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Abstract

Vulgarity is a common linguistic expression and is used to perform several linguistic functions.
Understanding their usage can aid both linguistic and psychological phenomena as well as ben-
efit downstream natural language processing applications such as sentiment analysis. This study
performs a large-scale, data-driven empirical analysis of vulgar words using social media data.
We analyze the socio-cultural and pragmatic aspects of vulgarity using tweets from users with
known demographics. Further, we collect sentiment ratings for vulgar tweets to study the re-
lationship between the use of vulgar words and perceived sentiment and show that explicitly
modeling vulgar words can boost sentiment analysis performance.

1 Introduction

Vulgarity is common in language use, with vulgar words appearing with a frequency estimated be-
tween 0.5% and 0.7% in day-to-day conversational speech (Jay, 2009; Mehl et al., 2007) and 1.15% in
Twitter (Wang et al., 2014). Vulgarity can employed for multiple goals: as an intensifier for subjective
opinions, as a way to offend or express hate speech towards others, to describe vulgar activities or as a
way to signal an informal conversation. Understanding the expression of vulgarity in naturally occur-
ring text is thus important for several disciplines such as linguistics, which aims to better understand
the pragmatics of vulgarity, for computer scientists which can explicitly model vulgarity in downstream
NLP applications and for psychologists who study the socio-cultural factors of profanity.

Social media offers researchers access to vast volumes of naturally occurring user-generated content,
with language use on social media containing a high level of expression of thoughts, opinions and emo-
tions (Java et al., 2007; Kouloumpis et al., 2011). Furthermore, it is a platform for observing written
interactions and conversations between users (Ritter et al., 2010). Thus, social media is a ideal medium
to observe and study the expression of vulgar words and, in addition, allows us to study the socio-cultural
context of this phenomenon.

Given the fact that most thoughts can be rephrased to not include vulgarity, the use of vulgar words
indicates a purposeful attempt of performing a specific function. Table 1 includes examples of tweets
containing vulgar words that perform different functions.

Vulgarity is often employed used to express emotion in language and can be used either to express
negative sentiment or emotions or to intensify the sentiment present in the tweet (Wang, 2013). In one
of the examples, ‘I am stupid as f*ck’ conveys more intense anger, while ‘I am stupid’ conveys a less
emotional expression of irritation. Hence, understanding vulgar words is expected to have practical
implications in sentiment analysis on social media. Furthermore, vulgar word usage is dependent on
the user socio-cultural context with demographic and social information shown to improve sentiment
analysis performance (Volkova et al., 2013; Yang and Eisenstein, 2017).

Hence, this study aims to address the following research questions:
• Is the expression of vulgarity and its function different across author demographic traits?

* Equal contribution.
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2928

Tweet Function

I have made the awful decision to stay up all night. Why? Be-
cause I’m stupid as fuck.

emphasize

It’s annoying when a program does the “you sure you want to
quit?” thing but I’d be lying if I said it hasn’t saved my ass a
number of times

neutral/idiomatic

U got some shitty weather Illinois.... I miss texas heat express negative sentiment

<USER> I had that game it was the shit I believe it was some-
thing like baseball 2121

express positive sentiment

Table 1: Examples of tweets with vulgar words and their function.

• Does vulgarity impact perception of sentiment?
• Does modeling vulgarity explicitly help sentiment prediction?

To this end, we collect a new data set of 6.8K tweets labeled for sentiment on a five-point scale by nine
annotators. We found that the expression of vulgarity interacts with many key demographic variables,
including gender, age, education, income, religiosity and political ideology. Vulgarity is also used to
convey different sentiment polarities by users that differ in age and religiosity. When studying the impact
of vulgarity on sentiment perception, we show that vulgarity is most often used as an intensifier for the
original sentiment. Finally, we show that explicitly informing sentiment analysis systems about vulgarity
usage helps boost predictive performance.

This study aims to develop a quantitative understanding of the way in which social de-
mographics interact with how vulgarity is actively and intentionally employed and show that
this can be used to improve end-user applications such as sentiment analysis. We re-
lease our novel annotated corpus as well as the accompanying code to the community at
https://github.com/ericholgate/vulgartwitter.

