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Abstract

This paper is an initial study on multi-task and multi-lingual joint learning for lexical utter-
ance classification. A major problem in constructing lexical utterance classification modules for
spoken dialogue systems is that individual data resources are often limited or unbalanced among
tasks and/or languages. Various studies have examined joint learning using neural-network-based
shared modeling; however, previous joint learning studies focused on either cross-task or cross-
lingual knowledge transfer. In order to simultaneously support both multi-task and multi-lingual
joint learning, our idea is to explicitly divide state-of-the-art neural lexical utterance classification
into language-specific components that can be shared between different tasks and task-specific
components that can be shared between different languages. In addition, in order to effectively
transfer knowledge between different task data sets and different language data sets, this pa-
per proposes a partially-shared modeling method that possesses both shared components and
components specific to individual data sets. We demonstrate the effectiveness of the proposed
adversarial training using Japanese and English data sets with three different lexical utterance
classification tasks.

1 Introduction

Modern spoken dialogue systems use multiple lexical utterance classification modules that can detect
dialogue act (Stolcke et al., 2000; Khanpour et al., 2016), intent (Tur et al., 2011), domain (Xu and
Sarikaya, 2014), question type (Wu et al., 2005), etc. to properly understand natural languages. The
modules are typically trained using the machine learning technologies developed for individual language-
specific systems (Higashinaka et al., 2014). A common issue is that the data resources for such individual
training are often limited or unbalanced among different tasks and/or different languages.

For modeling lexical utterance classification, various modeling methods have been examined. Re-
cently, neural lexical utterance classification, which is a fully neural-network-based modeling method,
has demonstrated substantial performance without the use of manual feature engineering. The networks
include long short-term memory recurrent neural networks (LSTM-RNNs) (Ravuri and Stolcke, 2015b;
Ravuri and Stolcke, 2015a; Ravuri and Stolcke, 2016), convolution neural networks (Kim, 2014), and
more advanced networks (Zhou et al., 2016a; Yang et al., 2016; Sawada et al., 2017).

In addition, neural networks are suitable for performing joint learning; the paucity of data is tackled
by transferring knowledge between different tasks or different languages. Various joint learning methods
have been examined for leveraging different tasks or different language data sets in the natural language
processing field. Multi-task joint learning can transfer knowledge between tasks by sharing task-invariant
layers (Collobert and Weston, 2008; Liu et al., 2015; Liu et al., 2016c; Zhang and Weng, 2016). In lexical
utterance classification, multi-task joint learning has been shown to effectively improve individual tasks
(Liu et al., 2016b; Liu et al., 2016a; Liu et al., 2017). In addition, multi-lingual joint learning can
transfer knowledge between languages, mainly from the resource-rich language to the resource-poor
language. The knowledge transfer is achieved by learning common semantic representations for different
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languages. Usually, word-aligned or sentence-aligned parallel data sets are employed for joint learning
(Guo et al., 2016; Duong et al., 2016)

However, most existing joint learning approaches focus only on cross-tasks or cross-lingual knowledge
transfer. In fact, task-aligned multi-lingual data sets have been rarely utilized for joint learning (Mogadala
and Rettinger, 2016; Pappas and Popescu-Belis, 2017). We can expect to enhance lexical utterance
classification performance by achieving effective knowledge transfer among both different tasks and
different languages.

In this paper, we propose multi-task and multi-lingual joint learning; it can enhance neural lexical
utterance classification by flexibly transferring knowledge among both different tasks and different lan-
guages. The proposed method is closely related to multi-task sequence-to-sequence learning (Luong
et al., 2016) including many-to-many neural machine translation (Firat et al., 2016; Firat et al., 2017;
Schwenk and Douze, 2017). While input and output components are easily distinguished in sequence-
to-sequence models, neural lexical utterance classification methods are not explicitly divided into input
and output components. Our idea is to divide the neural lexical utterance classification into two compo-
nents. The language-specific components converts words to hidden representations while task-specific
components convert the hidden representations into prediction probabilities. The former can be shared
between different tasks and the latter can be shared between different languages.

