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Abstract

Enterprise content writers are engaged in writing textual content for various purposes. Often,
the text being written may already be present in the enterprise corpus in the form of past articles
and can be re-purposed for the current needs. In the absence of suitable tools, authors manually
curate/create such content (sometimes from scratch) which reduces their productivity. To address
this, we propose an automatic approach to generate an initial version of the author’s intended text
based on an input content snippet. Starting with a set of extracted textual fragments related to the
snippet based on the query words in it, the proposed approach builds the desired text from these
fragment by simultaneously optimizing the information coverage, relevance, diversity and co-
herence in the generated content. Evaluations on standard datasets shows improved performance
against existing baselines on several metrics.

1 Introduction

Due to the increase in the number of channels and the need for more customized content for different
audience segments, content authors need to produce content at a very rapid pace. On the other hand, a
lot of such content has already been produced and is available in enterprise content repositories. Ideally,
the author looks for such content and re-purposes them for her current need. Due to the tedium of this
task, the author may resort to creating the content from scratch. Automating this task can greatly aid the
author in improving their overall productivity.

Given an enterprise author’s requirement in the form of a snippet describing the content she is try-
ing to build, standard querying mechanisms can be utilized to fetch the right set of articles that can
cater to her needs. However, constructing an initial piece of ‘article’ that can cater to her needs would
still be a non-trivial task. Existing work in this direction focuses on generating content for standard
platforms like Wikipedia (Banerjee and Mitra, 2016), where the target content is divided into different
‘categories/section’ and text is generated for each section. While this could be useful, the absence of a
predefined structure in an enterprise setting makes the extension of such an approach challenging. This
calls for an approach that can automatically build an author’s content covering various aspects of the
target article.

The content style in an enterprise corpus is fairly consistent. However, there could be multiple rep-
resentations of the same information across the repository. This necessitates the content generation to
reduce the redundancy in the constructed content and adding topical diversity to the article. Finally,
the content generated should be coherent with a cohesive flow of information.

To address all these requirements, we propose an approach that automatically generates a coherent and
non-redundant article based on an author’s input snippet simultaneously optimizing the relevance of the
generated text to the snippet, coverage of different aspects of the content and diversity in the information
content. The acceptance criteria for such systems can be a reasonable draft instead of publishable content,
given that the objective of such a system is not to replace the authors, but to provide them with a draft
that can be polished quickly. Table 1 shows a sample article generated by the proposed algorithm based
on an input snippet from DUC2007 data (Dang, 2007).
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Table 1: A sample snippet and the corresponding article generated by the proposed algorithm based on
the DUC2007 data (Dang, 2007).

Input Snippet: Microsoft’s antitrust problems and its alleged illegal behavior and antitrust proceedings against the company.
Generated article by CCC: a justice department spokesman confirmed thursday that we have an ongoing investigation
and its continuing. microsoft based in redmond of washington has been the focus of antitrust investigations in the past
years. microsoft corp is making a last minute offer to settle the charges. nbc news reported wednesday that the justice
department and at least 19 states plan to file historic antitrust cases thursday against microsoft. if they proceed the suits
could be among the biggest corporate challenges in history according to analysts. on monday in washington dc the federal
government and 20 states kicked off the trial that accused microsoft of illegal activities including bullying competitors. back
in seattle washington state where microsoft is based the company fired off five upbeat productoriented press releases and
other announcements. its web site on monday carried two articles in favor of microsoft. it helps the atmospherics of the
governments case but its not clear beyond that what the effect will be. meanwhile the antitrust trial is already well under way
and judge thomas penfield jackson is expected to rule early next year. but sherlund noted the ruling does rein microsoft in
and it clearly comes at an awkward time for the company given the antitrust case. antitrust experts said that most countries
still investigating microsofts practices were taking a waitandsee stance toward the company pending the outcome of the
major us antitrust case

Our algorithm takes author intent in the form of a short snippet (say a sentence) and finds relevant
content from a repository to create a pool of content. It then identifies the most representative part of the
content (factoring in relevance level) and generates multiple candidate sentences by compressing infor-
mation from multiple related sentences to enrich the information content (and reduce redundancy). The
compression algorithm leverages usage patterns in the repository to form sentences with good readabil-
ity. Subsequent candidate sentence generations account for the already generated candidates to ensure
diversity. We finally assemble the content in an appropriate order by solving an integer linear program
that simultaneously optimizes the coherence with various linguistic quality measures to determine the
best ordering. Thus, our system strives to generate a draft of content that is relevant to the author intent,
diverse, information rich, cohesive and readable.

