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Abstract

While the disfluency detection has achieved notable success in the past years, it still severely
suffers from the data scarcity. To tackle this problem, we propose a novel semi-supervised ap-
proach which can utilize large amounts of unlabelled data. In this work, a light-weight neural net
is proposed to extract the hidden features based solely on self-attention without any Recurrent
Neural Network (RNN) or Convolutional Neural Network (CNN). In addition, we use the unla-
belled corpus to enhance the performance. Besides, the Generative Adversarial Network (GAN)
training is applied to enforce the similar distribution between the labelled and unlabelled data.
The experimental results show that our approach achieves significant improvements over strong
baselines.

1 Introduction

A characteristic of spontaneous speech is different from written text, since it’s usually accompanied by
disfluencies. Identifying and removing these non-fluent factors would help to improve the spontaneous
speech quality. It often plays a significant role in understanding the semantics of these sentences and it’s
vital for the downstream NLP tasks, such as question answering, machine translation, and information
extraction.

I want to flight [ to Boston + { um } +  to Denver ]
RM IM RP

Figure 1: Example of disfluency annotation style in Switchboard corpus.

Figure 1 shows a standard annotation of disfluency structure (Shriberg, 1994), which includes three
types of annotations: RM (reparandum, words that are discarded, or corrected by the following words),
RP (repair, the correct words), and IM (interregnum, such as filled pauses, discourse cue words, etc.)
The interruption point (+) marks the end of the reparandum and an optional interregnum. Ignoring the
interregnum, disfluencies can be further categorized into three types: repetition (when RP is same as
RM), repair, and restart (when RP is empty). Table 1 gives a few examples. However, it is usually
difficult to identify the reparandum non-fluent factors. The main challenge behind is that this type of
structure is flexible, variable in length, able to occur anywhere in a sentence, and in many cases will be
nested. Detecting the disfluency can work in arbitrary form.

Recently, a number of approaches based on deep neural networks have been proposed to address
the problem of disfluency detection under the framework of sequence labeling or sequence to se-
quence(Hough and Schlangen, 2015; Zayats et al., 2016; Wang et al., 2016; Wang et al., 2017). For
most of the approaches mentioned above, the researchers switch between the RNN and CNN. But the
RNN/CNN shows less flexibility than the self-attention layer which has achieved great success in neural
machine translation (Shen et al., 2015; Wu et al., 2016; Gehring et al., 2017) and language understanding
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Type Annotation
repair [ I just + I ] enjoy work
repair [ we want + well in our area we want ] to

repetition [ it’s + {um} + it’s ] almost like
repetition [ the + {um} + the ] decision was

restart [ by + ]it was attached to
restart [ we would like + ] let’s go to the

Table 1: Different types of disfluencies.

(Shen et al., 2017). In the framework of sequence to sequence mapping, the model of NMT has achieved
great success. Therefore, it is natural for us to investigate how to apply the NMT system to the problem
of disfluency detection. In this paper, we take the disfluency detection as the translation task and build
our model following the architecture of newly emerged NMT system, i.e., Transformer(Vaswani et al.,
2017). The Transformer has achieved state-of-the-art results on both WMT2014 English-German and
English-French translation tasks. Inspired by the success of self-attention, we propose a RNN/CNN-free
network for disfluency detection through multi-task learning, which is built only on the self-attention
layers. In the proposed model, we apply the self-attention layers to extract the hidden features of the
input sentence. And two softmax layers, namely the label softmax and word softmax, are applied to
perform classifications. The label softmax is used to calculate the probability of the disfluency label, and
the word softmax is applied to compute the probability of the word.

In addition, we leverage unlabelled data to improve the performance of the disfluency detection. Due to
lack of tagging information, using the unlabelled corpora is very promising, since the unlabelled corpora
is usually easy to be collected. To utilize the unlabelled data, we extend the traditional encoder-decoder
model by leveraging two independent encoders but with some layers shared. Specifically, we share the
weights of the last few layers of two encoders that are responsible for extracting high-level representa-
tions of input sentences. In the proposed model, one encoder is utilized to encode the unlabelled data
and the other is applied for the labelled data. For the unlabelled data, the corresponding encoder and
decoder perform an Auto-Encoder (AE), where the encoder generates the latent representations from the
perturbed input sentences and the decoder reconstructs the sentences from the latent representations. We
utilize the GAN to constrain the latent representations from the labelled and unlabelled corpus to subject
to a similar distribution, whereby the encoders try to fool a discriminator which is simultaneously trained
to distinguish whether the latent representation is from labelled or unlabelled data.