In addition, in order to perform effective joint learning by simultaneously using multi-task and multi-
lingual data sets, this paper examines two joint modeling strategies. The fully-shared modeling strategy
is often used in various joint learning methods. Fully-shared modeling can share knowledge between
tasks or languages based on task-invariant components and language-invariant components, however,
classification performance in some data sets is deteriorated. Therefore, this paper proposes the partially-
shared modeling strategy; it introduces not only shared components between tasks or languages but also
exclusive components that handle task-language combinations. It can be expected that the latter are
suitable for multi-task and multi-lingual joint learning since they allow us to accumulate just shareable
knowledge.

Main contributions are summarized as follows.

• This paper proposes multi-task and multi-lingual joint learning of neural lexical utterance classifi-
cation. For neural lexical utterance classification, we introduce a state-of-the-art model structure
based on bidirectional LSTM-RNNs with a self-attention mechanism. We demonstrate the superi-
ority of multi-task and multi-lingual joint learning over multi-task joint learning and multi-lingual
joint learning.

• This paper proposes partially-shared modeling for multi-task and multi-lingual joint learning.
Partially-shared modeling can be utilized for various neural network based joint learning schemes.
We demonstrate the superiority of partially-shared modeling over fully-shared modeling. In addi-
tion, we reveal the properties of partially-shared modeling.

• This paper introduces a new corpus for evaluating multi-task and multi-lingual lexical utterance
classification methods. The corpus includes Japanese and English data sets with three different lex-
ical utterance classification tasks. The tasks are dialogue act classification, extended named entity
classification (Sekine and Nobata, 2004; Higashinaka et al., 2012), and question type classification.

2 Neural Lexical Utterance Classification

This section details neural lexical utterance classification. Lexical utterance classification is the problem
of determining the correct label l ∈ {l1, · · · , lK} of given utterance W = {w1, · · · , wT }. In neural
lexical utterance classification, conditional probabilities for each label given utterance, P (l|W,Θ), can
be modeled by neural networks in an end-to-end manner where Θ is the model parameter. Various
model structures can be used for neural lexical utterance classification. In this work, we use bidirectional
LSTM-RNNs (BLSTM-RNNs) with a self-attention mechanism (Yang et al., 2016; Zhou et al., 2016b).
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2.1 Modeling

In our neural lexical utterance classification, each word in input utterance W is first converted into a
continuous representation. The continuous representation of the t-th word is defined as:

wt = EMBED(wt;θw), (1)

where EMBED() is a linear transformational function to embed a word into a continuous vector and θw
is the trainable parameter. Next, each word representation is converted into a hidden representation that
takes neighboring word context information into consideration. The hidden representation for the t-th
word is calculated as:

ht = BLSTM({w1, · · · ,wT }, t;θh), (2)

where BLSTM() is a function of the BLSTM-RNN layer and θh is the trainable parameter.
The hidden representations are summarized as a sentence representation by using a self-attention

mechanism that can consider the importance of individual hidden representations. The sentence con-
tinuous representation s is calculated as:

zt = tanh(ht;θz), (3)

s =

T∑
t=1

exp(z⊤
t z̄)

ΣT
j=1 exp(z

⊤
j z̄)

ht, (4)

where tanh() is a non-linear transformational function with tanh activation, θz is the trainable parameter,
and z̄ is a trainable context vector, which is used for measuring the importance of individual hidden
representations. The output layer produces predicted probabilities O by:

o = LINEAR(s;θo), (5)

O = SOFTMAX(o), (6)

where LINEAR() is a linear transformational function and θo is the trainable parameter. SOFTMAX() is
a softmax activation to convert o into predicted probabilities. The k-th dimension in O corresponds to
P (lk|W,Θ), and Θ corresponds to {θw, θh, θz, z̄, θo}.

2.2 Optimization

The parameter can be optimized by minimizing the cross entropy between reference and estimated prob-
abilities:

Θ̂ = argmin
Θ

−
∑
W∈D

K∑
k=1

Ôlk
W logOlk

W , (7)

where Ôlk
W and Olk

W are, respectively, the reference probability and the estimated probability of label lk
for W . D denotes the training data set.

3 Multi-task and Multi-lingual Neural Lexical Utterance Classification

This section presents multi-task and multi-lingual joint learning of neural lexical utterance classifica-
tion. We split neural lexical utterance classification by considering two types of components: language-
specific components and task-specific components.

