding process. We reject a new link (〈mj ,mi〉 if mj ∈ R(mi)) to avoid cycles.
We also reject a redundant link (〈mi,mj〉 if mj ∈ R(mi)) to keep a minimum decoding structure. Our
current implementation is greedy, we leave investigations of search or global inference based algorithms
to future work.

Selecting the Latent Event Mention Graph: Note that sequence relations are on the event level.
Given a unique event graph, it may still correspond to multiple mention graphs. In our implementation,
we use a minimum set of event mentions to represent the full event graph by taking one single mention
from each event. Following the “easiest” intuition, we select the single mention that will result in the
highest score given the current feature weight w.

Match Criteria: We consider two graphs to match when their inferred graphs are the same. The
inferred graph is defined by taking the transitive closure of the graph and propagate the links through
the coreference relations. For example, in Figure 1, the mention fired will be linked to two killed
mentions after propagation.

Feature Delta: In structural perceptron training (Collins, 2002), the weights are updated directly by
the feature delta. For all the features f̃ of the gold standard graph z̃ and features f̂ of a decoded graph ẑ,
the feature delta is simply: ∆ = f̃ − f̂ . However, a decoded graph may contain links that are not directly
presented but inferable from the gold standard graph. For example, in Figure 2, the prediction graph has a
link from M5 to M1 (the orange arc), which is absent but inferable from the gold standard tree. If we
keep these links when computing ∆, the model does not converge well. We thus remove the features on
the inferable links from f̂ when computing ∆.

Loss: We define the loss to be the number of different edges in two graphs. Following Björkelund and
Kuhn (2014), we further penalize erroneous root attachment: an incorrect link to the root m0 adds the loss
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Head Headword token and lemma pair, and whether they are the same.
Type The pair of event types, and whether they are the same.
Realis The pair of realis types and whether they are the same.
POS POS pair of the two mentions and whether they are the same.
Exact Match Whether the 5-word windows of the two mentions matches exactly.
Distance Sentence distance between the two mentions.
Frame Frame name pair of the two mentions and whether they are the same.
Syntactic Whether a mention is the syntactic ancestor of another.

Table 1: Coreference Features. Parsing is done using Stanford CoreNLP (Manning et al., 2014); frame
names are produced by Semafor (Das and Smith, 2011).

by 2. For example, in Figure 2 the prediction graph (bottom right) incorrectly links m4 to Root and misses
a link to m3, which cause a total loss of 3. In addition, to be consistent with the feature delta computation,
we do not compute loss for predicted links that are inferable from the gold standard.

3.2 Features
3.2.1 Event Coreference Features
For event coreference, we design a simple feature set to capture syntactic and semantic similarity of
arcs. The main features are summarized in Table 1. In the TAC KBP 2015 coreference task setting,
the event mentions are annotated with two attributes. There are 38 event types and subtype pairs (e.g.,
Busness.Merge-Org, Conflict.Attack). There also 3 realis type: events that actually occurred are marked as
Actual; events that are not specific are marked as Generic; other events such as future events are marked
as Other. For these two attributes, we use the gold annotations in our feature sets.

3.2.2 Event Sequencing Features
An event sequencing system needs to determine whether the events are in the same script and order them.
We design separate feature sets to capture these aspects: the Script Compatibility set considers whether
mentions should belong to the same script; the Event Ordering set determines the relative ordering of the
mentions. Our final features are the cross products of features from the following 3 sets.

1. Surface-Based Script Compatibility: these features capture whether two mentions are script
compatible based on the surface information, including:

• Mention headword pair.
• Event type pair.
• Whether two event mentions appear in the same cluster in Chambers’s event schema database

(Chambers and Jurafsky, 2010).
• Whether the two event mentions share arguments, and the semantic frame name of the shared

argument (produced by the Semafor parser (Das and Smith, 2011)).

2. Discourse-Based Script Compatibility: these features capture whether two event mentions are
related given the discourse context.