2 Related Work

Vulgarity The study of vulgar language – also referred to as profanity or use of swear/curse words
despite the fact that they can be used for different goals – is of interest to linguists, psychologists and
computer scientists. Vulgar words are very versatile, with a vulgar word being able to perform different
interpersonal functions according to different contexts (Andersson and Trudgill, 1990). Several studies
have examined these different uses and pragmatic functions. Pinker (2007) groups use of swear words
into five roles: abusive (intention to offend or cause psychological harm), cathartic (used in response to
pain), dysphemistic (intention to convey negative sentiment), emphatic (intention to draw attention) and
idiomatic (used for no purpose or to signal informality). Wang (2013) identifies four pragmatic roles of
swear words: express emotion, express emphasis (either in presence of additional sentiment or not), to
signal group identity and for aggression – in this latter case, swearing is a face-threatening act (Brown
and Levinson, 1987). Overall, the function and effects of vulgar word usage are highly dependent on the
context and the social factors (e.g., inter-personal relationships, setting), which we aim to further study
and capitalize on in this study.

Recently, there has been a surge in interest in studying hate speech online (Warner and Hirschberg,
2012). A better understanding of vulgar words and the context they are used in can aid models that
aim to automatically detect and categorize hate speech, which is harder to distinguish when profanity is
employed (Malmasi and Zampieri, 2018).

Vulgar words have been quantitatively studied in social media and online communities. Liu et al.
(2010) identified and filtered vulgar content distributed via peer-to-peer applications. Wang et al. (2014)
presents a quantitative analysis of the frequency of curse word usage on Twitter, their variation with
time and location, their gender usage and use in conversations across genders. An analysis of swear
word usage across gender and age on Twitter was performed in Gauthier et al. (2015). Vulgar words
are obfuscated in mediums where messages are censored or for other goals, and an analysis of these
techniques is presented in Laboreiro and Oliveira (2014). Our paper expands the scope of this research
by studying several other demographic traits beyond gender, aiming to identify different uses of swear
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words through eliciting sentiment annotations and uses these to improve sentiment prediction methods.

Sentiment analysis Sentiment analysis on Twitter is a very popular research topic, anchored in a wide
range of industry applications and with several shared tasks over the past years (Rosenthal et al., 2017).
Several studies have looked at the effects of intensifiers and words that switch their polarity in sentiment
dictionaries (Flekova et al., 2015). Vulgar words are commonly part of popular sentiment and emotion
analysis lexicons (Mohammad and Turney, 2013).

Demographics & Vulgarity Use of vulgar or swear words is influenced by pragmatic or contextual
factors such as the inter-personal relationship between the speakers or their social factors such as gender,
occupation or social status (Jay and Janschewitz, 2008). The most studied social factor was gender, with
several studies finding that males employ profanity much more often than females (Selnow, 1985; Wang
et al., 2014). Other social factors such as age, religiosity or social status were found to be related with
the rate of using vulgar words (McEnery, 2004). In studying the task of user trait prediction from social
media texts, several vulgar words were shown to be characteristic of demographic traits such as political
ideology (Preoţiuc-Pietro et al., 2017).

Explicitly modeling demographic (Lynn et al., 2017) and other social factors such as community mem-
bership (Yang and Eisenstein, 2017) have to date been successfully used for improving accuracy of sev-
eral tasks including sentiment analysis (Volkova et al., 2013) or document classification (Hovy, 2015).

3 Data

In exploring the role of vulgarity in written interactions, social media and Twitter in particular stands
out as an ideal medium for collecting data. Twitter provides vast volumes of naturally occurring text,
which are less affected by formal and curated text such as newswire, and can be studied together with
socio-demographic attributes of their authors.

Data Collection We collect a novel corpus of tweets, all of which contain vulgar words, and annotate
this for sentiment, as to the best of our knowledge, no such corpus focusing on vulgar expressions exists
in past research. This data is used in the sentiment analysis section of this study.

In order to enable the analysis of demographics and vulgarity in the analysis section of this study, the
above tweets were deliberately sampled from those posted by a set of 4,132 users with known socio-
demographic traits obtained through asking the users to self-report them in an online survey. For the
demographic analysis, we have downloaded and used all most recent 3,200 tweets (per Twitter API
limitations) from these users. This data set was used in prior research and for a full description of the
data collection process and quality control processes, we refer the interested reader to Preoţiuc-Pietro et
al. (2017).