Language-specific components can be shared between tasks, where words in an utterance are converted
into hidden representations. The language-specific components can be simplified as:

ht = W2H(W, t;ΘW2H), (8)

where W2H() is a function that compiles Eqs. (1) and (2). ΘW2H corresponds to {θw,θh}.
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Figure 1: Neural lexical utterance classification and its simplified model structure.

Task-specific components can be shared between languages, where hidden representations are con-
verted into predicted probabilities. The task-specific components can be simplified as:

o = H2O({h1, · · · ,hT };ΘH2O), (9)

where H2O() is a function that compiles Eqs. (3) to (5) and ΘH2O represents {θz, z̄,θo}.
Figure 1 shows a detailed model structure and a simplified model structure of BLSTM-RNN with the

attention mechanism. Both the dotted line square and a dotted line circle represent softmax activation.
White squares are simplified components in the neural lexical utterance classification.

3.1 Fully-shared Modeling
Fully-shared modeling forms universal hidden representations that are completely invariant to differences
in tasks or languages. In this case, language-specific components are fully-shared between the same
language data sets and task-specific components are fully-shared between the same task data sets. The
t-th universal hidden representation is calculated as:

ht = W2H(W(i), t;Θ
(i)
W2H), (10)

where Θ
(i)
W2H is the shared parameter that handles the i-th language and W(i) denotes the input utterance

in the i-th language. The universal hidden representation can be input to any task-specific component.
The predicted probabilities for the j-th task, denoted as O(j), are calculated as:

o(j) = H2O({h1, · · · ,hT };Θ(j)
H2O), (11)

O(j) = SOFTMAX(o(j)), (12)

where Θ
(j)
H2O is the task-specific shared parameter that handles the j-th task.

Figure 2 shows the model structure of multi-task fully-shared modeling for a language and two tasks.
Figure 3 shows the model structure of multi-lingual fully-shared modeling for two languages and a task.
Figure 4 shows the model structure of multi-task and multi-lingual fully-shared modeling for two tasks
and two languages. Gray squares are shared components between languages or between tasks, and white
squares are non-shared components.

3.2 Partially-shared Modeling
Partially-shared modeling introduces not only shared components between tasks or languages but also
exclusive components that handle task-language combinations. Therefore, our hidden representations
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Figure 2: Multi-task fully-shared modeling.
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Figure 3: Multi-lingual fully-shared modeling.
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Figure 4: Multi-task and multi-lingual fully-shared modeling.

are designed to support such combinations. The t-th hidden representation for the combination of the
i-th language and the j-th task, denoted as h(i,j)

t , is calculated as:

h̄
(i,j)
t = W2H(W(i,j), t;Θ

(i,j)
W2H ), (13)

h̄
(i)
t = W2H(W(i,j), t;Θ

(i)
W2H), (14)

h
(i,j)
t = h̄

(i,j)
t + h̄

(i)
t , (15)

where Θ
(i,j)
W2H is the exclusive parameter specific to the combination of the i-th language and the j-th

task, and Θ
(i)
W2H is the shared parameter that handles the i-th language. The predicted probabilities for the

combination of the i-th language and j-th task, denoted as O(i,j), are calculated as:

ō(i,j) = H2O({h(i,j)
1 , · · · ,h(i,j)

T };Θ(i,j)
H2O ), (16)

ō(j) = H2O({h(i,j)
1 , · · · ,h(i,j)

T };Θ(j)
H2O), (17)

O(i,j) = SOFTMAX(ō(i,j) + ō(j)), (18)

where Θ(i,j)
H2O is the exclusive parameter specific to the combination of the i-th language and the j-th task,

and Θ
(j)
H2O is the shared parameter that handles the j-th task.

Figure 5 shows the model structure of multi-task partially-shared modeling for a language and two
tasks. Figure 6 shows the model structure of multi-lingual partially-shared modeling for two tasks and a
language. Figure 7 shows the model structure of multi-task and multi-lingual partially-shared modeling
for two tasks and two languages. Note that Figures 5-7 correspond to Figures 2-4.
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Figure 5: Multi-task partially-shared modeling.
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Figure 6: Multi-lingual partially-shared modeling.
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Figure 7: Multi-task and multi-lingual partially-shared modeling.