We present the results of performance evaluation of our system with DUC 2007 (Dang, 2007) and
Australian Legal (Galgani et al., 2012) datasets. Our experiments show that our system produces drafts
which are as good as state-of-art baselines for content generation in Rouge scores, diversity, readability
and cohesiveness, and beat each of the baselines in at least one of these metrics.

2 Related Work

There is a significant body of work in the domain of text summarization (Nenkova and McKeown,
2011). The problem of corpus based content construction could be perceived as a summarization task
once we have identified the required candidate content fragments from the corpus. In particular, the
problem could be cast as a multi-document summarization or query-focused summarization. However,
in our problem, there is no requirement to maintain the distribution of concepts/information between
input document and output content, thus making it different from standard summarization problems.

There have been some efforts towards extending multi-document summarization for expanding a piece
of content. Banerjee et al. (2015) use a sentence ranking and clustering formulation along with ILP based
constraint optimization to create expanded documents. Bing et al. (2015) explore a more fine-grained
setting, constructing sentences using noun/verb phrase level breakdown of input text. However, neither
of these two approaches handle the document coherence problem at a granular level and rely on using
the original sentence order as their notion of coherence.

Query-focused multi-document summarization approaches such as those of Li and Li (2014) and Wang
et al. (2013) do not have an explicit model of coherence, in spite of using coherence as one of the
evaluation criteria. In the proposed algorithm, we use an Integer Linear Program formulation to achieve
a coherent generation despite not explicitly selecting contiguous content fragments.

Srinivasan et al. (2017) extend standard extractive summarization techniques to build article by com-
bining different paragraphs in a corpus. However, they do not account for coherence or information
redundancies in the generated content. Often, retaining an entire paragraph might not yield the best
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information coverage. We explicitly account for these aspects in our proposed algorithm.
There are some recent efforts towards accounting for coherence in summarization by extending the

transition probability based approach by Lapata and Barzilay (2005) and including coherence in their
optimization frameworks. Parveen et al. (2016) use ‘patterns’ from a standard corpus to define the
transition probability, while Nayeem and Chali (2017) and Wang et al. (2016) use information overlap
based metric to define the transitions. Our framework also uses an approach similar to the latter to
account for coherence in our text generation.

Knowledge enhancement: There have also been some efforts towards content elaboration in the context
of knowledge enhancement. Schlaefer et al. (2011) aim to enhance question-answering by expanding a
‘seed document’ using web resources to construct the answer based on ‘paragraph nuggets’. However,
both lexical and semantic redundancies are undesirable for a content author. In our approach, we mini-
mize the lexical and semantic redundancies based on a graph based sentence compression which jointly
optimizes for relevance and diversity of the expanded content.

The work by Bairi et al. (2016) uses expansion of short documents to enhance the document repre-
sentation for improved document classification. Their framework aims to improve performance for a
task without using task-specific heuristics. However, since the objective is to maximize the classification
performance, the algorithm proposed by Bairi et al. (2016) does not care about linguistic aspects of the
elaborated content.

Taneva and Weikum (2013) identify relevant text snippets (‘gems’) by using an integer linear program
to maximize relevance of selected words, and prefer the selection of contiguous content pieces since
this maximizes the coherence of the content resulting in a lot of content being chosen from the same
source. However, the information for a specific article can come from multiple sources and hence this
will not achieve information coverage. We use this as one of the baselines for our comparisons and show
improvements in the coverage of our proposed approach.

Wikipedia Generation: Mihalcea and Csomai (2007) identify key concepts in a document and link
them to corresponding Wikipedia pages. While this helps to identify relevant Wikipedia areas for the
document, it will not help in expanding the seed content from these sources. Sauper and Barzilay (2009)
came up with the first complete version of such a system. Their work leverages the structure of Wikipedia
articles of a category to produce a new article in the same category. Banerjee and Mitra (2016) extend
these ideas to construct a Wikipedia article by learning the article structure from the structure of related
articles, rather than relying on a single category. While this is closer to what we would like to achieve,
the lack of structure in an enterprise article poses a unique challenge in our case. Further, if the corpus is
huge, this can result in a lesser information coverage. We address this in our proposed algorithm via an
iterative reward framework to maximize the information coverage of the generated article.