Demographic Variables and Coding The Twitter users self-reported through a survey the following
demographic variables: gender, age, education level, annual income level, faith and political ideology.
All users solicited for data collection were from the United States in order to limit cultural variation.
• Gender was considered as binary2 and coded with Female – 1 and Male – 0. All other variables are

treated as ordinal variables.
• Age is represented as a integer value in the 13–90 year old interval.
• Education level is coded as an ordinal variable with 6 values representing the highest degree ob-

tained, with the lowest being ‘No high school degree’ (coded as 1) and the highest being ‘Advanced
Degree (e.g. PhD)’ (coded as 6).
• Income level is coded as on ordinal variable with 8 values representing the annual income of the

person, randing from ‘<20,000$’ to ‘>200,000$’).
• Faith is coded as a ordinal variable with 6 levels, representing the average number a time a user

attends religious service. The answers range from ‘Never’ (coded as 1) through to ‘Multiple times
a week’ (coded as 6).

2We asked users to report gender as either ‘Female’, ‘Male’ or an open-ended field, and removed the few users which did
not select ‘Male’ or ‘Female’
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• Political ideology is measured on the conservative–liberal spectrum, the common way of repre-
senting ideology in the US (Ellis and Stimson, 2012). Ideology option are: Very conservative (1),
Conservative (2), Moderately conservative (3), Moderate (4), Moderately liberal (5), Liberal (6),
Very liberal (7); Other (8) and Apathetic (9). In order to convert this to a ordinal scale, we only
perform political ideology analysis with users with a ideology in the set 1, 2, 3, 5, 6, 7 (1290 users
removed in total, similar to (Preoţiuc-Pietro et al., 2017)).

Identifying vulgar tweets In order to identify tweets containing vulgarity, we start with the vulgarity
lexicon available at www.noswearing.com. This lexicon comprises 349 items including general
vulgarities, slurs, and sex-related terms.3 We manually removed a total of 82 items from this list that were
deemed not to be unambiguously vulgar.4 Additionally, we employed a manually crafted list of regular
expressions to identify common intentional spelling variations in vulgar terms (e.g., vowel reduplication
such as fuuuuu*k or sibilant reduplication such as assssss).

We identified 261,592 tweets containing at least one vulgar word, from 3,626 users featuring 222
unique vulgar tokens, many of which are either compounds of vulgar tokens with non-vulgar words
or are morphological derivations (e.g., assbag or f*ck vs. f*cking). Of these, 149 words occur in the
data less than 100 times, while the top 20 most frequent words account for 90% of total vulgar word
occurrences. The median frequency of the vulgarity lexicon is 27 in our larger data set. These results are
in line with previous analyses of vulgar word frequencies and their distribution (Wang et al., 2014).

Data Processing To preserve anonymity, we replace URL’s by a <URL> token and usernames are
masked by a <USER> token. Further, punctuation is removed and all words are lowercased.

Sentiment Annotation Human annotations of sentiment were solicited for 7,800 vulgar tweets (ex-
cluding retweets) via Amazon Mechanical Turk (MTurk) platform. These tweets were sampled uni-
formly from a randomly sampled set of 2,000 users in our corpus that posted at least one vulgar tweet.
We perform this sampling of users in order to have a broad range of users, but have more than one sample
tweet for each user.

The task setup and guidelines follow the settings of SemEval 2016 Task 4 subtask C (Nakov et al.,
2016). Annotators evaluated tweet sentiment on a five-point scale: (1) very negative, (2) somewhat
negative, (3) neutral, (4) somewhat positive, and (5) very positive. The numeric coding for this scale
follows a gradual movement from more negative to more positive, allowing sentiment to be treated as
a continuous variable. A sixth option, not applicable, was available to workers to cover instances in
which there was missing contextual information or a tweet was illegible. Each tweet was annotated
by nine different and independent annotators to allow for sufficient data to generalize across individual
sentiment perception boundaries.5

Annotation results were checked for inter-annotator agreement by comparing individual user responses
to the average annotation of their peers across all tweets that they annotated (Li et al., 2016). Annotations
from users with a Spearman correlation coefficient less than 0.3 were removed from computing consensus
labels. Tweets with less than five remaining annotations were excluded. We also excluded tweets whose
majority ratings are not applicable. This resulted in a final data set consisting of 6,791 annotated vulgar
tweets. Following the procedure for SemEval, Sentiment annotations for these tweets were consolidated
by majority vote. If a majority rating was not present, the consolidated score was set to the mean of all
ratings (ratings of not applicable were excluded).

The consolidated sentiment ratings were distributed as follows: 1.94% very positive, 14.57% somewhat
positive, 26.51% neutral, 46.62% somewhat negative, 10.14% very negative.