3.3 Joint Optimization

In multi-task and multi-lingual joint leaning, all parameters, denoted as Θ, can be jointly optimized by
using all data sets. Given I languages and J tasks, joint optimization of the model parameter Θ follows:

Θ̂ = argmin
Θ

−
I∑

i=1

J∑
j=1

∑
W∈D(i,j)

K(j)∑
k=1

Ôlk
W logOlk

W , (19)

where D(i,j) denotes the training data set for the combination of the i-th language and the j-th task, and
|D(i,j)| means the number of utterances. K(j) represents the number of labels in the j-th task.

Basically, Θ can be gradually updated by repeating mini-batch training using individual data sets. In
this case, an optimizer with a learning rate is prepared for individual data sets and individual learning
rates fall when the cross entropy loss for a target validation data set increases. The training epoch is
stopped when the averaged loss for all validation data sets is not improved. Details of the joint optimiza-
tion procedure are shown in Algorithm 1.

4 Experiments

4.1 Data

Our experiments employed Japanese (Ja) and English (En) data sets created for three different lexical
utterance classification tasks. The tasks were dialogue act (DA) classification, extended named entity
(ENE) classification (Sekine and Nobata, 2004; Higashinaka et al., 2012), and question type (QT) classi-
fication; natural language texts were used for the lexical utterances and individual label sets were unified
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Algorithm 1 :Joint Optimization procedure of multi-task and multi-lingual joint leaning.

Input: Training data sets D(1,1), · · · ,D(1,J), · · · ,D(I,1), · · · ,D(I,J)

Validation data sets D̄(1,1), · · · , D̄(1,J), · · · , D̄(I,1), · · · , D̄(I,J)

Output: Model parameter Θ
1: Initialize Θ randomly
2: while true do
3: for t = 1 to number of mini-batches in training data sets do
4: Select language i randomly
5: Select task j randomly
6: Pick mini-batch Dt from D(i,j) randomly
7: Update Θ by computing gradient of Dt

8: end for
9: for i = 1 to I do

10: for j = 1 to J do
11: Compute current validation loss for D̄(i,j)

12: if previous validation loss for D̄(i,j) < current validation loss for D̄(i,j) then
13: Decrease learning rate for D(i,j)

14: end if
15: end for
16: end for
17: if previous averaged validation loss < current averaged validation loss then
18: break
19: end if
20: end while
21: return Θ

Table 1: Number of utterances in individual data sets.
Language Task #labels Train Valid Test
Japanese DA 28 201,092 4,190 4,190

ENE 168 40,350 4,036 4,036
QT 15 55,328 4,257 4,257

English DA 28 25,171 3,147 3,147
ENE 168 25,005 3,230 3,230
QT 15 22,213 2,777 2,777

between Japanese and English. For example, the task of English ENE classification is to obtain the re-
quested ENE type for a question. Each of the data sets were divided into training (Train), validation
(Valid), and test (Test) sets. Table 1 shows the number of utterances in individual data sets where #labels
represents the number of labels. Table 2 shows English utterances and label examples for individual
tasks.

4.2 Setups
We evaluated non-shared modeling, fully-shared modeling, and partially-shared modeling. For the
shared modeling methods, multi-task joint learning, multi-lingual joint learning, multi-task and multi-
lingual joint learning were examined. The multi-task joint learning used three classification tasks for
optimizing each language. The multi-lingual joint learning used both Japanese and English data sets for
optimizing each task. The multi-task and multi-lingual joint learning used all data sets. Several model-
ing parameters were unified. Word representation size was set to 128, LSTM-RNN unit size was set to
200, and context vector size in the attention mechanism was set to 200. Dropout was used for EMBED()
and BLSTM(), and the dropout rate was set to 0.5. In these setups, words that appeared once or less in



3593

Table 2: English utterances and label examples in individual tasks.
Task Utterance Label
DA Hello, how are you today? GREETING

I am so sorry to hear of your son’s accident. SYMPATHY/AGREE
Lets go to school an hour early today. PROPOSAL

ENE What is the highest mountain in the world? MOUNTAIN
Who is president of the united states? PERSON
What is the name of the most recent Star Wars movie? MOVIE

QT Do you like egg salad? TRUE/FALSE
How do you correct a hook in a golf swing? EXPLANATION:METHOD
Why is blood red? EXPLANATION:CAUSE
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Figure 8: Cross entropy loss for validation sets.

the training data sets were treated as unknown words. For joint learning, mini-batch stochastic gradient
descent was used for the individual optimizers. Initial learning rate for individual data sets was set to
0.1. The cutoff threshold for gradient clipping was set to 1.0. Training was stopped when the averaged
validation loss was not improved in 5 consecutive iterations.