3 CCC: Corpus based Content Construction

We propose a Corpus-based Content Constructor (CCC) that simultaneously optimizes for relevance to
the input snippet, covers different information about the target content, avoids redundant sentences and
improves the coherence of the final content. The algorithm involves 3 stages: extracting the intent of
author from the snippet, identifying and generating candidate content towards the author’s need and
assembling the generated content in a coherent fashion.

We begin with extracting the top-k keywords in the snippet using the inverse document frequency
(IDF) of the words in the corpus, thus capturing the most significant keywords in the snippet with respect
to the corpus. A query q is then formulated by concatenating these ‘k’ keywords (Aula, 2003), where
the choice of k determines the relevance and the amount of content that is available and fetched from the
repository. A lower value of k results in the query under-representing the content and fetching articles
that may not be very relevant. On the other hand, a higher value of k will result in a very specific query
that might not fetch many results from the repository.

The retrieved fragments are broken into sentences. To select the appropriate content for construction,
we create a graph and represent the sentences as nodes in the graph. The information content of the
sentences is assigned as a “reward” to the corresponding nodes and their information overlap as the edge
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weight. As explained later, the most “rewarding” part of the graph is identified and the sentences in
that sub-graph are compressed to prepare candidates to be included in the final content. The sentence
compression reduces the syntactic and lexical redundancies arising due to multiple manifestations of the
same information in different parts of the corpus. Once the candidates are generated, the rewards of the
nodes in the graph are adjusted to account for the information in the generated candidates. This allows
for increased information coverage in the generated sentences by discounting the information covered
by the previously extracted candidates.

The candidates are generated iteratively till the overall information relevant to the input snippet is
exhausted in the graph. To select the final content, an Integer Linear Program (ILP) is formulated that
maximizes the relevance to the snippet along with the information cohesion in the generated content. The
optimization problem is also constrained to keep the constructed content to a certain budget (length) and
avoid simultaneous selection of semantically very-similar sentences. The ILP outputs a set of compressed
sentences along with their sequence to yield a cohesive content.

The candidate generation and coherent candidate organization are the key contributions of our algo-
rithm and we describe the details below.

3.1 Candidate Generation via Sentence Compression:

The candidate set of fragments is broken into sentences and a graph G(v, e) is constructed with every
sentence as a node vi ∈ V in the graph. An initial “reward” r0i for vi is assigned based on its similarity to
the query q. The edges e ∈ E are constructed between every pair of fragment that contain a significant
information overlap and the similarity between the sentences is assigned as its edge weight wij .

We iteratively select a sub-graph in G whose nodes can be used as candidates for compression. Each
sub-graph consists of a node vi along with its 1−hop neighbors. The gain Gvi of processing a node vi
(along with its 1−hop neighbors) for sentence compression at round l is given by,

Glvi = rl−1i +
∑
vj∈Ni

rl−1j × wij (1)

where Ni refers to the neighbors of node vi. At step l, we select the v∗i that has the maximum gain Gvi .
The sentence corresponding to the node selected vi along with the sentences in its 1−hop neighborhood
is put into a set svi , which is used for multi-sentence compression (Filippova, 2010) to remove the
redundancy across the multiple sentences and generate candidates.

Multi-sentence compression constructs a (different) graph (Ĝc) out of the candidates such that each
word is a node, and each sentence represents a directed path in the graph. Specialized nodes serve as start-
of-sentence and end-of-sentence nodes. A single node is used to represent all occurrences of a word with
the same POS tag. The edges between nodes have weights representing the number of times the ordered
combination of those node-words occurs across all sentences in svi . The shortest paths (normalized by
path length) are identified and the top-K generated sentences are used for further processing. For our
purposes, we restrict the minimum number of words per generated sentence to 10 words and pick 1
sentence in every iteration.

A reward rk̂ is assigned to every compressed sentence based on its similarity to the query q. In order
to factor the information captured by the compressed sentences for subsequent selections, the rewards of
vertices vi in the original graph (G(v, e)) whose information overlap (wik̂, computed in the same way as
the edge weights) with the compressed sentences is significant, is updated as as rl+1

i = rli × (1 − wik̂).
This reduces the rewards for sentences which are covered by current set of compressed sentences thus
reducing the chance of their inclusion in subsequent compression. This ensures that the information
covered by the subsequent compression is different from already generated sentences while still relevant
to the input query.