3While this initial method we use is not fully accurate (Sood et al., 2012a), it reaches high accuracy levels of more than
90% (Sood et al., 2012b)

4These terms were largely anatomical words or general verbs like penis, vagina, and blow, but some identity descriptors
like gay, queer, and lesbian were also excluded after manual review of a large sampling of uses revealed they were not over-
whelmingly employed as slurs.

5We asserted the following qualifications on MTurk: locale=US, approval rate >90%, number of HITs approved >100.
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Demographic Trait Pearson r p-value

Gender -0.077 1.61−4

Age -0.233 6.64−31

Education -0.100 7.62−07

Income -0.087 1.73−05

Faith -0.187 2.74−20

Political Ideology 0.124 8.69−10

Table 2: Relationship between user demographic traits and percentage of vulgar tweets of total tweets
sent by the user. Results are computed using Pearson correlation (point-biserial correlation for gender),
with gender and age as controls in partial correlation.

4 Analysis

4.1 Demographics & Frequency of Vulgarity

We first analyze the differences in frequency of employing vulgarity and how this relates to demographic
traits. We use partial Pearson correlation where the dependent variable is the fraction of vulgar tweets
from the total number of tweets sent by a user. For all analyses, we consider gender and age basic traits
and control for data skew by introducing both variables as controls in partial correlation, as done in prior
work (Schwartz et al., 2013; Preoţiuc-Pietro et al., 2016). When studying age and gender, we use only
the other trait as the control. We have experimented with percentage of vulgar words as an alternative
outcome, but the results were very similar, hence we exclude them for brevity. We also experimented
with log-scaling the age variable, but found no major differences.

Gender results show that females are less likely to post vulgar tweets than males. Several previous stud-
ies have reported a similar effect, in written text in the BNC (McEnery, 2004), on social networks (Wang
et al., 2014), speech (Jay, 1980; Jay, 1992) or as self-reported using questionnaires (Selnow, 1985; Pilotti
et al., 2012). In our data, the average vulgar tweet percentages per user are 3.332% for males and 3.060%
for females.

Age exhibits the largest effect on posting vulgar tweets, with younger users much more likely than older
to post, which aligns to analysis of speech (Jay, 1992) and tweets as previously performed in Gauthier et
al. (2015).

Both higher education and income are anti-correlated with usage of vulgarity on social media even
when controlling for gender, with education being slightly more strongly associated with lack of vulgarity
than income. Previously, McEnery (2004) suggested that social rank, which is related to both education
and income, is anti-correlated to use of swear words. In a study on perceptions of user traits from tweets,
raters that were exposed to vulgar words were more likely to consider the user as being less educated
than in reality (Carpenter et al., 2016).

Faith is anti-correlated with use of vulgar words with the second strongest effect, a correlation also
previously identified by Jay (1992).

Finally, liberal users are more likely to use vulgarity on social media, an association on Twitter also
uncovered by Sylwester and Purver (2015) and Preoţiuc-Pietro et al. (2017).

4.2 Demographics & Sentiment Perception

Next, we analyze the relation between the demographic traits of the tweet authors to the perceived (an-
notated) sentiment of the tweet. We perform this analysis in order to uncover potentially different types
of uses of vulgar words. If vulgar words are used as an intensifier, they are used with both positive and
negative sentiment, while if expressing emotion they are expressed mainly with negative sentiment. If
vulgar words are used in neutral tweets, then their role is more likely to be idiomatic.

We test this using partial Pearson correlation with user demographics as the independent variable and
with the polarity of the rating (positive, negative or neutral) as a dependent indicator variable. Again, we
consider gender and age as basic demographic traits and introduce these variables as controls. Similarly,
for age and gender analysis, we the other basic trait as the only control. The results of these analyses are
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Positive vs. All Negative vs. All Neutral vs. All

Demographic Trait r p r p r p

Gender 0.024 0.334 -0.006 0.797 -0.030 0.222
Age -0.107 2.11−5 0.061 0.015 0.093 2.305−4

Education -0.049 0.052 -0.018 0.470 0.076 0.002
Income -0.024 0.324 0.016 0.524 0.001 0.966

Faith -0.108 1.640−5 0.008 0.741 0.128 3.539−7
Political Ideology -0.032 0.276 0.057 0.051 0.008 0.765

Table 3: Relationship between user demographic traits and perceived sentiment rating by MTurk workers.
Results are computed once more using Pearson correlation (point-biserial correlation for gender), with
gender and age as controls in partial correlation.

presented in Table 3.