• Dependency path between the two mentions.
• Function words (words other than Noun, Verb, Adjective and Adverb) in between the two

mentions.
• The types of other event mentions between the two mentions.
• The sentence distance of two event mentions.
• Whether there are temporal expressions (AGM-TMP slot from a semantic parser (Tratz and

Hovy, 2011)) in the sentences of the two mentions.

3. Event Ordering: this feature set tries to capture the ordering of events. We use the discourse
ordering of two mentions (forward: the antecedent is the parent; backward: the antecedent is the
child), and temporal ordering produced by Caevo (Chambers et al., 2014).
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Taking the after arc from fired to killed in Figure 1 as an example, a feature after the cross
product is: Event type pair is Conflict.Attack and Life.Die, discourse ordering is backward, and sentence
distance is 0.

4 Experiments

4.1 Dataset
We conduct experiments on the dataset released in Text Analysis Coreference (TAC-KBP) 2017 Event
Sequencing task (released by LDC under the catalog name LDC2016E130). This dataset contains
rich event relation annotations, with event mentions and coreference annotated in TAC-KBP 2015, and
additional annotations on Event Sequencing4. There are 158 documents in the training set and 202 in
the test set, selected from general news articles and forum discussion threads. The event mentions are
annotated with 38 type-subtype and 3 realis status (Actual, Generic, Other). Event Hopper, After, and
Subevent links are annotated between event mentions. For all experiments, we develop our system and
conduct ablation studies using 5-fold cross-validation on the training set, and report performance on the
test set.

4.2 Baselines and Benchmarks
Coreference: we compare our event coreference system against the top performing systems from TAC-
KBP 2015 (LCC, UI-CCG, and LTI). In addition, we also compare the results against two official
baselines (Mitamura et al., 2015): the Singleton baseline that put each event mention in its own cluster
and the Match baseline that creates clusters based on mention type and realis status match.
Sequencing: This work is an initial attempt to this problem, so there is currently no comparable prior
work on the same task. We instead compare with a baseline using event temporal ordering systems. We use
a state-of-the-art temporal system named Caevo (Chambers et al., 2014). To make a fair comparison, we
feed the gold standard event mentions to the system along with mentions predicted by Caevo5. However,
since the script-style After links are only connected between mentions in the same script, directly using
the output of Caevo produces very low precision. Instead, we run a stronger baseline: we take the gold
standard script clusters and then only ask Caevo to predict links within these clusters (Oracle Cluster +
Temporal).

4.3 Evaluation Metrics
Evaluating Event Coreference: We evaluate our results using the official scorer provided by TAC-KBP,
which uses 4 coreference metrics: BLANC (Recasens and Hovy, 2011), MUC (Chinchor, 1992), B3

(Bagga and Baldwin, 1998) and CEAF-E (Luo, 2005). Following the TAC KBP task, systems are ranked
using the average of these 4 metrics.
Evaluating Event Sequencing: The TAC KBP scorer evaluates event sequencing using the metric of
the TempEval task (UzZaman, 2012; UzZaman et al., 2013). The TempEval metric calculates special
precision and recall values based on the closure and reduction graphs:

Precision =
|Response− ∩Reference+|

|Response−|
Recall =

|Reference− ∩Response+|
|Reference−|

where Response represents the After link graph from the system response and Reference represents
the After link graph from the gold standard. G+ represents the graph closure for graph G and G−

represents the graph reduction for graph G. As preprocessing, relations are automatically propagated
through coreference clusters (currently using gold standard clusters). The final score is the standard
F-score: geometric mean of the precision and recall values.

4http://cairo.lti.cs.cmu.edu/kbp/2016/after/
5We keep the mentions predicted by Caevo because its inference may be affected by these mentions.
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B3 CEAF-E MUC BLANC AVG.
Singleton 78.10 68.98 0.00 48.88 52.01
Matching 78.40 65.82 69.83 76.29 71.94
LCC 82.85 74.66 68.50 77.61 75.69
UI-CCG 83.75 75.81 63.78 73.99 74.28
LTI 82.27 75.15 60.93 71.57 72.60
This work 85.59 79.65 67.81 77.37 77.61

Table 2: Test Results for Event Coreference with the Singleton and Matching baselines.