In summary, we mainly make the following contributions:

• We propose a novel semi-supervised approach for the problem of disfluency detection, which can
utilize large amounts of unlabelled data.

• We firstly introduce the self-attention mechanism into the disfluency detection through multi-task
learning . Without relying on the RNN/CNN, the proposed model has more flexibility in sequence
length and allows for more parallelization, which makes great significance.

• We conduct extensive experiments to test the proposed model. Experimental results show that the
proposed approach consistently achieves great success.

2 Related Work

One of the most common approaches to disfluency detection is taking the task as a sequence labeling
problem, where each sentential word is assigned with a label. Many approaches had achieved good
performance by using the Condition-based Random Field (CRF) as a classifier (Ostendorf and Hahn,
2013; Liu et al., 2006; Cho et al., 2013; Zayats et al., 2014). (Qian and Liu, 2013) proposed a detection
model based on maximum interval Markov random field (M3N ), which outperformed CRF by using an
f-score matching objective function. (Ferguson et al., 2015) proposed the Semi-Markov CRF model for
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disfluency detection and achieved the best performance of linear statistical sequence labeling methods
by integrating prosodic features. Sequence labeling methods mentioned above are not powerful enough
to model long-range dependencies of complicated disfluencies. RNN has been widely used to disfluency
detection (Zayats et al., 2016; Hough and Schlangen, 2015), since it can capture dependencies at any
length in theory. However, these RNN methods still suffer from the defect of unable to model the
linguistic structural integrity, since it does not model the transition between tags which is important in
recognizing the repair phrases of multi-words. Recently, sequence-to-sequence methods based on deep
neural networks are applied to disfluency detection. (Wang et al., 2016) proposed an attention-based
detection model and achieved good performance. It can capture a global representation of the input
sentence by RNN when encoding and model tag transition when decoding.

Another branch of researches adopt transition-based parsing model, which jointly perform dependen-
cy parsing and disfluency detection (Rasooli and Tetreault, 2013; Honnibal and Johnson, 2014; Wu et
al., 2015). These syntax-based models are capable of capturing long-range dependencies by modeling
the repair phrases on a syntax tree. However, their high requirements for training data reduce their
practicality, since it is expensive to obtain training data containing both syntax trees and disfluency an-
notations. Furthermore, the performance of syntax parsing also restricts the performance of disfluency
detection. (Wang et al., 2017) proposed a transition-based model for disfluency detection, which learned
representation of both chunks and global contexts without using any syntax information. It achieved the
state-of-the-art f-score on the commonly used English Switchboard test set.

Lack of large scale of labelled data is always a bottleneck for improving the performance of disfluency
detection (Wang et al., 2016; Wang et al., 2017). Recently, the unsupervised and semi-supervised NMT
have arose many interests in the research area. To improve the translation performance of NMT, they use
the auto-encoder and back-translation to train the model(Saha et al., 2016; Cheng et al., ). Following the
same idea, we firstly propose the semi-supervised training for disfluency detection.

3 The Approach

In this section, we will give more details about the design of our proposed semi-supervised disfluency
detection model.

3.1 The Input and Output
Since we consider the problem of disfluency detection as a translation task, translating the non-fluent

sequence into the fluent sequence, we prepare our input and output as the training examples of translation.
In traditional translation, the training example consists of one source-side sequence and one target-side
sequence. However, for the proposed model, the source-side input is the non-fluent sequence, the target
side includes two output sequences, one is the fluent sequence, which is the real needed output of dis-
fluency detection task, and the other is the label sequence, which is an auxiliary information sequence.
Considering a sentence from the training data, the non-fluent input of source side is:

”I want to flight to Boston um to Denver”

The target-side fluent sequence is represented as:

”I want to flight E E E to Denver ”

And the target-side label sequence can be represented as:

”O O O O E E E O O”

Where ’O’ indicates that the word at this time step is fluent, which should be copied from the source side
to the fluent sequence, and ’E’ means the word at this time step is non-fluent, i.e., RM and IM words,
which should be discarded. The length of the label sequence is the same as the input sequence. The
motivation of the design of two output sequences will be elaborated in section 3.2.