The candidate generation is stopped when there are no nodes left with significant reward (greater than
a threshold) resulting in the same sub-graph being selected for successive compression.
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3.2 Coherent Candidate Organization via ILP
The sentence compression yields candidates that cover the information space relevant to the input snippet.
However, the compressed sentences might be grammatically incorrect and not ordered appropriately to
be coherent. Therefore we select the right set of compressed sentences along with their order via an
Interger Linear Program (ILP) formulation by extending the framework used by Deshpande et al. (2007)
and Banerjee and Mitra (2016). The ILP objective is given by,

J =
K∑
i=1

wixi + λ
∑

i,j|cohij>σ

cohi,jyi,j (2)

such that:
K∑
i=1

cixi ≤ B (3)

yi,j = 0 if cohij < σ or i = j (4)

xi + xj ≤ 1,∀i, j|simi,j > 0.7 (5)∑
i

ys,i = 1,
∑
i

yi,e = 1 (6)

∑
i

yi,j =
∑
i

yj,i,
∑
i

yi,j +
∑
i

yj,i = 2xj (7)

The binary variable xi indicates the selection/non-selection of a compressed sentence i and the binary
variable yi,j indicates a transition from a sentence xi and xj . Traversing the path of the sentences via yi,j
would yield the final generated sentence. The wi for each compressed sentence indicates a combination
of the sentence’s relevance to the snippet along with its overall linguistic quality. This ensures that the
compressed sentence selected is not noisy and is relevant to what the author is looking to build. The
second term in Eq. 2 maximizes the coherence of the selected flow of sentences. This follows from
the work by Lapata and Barzilay (2005) which defines a model of coherence based on the topic overlap
between successive sentences.

The constraint in Eq. 3 accounts for the length requirement of the author and limits the generated
content to a target budget B. Eq. 4 prohibits a flow of content between lesser coherent sentences and
avoids cycles in the arcs. Eq. 5 limits simultaneous selection two sentences with higher information
overlap to produce less redundant content.

Similar to Banerjee and Mitra (2016), we constrain the optimization problem to also account for
the overall quality of the generated content. The formulations to constrain the arcs is extended from
WikiWrite (Banerjee and Mitra, 2016) by introducing dummy start s and end e nodes to the graph of
sentences. An arc between two nodes exists if both the sentences are selected for the final content and
are contiguous. The dummy nodes s and e are used to connect to the start and end sentences. Eq. 6 limits
the number of starting and ending sentences to 1. Eq. 7 limit the number of incoming and outgoing arcs
from a selected node to 1 each forcing a path via the arcs that indicate the flow in the selected content.
Algorithm 1 summarizes the complete algorithm.

4 Evaluating different stages in CCC

In CCC, sentence compression (Filippova, 2010) is used to avoid redundant information in the con-
structed content by compressing information from multiple sentences into a single sentence. Further,
the graph based candidate selection for compression enables covering diverse aspects around the target
content. Finally, the ILP formulation facilitates coherence in the generated content.

To test if the different stages achieve the targeted goals, we test different parts of our algorithm on the
DUC2007 Multi-document Summarization data (Dang, 2007). This data consists of a topic along with a
set of documents related to the topic and reference summaries for the set of documents. For the sake of
this experiment, we bypass the query construction stage. We use the topic associated with the document
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Algorithm 1: Corpus-based Content Construction

Input: q: Snippet input by author, F : Set of all fragments
Output: C: Generated Expanded Content
K← Top-k keywords from q based on IDF from F ;
F← query F with K;
S ← split F into sentences;
begin
G ← graph(V, E) where,
V ← S, with reward rvi ← info content of vi
E ← {eij | weight wij ← info overlap(vi, vj)}

end
S ← φ ;
repeat

forall vi ∈ V do
Ni ← neighbours of vi;
Gvi ← ri +

∑
vj∈Ni

rj × wij ;

end
vI ← node with maximum Gvi ;
Γ← subgraph of G with vI and its 2-hop neighbourhood ;
SK ← top-K sentences after sentence compression on vi ∈ Γ;
S ← S ∪ SK ;
forall vk ∈ V do

rk ← ri × (1− wSKk);
end

until ∀vi, rvi ≤ threshold;
C← ILP(S) ; // Integer Linear Program (Eqns. 2-7)
return C

as the ‘author’ content snippet and the set of documents as the input. Further, we considered the reference
summaries as the articles that the author has constructed and is used as a basis for our quality evaluations.
The average length of the reference articles is used as the desired length of the generated content.

In order to evaluate the generated content, we use the following metrics to measure different aspects
of the generated content.

Rouge-N (Lin, 2004) scores measure the precision, recall and f-measure for the occurrence of n-
grams in the generated summary with respect to the reference human generated summary. We compute
the Rouge scores of the generated content against the reference article.