B3 CEAF-E MUC BLANC AVG.
ALL 81.97 74.80 76.33 76.07 77.29
-Distance 81.92 74.48 76.02 77.55 77.50
-Frame 82.14 75.01 76.28 77.74 77.79
-Syntactic 81.87 74.89 75.79 76.22 77.19

Table 3: Ablation study for Event Coreference.

4.4 Evaluation Results for Event Coreference
The test performance on Event Coreference is summarized in Table 2. Comparing to the top 3 coreference
systems in TAC-KBP 2015, we outperform the best system by about 2 points absolute F-score on average.
Our system is also competitive on individual metrics. Our model performs the best based on B3 and
CEAF-E, and is comparable to the top performing systems on MUC and BLANC.

Note that while the Matching baseline only links event mentions based on event type and realis
status, it is very competitive and performs close to the top systems. This is not surprising since these two
attributes are based on the gold standard. To take a closer look, we conduct an ablation study by removing
the simple match features one by one. The results are summarized in Table 3. We observe that some
features produce mixed results on different metrics: they provide improvements on some metrics but not
all. This is partially caused by the different characteristics of different metrics. On the other hand, these
features (parsing and frames) are automatically predicted, which make them less stable. Furthermore, the
Frame features contain duplicate information to event types, which makes it less useful in this setting.

Besides the presented features, we have also designed features using event argument. However, we do
not report the results since the argument features decrease the performance on all metrics.

4.5 Evaluation Results for Event Sequencing
The evaluation results on Event Sequencing is summarized in Table 4. Because the baseline system has
access to the oracle script clusters, it produces high precision. However, the low recall value shows that it
fails to produce enough After links. Our analysis shows that a lot of After relations are not indicated by
clear temporal clues, but can only be solved with script knowledge. In Example 3, the baseline system
is able to identify “fled” is after “ousted” from explicit marker “after”. However, it fails to identify that
“extradited” is after “arrested”, which requires knowledge about prototypical event sequences.

(3) Eight months after the [transport fled] Ivory Coast when Gbagbo, the former president, was [End.Position

ousted] by the French military. Blé Goudé was subsequently [Jail arrested] in Ghana and [transport

extradited] Megrahi,[Jail jailed] for [Attack killing] 270 people in 1988. 6

In our error analysis, we noticed that our system produces a large number of relations due to coreference
propagation. One single wrong prediction can cause the error to propagate.

Besides memorizing the mention pairs, our model also tries to capture script compatibility through
discourse signals. To further understand how much these signals help, we conduct an ablation study of the
features in the discoursed based compatibility features (see §3.2.2). Similarly, we remove each feature
group from the full feature set one by one and observe the performance change.

6The small red text indicates the event type for each mention.
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Prec. Recall F-Score
Oracle Cluster+Temporal 46.21 8.72 14.68
Our Model 18.28 16.91 17.57

Table 4: Test Results for event sequencing. The Oracle Cluster+Temporal system is using Caevo’s result
on the Oracle Clusters.

Prec. Recall F-Score ∆

Full 37.92 36.79 36.36
- Mention Type 32.78 29.81 30.07 6.29
- Sentence 33.90 30.75 31.00 5.36
- Temporal 37.21 36.53 35.81 0.55
- Dependency 38.18 36.44 36.23 0.13
- Function words 38.08 36.51 36.18 0.18

Table 5: Ablation Study for Event Sequencing.

The results are reported in Table 5. While most of the features only affect the performance by less
than 1 absolute F1 score, the feature sets after removing mention or sentences show a significant drop in
both precision and recall. This shows that discourse proximity is the most significant ones among these
features. In addition, the mention feature set captures the following explain away intuition: the event
mentions A and B are less likely to be related if there are similar mentions in between. One such example
can be seen in Figure 1, the event mention fired is more likely to relate to the closest killed, instead
of the other killed in the first paragraph.