4.3 Results
Figure 8 demonstrates the change in cross entropy validation loss for individual validation sets when
performing multi-task and multi-lingual joint learning based on partially-shared modeling. As epoch
number increased, both cross entropy validation losses for individual data sets and averaged validation
loss for all data sets (AVERAGE) decreased. This indicates that joint optimization procedure used in
algorithm 1 worked well.

Table 2 shows the experimental results in terms of utterance classification accuracy for test sets. For
each setup, we constructed five models by varying the initial parameters and evaluated the average accu-
racy.

First, (a) demonstrates the results of non-shared modeling trained using only an individual data set.
These results are the baseline of this evaluation. In fully-shared modeling, (b) to (d), the classification
performance deteriorated in some cases, while performance improvements were achieved in other cases.
In English QT, multi-task and multi-lingual joint learning was inferior to multi-task joint learning or
multi-lingual joint learning. This indicates that fully-shared modeling, which learns universal hidden
representations, are not suitable for supporting both cross-lingual and cross-task knowledge transfer.
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Table 2: Experimental results: utterance classification accuracy (%) for individual test sets.
Joint learning Japanese English

task language DA ENE QT DA ENE QT
(a). Non-shared modeling - - 66.5 79.1 87.7 61.8 64.7 83.5
(b). Fully-shared modeling

√
- 66.5 79.6 89.3 60.6 64.4 83.7

(c). -
√

66.7 78.7 87.2 61.4 64.3 83.0
(d).

√ √
66.5 79.7 89.3 60.5 65.4 82.6

(e). Partially-shared modeling
√

- 66.6 80.9 89.4 62.0 64.8 83.7
(f). -

√
66.9 79.7 88.0 61.9 65.0 83.8

(g).
√ √

66.9 81.8 89.7 62.3 65.8 84.0
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Figure 9: Euclidean norm results in partially-shared modeling.

On the other hand, partially-shared modeling, (e) to (g), improved the classification performance in all
data sets compared to (a). In addition, multi-task and multi-lingual joint learning outperformed multi-
task joint learning and multi-lingual joint learning. These results confirm that partially-shared modeling
can effectively transfer knowledge between different data sets. We conducted sign test for verifying
the effectiveness of multi-task and multi-lingual joint learning based on partially-shared modeling. In
Japanese ENE classification, Japanese QT classification, and English ENE classification, statistically
significant performance improvements (p < 0.05) were achieved by (g) compared to (a). Furthermore,
in Japanese ENE classification, English DA classification, and English QT classification, significant
performance improvements (p < 0.05) were also achieved by (g) compared to (d).

We investigated how shared components and exclusive components worked in partially-shared mod-
eling. The left side of Figure 9 presents the Euclidean norm of both h̄

(i,j)
t and h̄

(i)
t , while the right side

presents the Euclidean norm of both ō(i,j) and ō(j) when classifying English question type validation
data sets. These results show that shared components are more influential than exclusive components.
This indicates that the shared components accumulate shareable knowledge, while exclusive components
were utilized to offset the small differences between tasks or between languages.

5 Conclusions

This paper proposed multi-task and multi-lingual joint learning of neural lexical utterance classification
for effectively leveraging data sets of different tasks and different language. For neural lexical utterance
classification, we proposed BLSTM-RNN; it uses a self-attention mechanism and introduces language-
specific and task-specific components. Each component can be effectively trained by partially-shared
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modeling. Experiments on Japanese and English data sets created for three different tasks showed that
the proposed multi-task and multi-lingual joint learning based on partially-shared modeling can transfer
knowledge more effectively than multi-task or multi-lingual joint learning based on fully-shared model-
ing.
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