Positive Sentiment With positive sentiment as an indicator variable, we see that both age and faith have
significant correlations. This indicates that younger and less religious users are more likely to express
vulgar words in presence of positive sentiment, which represents use of vulgarity as an intensifier for
sentiment.

Negative Sentiment With negative sentiment as an indicator variable, we again see a weaker (yet still
significant) correlation with age. This shows that older users are prefer to use vulgar words to deliberately
express negative emotions and sentiment, with other functions being less frequent.

Neutral Sentiment Finally, vulgar words are present with neutral sentiment when this is used idiomat-
ically for signaling informality or other functions. Neutral sentiment is most often employed by religious,
older and more educated users. The latter correlation is especially relevant, as higher education leads to
better social adaptation.

Overall, gender, income and political ideology exhibit no significant correlations with sentiment ratings
of vulgar tweets.

4.3 Vulgar vs. Censored Tweet Sentiment Perception
To test whether vulgarity impacts the perceived sentiment of tweets, we removed the vulgar terms in the
tweets from the vulgar corpus, arriving at an original-censored parallel dataset. We then crowdsourced
the sentiment judgments of the censored tweets using the same method as before.

Among the censored tweets, annotators indicated that 355 —around 5%—of the tweets were rated by
more than 5 (out of 9) workers to be unintelligible after censorship. The distribution of sentiment in
this subset was originally 21.40% positive, 21.97% neutral, 56.62% negative. This loss of intelligibility
is expected and an additional indication that vulgarity bears semantic content and by censoring these
words, the resulting tweet looses coherence.

To determine the extent to which the use of vulgar terms impacts the perception of tweet sentiment, we
calculated the direction and magnitude of the change in sentiment between the vulgar and censored pairs.
For original tweets that are not neutral, we consider three situations: (a) intensify, where the magnitude
of the sentiment towards a tweet intensifies after censorship, e.g. with score changes from 2 to 1 (for
negative tweets) or from 4 to 5 (for positive tweets); (b) weaken, where the magnitude changes in the
other direction, e.g., with score changes from 1 to 2 (for negative tweets) and from 5 to 4 (for positive
tweets); (c) flip, where the censored sentiment is opposite from the original sentiment, i.e., negative
becomes positive or positive becomes negative. For neutral tweets, we consider situations where the
censored sentiment becomes positive (to-pos), or negative (to-neg), or stays neutral (same).

In Table 4, we present the numbers and magnitudes of changes observed in these 6,436 tweets (this
number reflects the size of the censored corpus after excluding the 593 which were rated unintelligible
and those which did not have at least five ratings after removing annotators with low inter-annotator
agreement scores). Clearly, for original positive or negative tweets, censoring has a significant weakening
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Positive Negative Neutral

intensify weaken flip intensify weaken flip to-pos to-neg same

% changed 15.17 34.09 3.69 5.53 40.34 7.44 24.07 19.34 56.59
mean |∆| 0.591 0.785 1.597 0.521 0.936 1.569 0.817 0.825 —

Table 4: Change in perceived sentiment score with censored vulgarity. Results are grouped by initial
perceived sentiment polarity, scored from 1 (very negative) to 5 (very positive). The intensify subcon-
dition indicates that the censored tweet had the same polarity, but with greater magnitude (i.e., original
2, censored 1; or original 4, censored 5). The weaken subcondition describes the opposite effect. The
flip subcondition indicates that the polarity of the perceived sentiment inverted. All of the changes are
statistically significant (p < 0.01)

effect for sentiment. Censored tweets that are originally negative also have a stronger tendency than
originally positive ones to flip sentiment. For neutral tweets, most of the time the sentiment does not
change.

Kruskal-Wallis H-tests were conducted to determine if changes in sentiment rating were significant,
and all results were shown to be statistically significant (p < 0.01). The strongest effect was seen
in the to-pos and negative-flip conditions, indicating that vulgarity is frequently employed by users to
emphasize or introduce a negative sentiment.

About half of the tweets in the corpus did not exhibit a change in sentiment. Of those that didn’t
change, 21.31% were positive, 21.11% were neutral, and 56.14% were negative. Vulgar tweets which
were initially positive or negative were slightly more likely to exhibit some change in perceived sentiment
rating than not, while vulgar tweets that were initially neutral were 8% more likel y to exhibit no change
at all than they are to exhibit change.