In addition, our performance on the development set is higher than the test set. Further analysis reveals
two causes: 1) the coreference propagation step causes the scores to be very unstable, 2) our model only
learns limited common sense ordering based on lexical pairs, which overfit to the small training corpus.
Since the annotation is difficult to scale, it is important to use methods to harvest script common sense
knowledge automatically, as in the script induction work (Chambers and Jurafsky, 2008).

5 Discussion

5.1 Event Coreference Challenges
Although we have achieved good performance on event coreference, upon closer investigation we found
that most of the coreference decisions are still made based on simple word/lemma matching (note that
the type and realis baseline is as high as 0.72 F1 score). The system exploits little semantic information
to resolve difficult event coreference problems. A major challenge is that our system is not capable
of utilizing event arguments: in fact, Hasler and Orasan (2009) found that only around 20% of the
arguments in the same event slot are actually coreferent for coreferential event pairs in the ACE 2005
corpus. Furthermore, the TAC-KBP corpus uses a relaxed participant identity requirement for event
coreference, which makes argument-based matching more difficult.

5.2 Event Sequencing Challenges
Our event sequencing performance is still low despite the introduction of many features. This task is
inherently difficult because it requires a system to solve both the script clustering and event ordering tasks.
The former task requires both common-sense knowledge and discourse reasoning. Reasoning is more
important for long-term links since there are no explicit clues like prepositions and dependencies to be
exploited. The ablation study shows that discourse features like sentence distance are more effective,
which indicates that our model mainly relies on surface clues and has limited reasoning power.

Furthermore, we observe a strong locality property of After links by skimming the training data: most
After link relations are found in a small local region. Since reasoning and coreference based propagation
will accumulate local decisions, a system must be accurate on them.
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5.2.1 The Ambiguous Boundary of a Script
Besides the above-mentioned challenges, a more fundamental problem is to define the boundary of scripts.
Since the definition of scripts is only prototypical event sequences, the boundaries between them are
not clear. In Example 3, the event jailed is considered to belong to a “Judicial Process” script and
killing is considered to belong to an“Attack” script7. No link is annotated between these two mentions
since they are considered to belong to different clusters, even though the “jailed” event is to punish the
“killing”. Therefore essentially, the current Event Sequencing task simply requires the system to fit these
human defined boundaries. In principle, the “Judicial Process” script and the “Attack” script can form a
larger script structure, on a higher hierarchical level.

While it is possible to manually define scripts and what kind of events they may contain specifically
in a controlled domain, it is difficult to generalize the relations. Most previous work on script induction
(Chambers and Jurafsky, 2008; Cheung et al., 2013; Rudinger et al., 2015; Pichotta and Mooney, 2016;
Ferraro and Durme, 2016) treats scripts as statistical models where probabilities can be assigned, thereby
avoiding the boundary problem. While the script boundaries may be application dependent, a possible
solution may rely on the “Goals” in Schank’s script theory. The Goal of a script is the final state expected
(by the script protagonist) from the sequence of events. Goal oriented scripts may be able to help us
explain whether killing and jailed should be separate: if we take the“killer” as the protagonist, the
goal of “kill” is achieved at the point of the victim dying. We leave the investigation on proper theoretical
justification to future work.

6 Conclusion

In this paper, we presented a unified graph framework to conduct event coreference and sequencing. We
have achieved state-of-the-art results on event coreference and report the first attempt at event sequencing.
While we only studied two types of relations, we believe the method can be adopted in broader contexts.
In the future, we plan to build a joint model to allow the tasks to mutually improve each other.

In general, analyzing event structure can bring new aspects of knowledge from text. For instance, Event
Coreference systems can help group scattered information together. Understanding Event Sequencing
can help clarify the discourse structure, which can be useful in other NLP applications, such as solving
entity coreference problems (Peng et al., 2015). However, in our investigation, we find that the linguistic
theory and definitions for events are not adequate for the computational setting. For example, proper
theoretical justification is needed to define event coreference, which should explain the problems, such as
argument mismatches. In addition, we also need a theoretical basis for script boundaries. In the future, we
will devote our effort to understanding the theoretical and computational aspects of events relations, and
utilizing them for other NLP tasks.
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