To compute the coherence of the generated content, we follow the definition of local coherence by
(Lapata and Barzilay, 2005). Measuring local coherence is quantified by the the degree of semantic re-
latedness between consecutive sentences and is obtained by taking the mean of all individual transitions.
Coherence is given by,

coherence(cgen) =

∑n−1
i=1 sim(cigen, c

i+1
gen )

n− 1
(8)

where sim(cigen, c
i+1
gen ) is a measure of semantic similarity between sentences cigen and ci+1

gen .
To measure the relevance of the generated content to the input snippet, we follow the formulation by

(Srinivasan et al., 2017). Relevance is computed as a weighted average given by,

rel(cref , cgen) =
M∑
i=1

∑TopK(cref ,c
i
gen)

k=1 γksim(cigen, c
k
ref)

M
∑K

k=1 γ
k

, (9)

where cref are the sentences in the reference and c1...Mgen are the sentences in the generated content.
TopK(cref , c

i
gen) returns the top-K sentences in the reference content similar to cigen (in the decreas-

ing order of their similarly as computed by sim(ciexp, c
k
inp)). The parameter γ, (0 ≤ γ ≤ 1), penalizes

the addition of a sentence that is similar to only a small set of the input sentence via a decayed-weighted-
average.

Finally, to calculate the information diversity in the generated content, we again extend the formula-
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tion by (Srinivasan et al., 2017) and compute a weighted average given by,

div(cgen) =
N∑
i=1

∑TopK(cgen,cigen)

k=1 γksim(cigen, c
k
gen)

N
∑K

k=1 γ
k

. (10)

4.1 Information Coverage and Diversity:
Picking content from a corpus to construct a text can yield redundant content because of multiple rep-
resentations of the same information in the corpus. If the final content is budgeted, this can result not
only in redundant content, but also in a lost opportunity to cover other aspects of the content. In order to
address this, we extend the sentence compression (Filippova, 2010) to combine multiple such sentences
to provide a compressed content.

However, performing the sentence compression on a larger set of sentences may result in the com-
pression of totally different pieces of information and can often be detrimental to information quality.
Our proposed graph formulation identifies similar sentences to be compressed. The iterative subgraph
selection in our formulation also enables us to cover different aspects of the content that are required to
be generated.

Fig. 1(a) shows the performance of the sentence-compressed content against the uncompressed content
selected based on relevance maximization (Carbonell and Goldstein, 1998). We have used box-and-
whiskers plots for our results in this paper. The box gives the boundaries of the first and third quartile,
and the middle band shows the median value. The whiskers extending from the box boundaries on both
sides show the minimum and maximum values, except for the outliers which are shown as points by
themselves.

The Rouge scores are comparable across the 3 methods indicating similar quality of the different
settings. Similarly, the relevance of the generated content is also comparable across the 3 methods.
Since the graph based compression iteratively selects candidates to compress based on those previously
generated, it produces content that is more diverse as indicated in Fig. 1(a). Since the plain sentence
compression works on a large set of candidates, the diversity improvement is lower than that for the
graph based compression. This validates our hypothesis that graph based compression yields diverse yet
relevant content.

Finally, the graph based sentence compression improves the overall readability of the text based on
the Flesch reading ease (Kincaid et al., 1975) suggesting that the improvements observed with relevance
and diversity are not coming at the cost of the linguistic quality of the generated content.

4.2 Coherence with ILP formulation:
The ILP formulation reorders the generated content in a way that improves the overall coherence of
the content. Fig. 1(b) shows the performance of the generation with and without ILP. For the non-ILP
version, candidates were selected from the compressed sentences via relevance maximization (Carbonell
and Goldstein, 1998). It can be seen that the ILP formulation improves the overall coherence of the
generated content while maintaining the other quality aspects.

5 Performance evaluation of CCC against baselines

To position our work against existing work, we use two state-of-the-art baseline systems. Our first base-
line is GEMS, proposed by (Taneva and Weikum, 2013). GEMS is an extractive generation framework
that uses an ILP formulation to extract a set of sentences towards the required content optimizing for
the coherence by selecting contiguous sentence fragments. Our second baseline, WikiWrite (Banerjee
and Mitra, 2016), has been used to generate Wikipedia articles in a coherent fashion. Similar to our
approach, WikiWrite also uses a combination of sentence compression with ILP, however, the sentence
compression does not account for the information covered by previously generated candidates, leading
to lesser diversity.