3.2 The Model Architecture
Our proposed semi-supervised model is extended on traditional encoder-decoder framework. As illus-

trated in Figure 2(a), the model architecture is composed of four subnetworks: including two partially
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Figure 2: The framework of the proposed model. (a) is the whole architecture of our model, which con-
tains two independent encoders with some weight sharing and the fully-shared decoder. (b) is the specific
architecture of the proposed model which extends the Transformer into multi-task learning setting.

shared encoders Encl and Encu, one totally shared decoder Decl (Decu is the same as Decl), and a
discriminator D, where subscript ’l’ and ’u’ represent labelled and unlabelled data, respectively. Each
encoder consists of three identical layers, where each layer consists of a multi-head self-attention and
a simple position-wise fully connected feed-forward network, which follows the powerful self-attention
based model Transformer (Vaswani et al., 2017). Specifically, the encoder is composed of a stack of
three identical layers. Symmetrically, the decoder is also a stack of three identical layers, and each layer
also follows the Transformer. The key difference is the last output layer of the decoder, where we use two
softmax layers to predict label sequence and word sequence separately (see Figure 2(b)). The decoding
is constrained by the label prediction and word prediction at the same time, which is critical important
for improving the disfluency detection performance.

To utilize unlabelled data xu for training, the output of Encu should have similar distribution with
the output of Encl. Therefore, we apply the weight sharing constraint to associate the two encoders by
sharing the weights of the last few layers of two encoders that are responsible for extracting high-level
representations of input sequences. Afterwards, a discriminator, implemented as a multilayer perceptron,
is used to further constrain the latent representations from the labelled and unlabelled data to have sim-
ilar distribution, whereby the encoder tries to fool the discriminator which is simultaneously trained to
distinguish whether the latent representation is from the labelled or unlabelled data. As a matter of fact,
the encoders and the discriminator constitute a GAN tactfully, where the encoders act as the cheater and
the discriminator plays the role of police. The weight sharing and GAN training are pivotal strategies to
make the semi-supervised training manner feasible.

To give more detailed interpretation of the weight sharing model, we piece together several roles by
combining some subnetworks of the model, which are summarized in table 2. If only consider using
labelled data xl for training, it is enough to compose a complete model only with the encoder Encl
and the decoder Decl, which will be back to a self-attention based Transformer model with multi-task
learning. As for the unlabelled data, the encoderEncu generates the latent representation of the perturbed
input sentence (such as adding random noises). And the corresponding decoder Decu reconstructs the
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normal input sentence from the latent representation. Actually, Encu and Decu constitute an AE. The
key information of these roles will be described in the following subsections successively.

Networks Roles

{Encl, Decl} Transformer for labelled data
{Encu, Decu} AE for unlabelled data
{Encl, Encu} Weight sharing of labelled and unlabelled data
{Encl, Encu, D} GAN for discriminating data reality

Table 2: Interpretation of the roles for the subnetworks in the weight sharing model.

3.2.1 Multi-task Learning and Constrained Decoding
Our improvement on the Transformer model focuses on the last output layer of the decoder. Tra-

ditional output layer of Transformer is only one softmax layer. However, either the word sequence or
the label sequence is incapable of handling the problem of disfluency detection independently. For the
word sequence, it guides the model to treat each fluent word and disfluency word equally. However, in
disfluency detection task, the model just needs to distinguish the non-fluent words from the fluent words
in sentence. Too careful classification will detriment the classification performance. For the label se-
quence, it guides the model to output the fluent label or the non-fluent label. Nevertheless, it may cause
overfitting during training since the fluent label ’O’ and non-fluent label ’E’ dominate in the training
example. In other words, the word sequence needs a simple classification as the label sequence does,
and the label sequence can benefit from the semantic information of the word sequence. Therefore, we
fuse the disfluency detection sequence and the label sequence through multi-task learning to improve the
performance.

Multi-task Learning
Given N such non-fluent source word sequences, target word sequences and label sequences. Our

goal is to maximize the probability of observing the target word sequence yn and minimize the label
classification error rate of the label softmax, with regard to the model parameter θ. Different from the
traditional end-to-end model in disfluency detection which only maximizes the probability of observing
the target label sequence, the word error rate of the word softmax is also leveraged in the proposed
model. From the multi-goal learning perspective, two different goals are used to dictate the parameters
of the proposed model to converge to a better region. Formally, the objective function used in the joint
punctuation model can be represented as:

argmax
θ

1

N

N∑
n=1

(logpθ(yn|xn) + γ ∗ log
p
′
θ
(zn|xn)) (1)

Apart from the cross entropy loss used in the label neural network model, the error rate of the word
neural network is also considered to train the proposed model.

J = Jw + γ ∗ Jl (2)

here Jw refers to the loss of the word, Jl denotes the loss of the label and γ is the hyper-parameter. We
use the γ to balance the loss between the word softmax and label softmax.

Constrained Decoding
In the test decoding, we design a constrained decoding algorithm to adapt the proposed self-attention

based network. In this algorithm, we need to judge the class of the label softmax to determine the decode
sequence of the model. Specifically, if the label softmax outputs ’O’, we copy the word from the source
side and feed it into the model for the next time step. And if the output of the label softmax is ’E’,
we feed the generated ’E’ into the model for the decoding in the next time step. The decoding process
repeats until the ”eos”, i.e., the end of sentence token, is emerged and all the source words are copied.
The constrained decoding algorithm could effectively avoid the inconsistency between the source word
and the target word in a transduction model.
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3.2.2 Denoising Auto-Encoding
In order to learn some knowledge from the unlabelled corpus to make up the scarcity of labelled data,

an AE is utilized to train the unlabelled data via reconstructing their inputs. Specifically, the encoder
is responsible for composing the high-level latent representation of the input and the decoder endeavors
to decompose this representation into its corresponding input sequence. However, the AE usually fails
to capture any internal structure of the involved sentences under unconstrained condition. Instead it just
learns to copy every word one by one. To solve this problem, we employ the similar strategy of denoising
AE (Vincent et al., 2008) and randomly add some noises to the input sentences (Hill et al., 2016; Artetxe
et al., 2017).

To this end, for each sentence, we add two types of noises separately, one is repeating, the other
is inserting. In repeating operation, we randomly choose one to three positions in sentence. And for
each position, one to five words starting from selected position are repeated randomly, which is abide
by the constraint that the repeat fragment does not overlap with the next selected position. In inserting
operation, we still randomly choose one to three positions in sentence to add noises. Different from
repeating operation which simply repeats words in the sentence, we insert words randomly selected from
a top frequent dictionary, which is extracted from the corpus by keeping the top 10,000 most frequent
1-grams to 5-grams respectively beforehand. Thus, inserting operation can introduce more complicated
noises. In this way, the system needs to learn some useful structure of the involved languages to be able
to recover the correct word order.

3.2.3 Weight Sharing
To decrease even eliminate the distribution differences between the labelled and unlabelled corpora

in some ways, a weight sharing constraint is applied to the two encoders according to the shared-latent
space assumption. Different from (Cheng et al., 2016; Saha et al., 2016) which adopt the fully shared
encoder, we share only partial weights for the encoders, considering that 1) The independent weights
are devoted to encode the hidden features about the internal characteristics of each corpus, such as the
terminology, style, and sentence structure; 2) The shared weights are concentrated on projecting those
hidden features into the shared-latent space. Therefore, we share the weights of the last few layers of
encoders Encl and Encu, which are committed to capture the high-level representations of the input
sentences. A totally shared decoder is applied to decode those high-level representations that are vital
for reconstructing the fluent sentences, since both for the labelled and unlabelled input sentences, they
share the same decoding space and target.

3.2.4 Discriminator
For the weight sharing constraint based on the shared-latent space assumption, we would expect that

the corresponding sentences in the labelled or unlabelled corpus will have the similar latent represen-
tations. However, the weight sharing constraint alone does not necessarily guarantee the same latent
representations. To further enforce the shared-latent space, we train a discriminative neural network to
classify whether the encoding representation is from the auto-encoded unlabelled or the labelled sen-
tences.