Our goal is to obtain the best generation given a set of retrieved text. Alternative methods to modify
tf*idf criteria (Lecorvé et al., 2008) could be used to increase the specificity of retrieved documents to
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Figure 1: Impact of different stages of CCC on the various quality aspects of the generated content

the topics in the query. However, to prevent any bias in the quality of query search results, we ensure that
the seed set of documents provided as input to each of the approaches is the same (specified in Section 3)
without any such modifications.

In the rest of this section, we present a comparison of CCC against the baselines. To check for sta-
tistical significance, we employ the Wilcoxon signed-ranked sum test (Wilcoxon, 1945), comparing the
paired difference in values between the baseline and CCC. Test statistic and p-value indicated are from
one sided tests, as indicated. The significance level is taken at p = 0.05. We also report the sum of ranks
assigned to differences with positive sign (V) for each test.

Fig. 2(a) shows the Rouge scores for the generated content against the human generated content. At
the entity level, the proposed generation has a significantly better performance against both the extractive
(GEMS) (V = 977, p = 0.042) and abstractive (WikiWrite) (V = 979, p = 0.040) approaches. When
compared beyond unigrams, the generation quality is comparable as indicated by the Rouge-L scores.

Since all the methods optimize for the relevance, the proposed approach has comparable relevance
to the baselines. However, our proposed approach yields a higher information diversity and coverage
as compared to the other approaches. As observed previously, sentence compression results in more
information compressed into the content and hence both WikiWrite and our approach generate more
diverse content. The diversity of our approach is more than that of WikiWrite due to the optimized
sentence selection that precedes compression in our approach. This indicates that our approach yields an
article much more informative than those generated by the baselines - GEMS (V = 1540, p < 0.001)
and WikiWrite (V = 1440, p < 0.001).

GEMS is outperformed by both our approach (V = 1440, p < 0.001) and Wikiwrite (V = 1398,
p < 0.001) at coherence, since both of these algorithms account for coherence explicitly. The coherence
of our algorithm and Wikiwrite was found to be comparable.

Finally, we compute the Flesch reading ease (Kincaid et al., 1975) to quantify the readability of the
generated content as its based on the Flesch reading ease. Since GEMS uses human generated sentences
as-is from the input, it yields readable sentences. Unlike WikiWrite, our approach compresses only
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Figure 2: Generated content quality for CCC against GEMS ((Taneva and Weikum, 2013)) and Wiki-
Write ((Banerjee and Mitra, 2016)) on the Australian Legal Dataset (Galgani et al., 2012)

related sentences and thus does not result in unusually larger and less readable sentences, thus, our
readability is higher (V = 1380, p < 0.001). The reading ease is comparable to GEMS despite not using
the sentences as-is.

To conclude, we are able to achieve a performance which parallels that of the better of the two
baselines in most aspects, while significantly outperforming them in other aspects.

Australian Legal Dataset: Although the performance of our proposed algorithm on the DUC2007
dataset is promising, the dataset is relatively small as compared to an enterprise content repository. In
order to test the performance on a larger enterprise-like corpus, we evaluate the proposed approach on
the Australian Legal Case Reports dataset1 (Galgani et al., 2012), a collection of 3890 legal cases from
the Federal Court of Australia (FCA) from 2006 to 2009. We used the gold standard summary for every
case as the input snippet and the actual article as the reference. The legal articles were 6406-word long
on an average, while the summaries were 65-word long on an average. Here, we also try to generate
articles of different length - 100, 200 and 500 - to test the robustness of extraction. Fig. 2(b) shows the
generation quality for our approach against the baselines. The trends observed in Fig. 2(a) for the DUC
dataset carry over to Australian Legal Case Reports one as well. This validates the performance of our
approach across corpora.

As the target size of generated content is increased, the algorithms’ output becomes increasingly more
relevant to the original article. The diversity of the proposed algorithm also increases with a minor dip in
coherence. This can be attributed to the fact that the coherence measures inter-sentence topical overlap
and with increased diversity, there is a minor dip in local coherence since the topic overlap will reduce.

1http://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports, Accessed 16 March 2017.
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6 Conclusion

We studied the problem of constructing a piece of text by picking content from an existing corpus and
combining them by optimizing relevance, information coverage and coherence with reduced redundancy.
Evaluations based on several metrics against state-of-the-art baselines shows superior performance of the
proposed solution and hence demonstrates the feasibility of the approach. We believe that automated text
generation will play a key role in smart authoring workflows for several domains in the near future.
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