The discriminator is implemented as a multi-layer perception with two hidden layers of size 256. The
discriminator performs as a binary classifier and predicts whether the input is the labelled or unlabelled
data.Given the encoding vector Enc(x), i.e., the output of the encoders either from the Encu or Encl, we
build the perception layer as:

xc = ρ(BN(W × Enc(x) + b)) (3)

where W and b is the learning parameters. ρ is a non-linear activation function which is implemented as
ReLU. At last, we pass xc into a softmax layer to generate the probability p(f |Enc(x)) as:

p(f |Enc(x)) = softmax(V ∗ xc) (4)

where V is the transformation matrix and f is the data class, satisfying f ∈ {l, u}, where l means
labelled data and u means unlabelled data. The discriminator is trained to predict the label probability
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by minimizing the following cross-entropy loss:

LD(θD) = −Ex∈xu [log p(f = u|Encu(x))]− Ex∈xl [log p(f = l|Encl(x))] (5)

here θD represents the discriminator parameters. The encoders are trained to fool the discriminator:

LEncu(θEncu) = −Ex∈xu [log p(f = l|Encu(x))] (6)

LEncl(θEncl) = −Ex∈xl [log p(f = u|Encl(x))] (7)

where θEncu and θEncl are the parameters of the two encoders.

4 Experiments

4.1 Datasets
To evaluate the effectiveness of utilizing unlabelled corpus on disfluency detection task, we firstly

conduct an experiment solely on a labelled corpus named Switchboard. Then we expand the training
data by introducing large-scale unlabelled corpus.

Switchboard is the largest available corpus for disfluency detection task, which is portion of the En-
glish Penn Treebank. Two annotation layers are provided in Switchboard corpus: one for syntactic
bracketing (MRG files), the other for disfluencies (DPS files). Our proposed method only needs the DPS
files. The disfluency annotation style of DPS files has been described in introduction. In our experi-
ments, the word labelled with RM and IM would be tagged with ’E’ and others would be tagged with
’O’. Some previous work has been done on this corpus. To keep the direct comparison possible, we
follow the experiment settings in (Johnson and Charniak, 2004), taking directory 2 and directory 3 in
subcorpus of PARSED/MRG/SWBD as training set, and splitting directory 4 into test and development
sets. Table 3 shows the detailed scale of each dataset, where ”total” means the total number of sentences
and ”non-fluent” means the number of non-fluent sentences among total.

Unlabelled corpus is randomly extracted from the source side of WMT2014 English-German corpus,
consisting of English news. Noises, which make the unlabelled fluent sentence non-fluent, are added to
the unlabelled datasets (named as WMT2014 English corpus) according to the description in subsection
of denoising auto-encoding. The scale of training, development and test sets of WMT2014 English
corpus is shown in Table 4.

Dataset Total Non-fluent
Training set 261,882 87,701
Dev set 2,000 1,455
Test set 2,000 1,425

Table 3: Scale of Switchboard corpus.

Dataset Total Non-fluent
Training set 1,000,000 1,000,000
Dev set 2,000 1,500
Test set 2,000 1,500

Table 4: Scale of WMT2014 English corpus.

4.2 Training Details
BPE Byte Pair Encoding (Sennrich et al., 2015) is a simple data compression technique, which is

highly efficient to reduce the OOV quantity by iteratively replacing the most frequent pair of bytes in a
sequence with a single unused byte. In our experiments, we set source number operations to 20,000 and
the vocabulary size to 30,000.

Hyper-parameter The configuration of the hyper-parameter is critical to the performance of the pro-
posed self-attention based model, since it directly affects the generalization and regression of the model.
To balance the whole information from the word sequence and the label sequence, we introduce γ pa-
rameter. The hyper-parameter γ is designed to balance the loss from the label sequence and the word
sequence. In order to highlight the word sequence loss, we set the γ value to 0.15 to weaken the influence
of label sequence .

Metric Following previous works (Wang et al., 2016), token-based precision (P), recall (R), and F-
score (F1) are used as the evaluation metrics.
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Switchboard WMT2014
Sharing layer P R F1 P R F1

0 89.2 87.9 88.5 68.5 59.5 63.7
1 84.2 78.9 81.4 94.5 96.4 95.4
2 92.1 90.2 91.1 93.2 95.9 94.5
3 90.7 87.8 89.2 95.3 96.9 96.1

Table 5: Performance on Switchboard and unlabelled WMT2014 test set with different sharing layers.

4.3 Number of Weight-Sharing Layers
To investigate how the number of weight-sharing layers affects the translation performance, we vary

the number of weight-sharing layers of the two encoders from 0 to 3. Table 5 shows the experimental
results. It is observed that the number of weight-sharing layers has a significant impact on the perfor-
mance of disfluency detection. When we set the number of weight-sharing layers to 0, resulting in two
independent encoders, we get pool F-score on both test sets, especially on the WMT2014 test set. This
is mainly because in testing phase, the unlabelled data will be encoded by encoder Encl and decoded
by the totally shared decoder, while Encl could not encode the unlabelled data well under this condition
since the encoder Encl could not learn any knowledge from the unlabeled data in training phase. Fur-
thermore, the decoder needs to balance the two different kinds of input data, which leads to the small
decline of performance on Switchboard corpus as well. From another perspective, it also indicates that
without the weight sharing constraint, the GAN alone is insufficient to enforce the labelled data and
unlabelled data to learn the similar latent representations, which results in a negative role. This confirms
our intuition that the shared layers are crucial to project the labelled and unlabelled latent representations
into a shared-latent space. At the opposite extreme, when all three layers of the two encoders are shared,
resulting in a totally shared encoder, it is equal to feeding labelled and unlabelled data into a multi-task
Transformer directly. In spite of a larger amount of training corpus, the F-score is better than the one of
two independent encoders but still 1.8% lower than the one of two weight-sharing layers on Switchboard
corpus. This verifies our conjecture that unlabelled data can enhance the generalization ability of model,
but the shared encoder may also detrimental to the performance since it will weaken the unique charac-
teristic of different corpora. Choosing proper number of weight-sharing layers makes much difference.
We achieve best F-score of 91.1% on the commonly used Switchboard corpus test set when the two
encoders share the last two layers. Under this condition, model can learn both the general characteristic
and the internal characteristics such as the terminology and sentence structure of each corpus well.

Method P R F1

Multi-task Transformer 91.5 87.1 89.2
Weight sharing 92.1 90.2 91.1

Transition-based (Wang et al., 2017) 91.1 84.1 87.5
Attention-based (Wang et al., 2016) 91.6 82.3 86.7
Bi-LSTM (Zayats et al., 2016) 91.6 80.3 85.9
semi-CRF (Ferguson et al., 2015) 90.0 81.2 85.4
UBT (Wu et al., 2015) 90.3 80.5 85.1
M3N (Qian and Liu, 2013) - - 84.1

Table 6: Comparison with previous approaches on the test set of English Switchboard.

4.4 Results and Analysis
We compare our self-attention based models with six previous top performing systems. Table 6 shows

the comparable results on English Switchboard test set. Our first model, named multi-task Transformer,
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only utilizes the Switchboard corpus for training as other baselines. It is designed to assess the perfor-
mance of self-attention based model directly. As it shown in Table 6, our multi-task Transformer achieves
89.2% F-score, outperforming the Transition-based method (Wang et al., 2017), which is the state-of-
the-art, by 1.7 point improvements. Compared with the semi-CRF method (Ferguson et al., 2015),
which gains the best performance of linear statistical sequence labeling methods, our multi-task Trans-
former achieves 3.8 point improvements without leveraging any prosodic features. The performance gab
between our multi-task Transformer and UBT (Wu et al., 2015), the best syntax-based method for dis-
fluency detection, is even larger. The F-score of multi-task Transformer increases by 5.1% than UBT.
Furthermore, our second model focuses on how to take the advantage of unlabelled data, since labelled
data is usually scarce. A weight sharing model (named weight sharing in Table 6) is introduced to tackle
the training problem of mixed data. It improves the best F-score of our self-attention based models from
89.2% to 91.1%, which indicates that our novel proposed weight sharing model is capable of learning
useful language knowledge from unlabelled noisy dataset automatically. As a result, our weight sharing
semi-supervised model achieves 3.6% improvements than the previous state-of-the-art.

5 Conclusion

In this paper, we propose a novel semi-supervised model based on weight sharing mechanism and self-
attention based multi-task learning scheme, which views the disfluency detection as a translation task.
In the multi-task self-attention based network, the word sequence information and labelling information
are incorporated into the model at the same time, and a constrained decoding method in testing phase is
applied. Experimental results show that the proposed model achieves significant improvements than the
strong baseline models. We are among the first endeavors to use the translation model to handle the dis-
fluency detection task, which can be applied to any other sequence labelling task easily. In addition, we
utilize the unlabelled corpus to enhance the performance by introducing the weight sharing strategy and
the generative adversarial training to enforce the similar distribution between the labelled and unlabelled
data. Experimental results show that the semi-supervised model can further improve the performance
significantly.
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