5 Modeling Vulgarity

We now consider whether explicitly inserting knowledge about vulgarity into sentiment models will help
sentiment prediction. To do this, we build on top of a base model that has been shown to be effective in
Twitter sentiment prediction (Rosenthal et al., 2017; Cliche, 2017), and propose three ways of inserting
vulgar features into the system.

Base architecture The basis of our system is a bidirectional Long-Short Term Memory Network
(LSTM) (Hochreiter and Schmidhuber, 1997), which utilizes memory cells to capture long-term de-
pendencies. This architecture is similar to the LSTM models in BB twtr (Cliche, 2017), the best system
participated in SemEval 2017 task 4 subtask C (Rosenthal et al., 2017).

For a given tweet of n words, we encode each word wt into an embedding vector xt; we then pass the
embedding matrix to a bidirectional LSTM, arriving at a sentence representation where each hidden state
ht for word wt encodes the context from both words before wt (i.e., w1 to wt) and after wt (i.e., wt to
wn). The hidden state is the concatenation of two directions: ht = [~ht, ~ht].

The bidirectional LSTM sentence representation is then passed into a dense layer with a RELU acti-
vation function RELU(x) = max(0, x). The dense layer is then followed by a dropout layer, and a
softmax classification layer.

Vulgarity features We propose and compare three different ways to account for vulgarity:

• Masking: Mask all vulgar words with a vulgar token, e.g., This is the <VG>. This method essen-
tially considers all vulgar words to be the same token and informs the model of such, but removes
lexical variances and different expressions of vulgarity.
• Token insertion: Insert a vulgar token after each vulgar word, e.g, This is the shit <VG>. This

method allows the curse word to retain its original meaning, while giving it the same representation
as other curse words.
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System Overall Very positive Positive Neutral Negative Very negative

Bi-LSTM 0.791 3.000 1.978 1.008 0.049 1.084
+ Masking 0.898 2.000 1.030 0.028 1.000 1.979

+ Token Insertion 0.761 3.000 2.000 0.996 0.002 1.000
+ Concatenation 0.759 3.000 1.993 0.992 0.002 1.000

Table 5: MAE for each system on Vulgar-Tweet dataset. The best per-class results are significantly better
than the baseline Bi-LSTM with the Wilcoxon signed-rank test.

• Concatenation: Count the number of vulgar words nv in a tweet, and use it as a feature in concate-
nation with the tweet representation from Bi-LSTM ht, before feeding it to the next layer, whose
new input would be [ht, nv]. Effectively, this informs the classifier of the number of vulgar words,
but removes contextual information of where a curse word appears.

6 Experiments

The goal of our evaluation is to assess how explicit knowledge of vulgarity can help in sentiment predic-
tion. Hence we focus on tweets with vulgarity present, and we train and evaluate on our Vulgar-Tweet
dataset. We further compare the aforementioned three ways to encode vulgarity features.

6.1 Systems and training

Systems We train and compare the following systems: Bi-LSTM, i.e., the base architecture without
explicit knowledge about vulgarity; and the base architecture with each of the vulgarity features stated:
Bi-LSTM + Masking, Bi-LSTM + Token insertion, and Bi-LSTM + Concatenation.

Data We develop, train and evaluate our system on our Vulgar-Tweet dataset, from which we carved
out a development set of 500 tweets, a test set of 1,000 tweets. The remaining 5,291 tweets were used
for training.

It is worth noting that the SemEval data is not viable for evaluating the effects of modeling vulgarity.
There are only 1,235 (4%) of vulgar tweets in the 2016 data, and 339 (2.75%) in the 2017 testing data.
For the sake of comparison, we also train a system with SemEval 2016 training data, and report on the
2017 test set where there is at least one vulgar word in each tweet.

Settings We used 200 dimensional embeddings trained on a corpus of 50 million tweets (Astudillo et
al., 2015). We do not tune the embeddings. Embeddings for unknown words are randomly initialized.
The LSTM dimension is 128 and we use a batch size of 256. We use accuracy as our metric and optimize
using the Adam optimizer (Kingma and Ba, 2014). The dropout layer uses a dropout rate of 0.4. We
train until the validation accuracy stops improving with a learning rate of 0.001. All hyperparameters are
tuned on the SemEval development set. The model is implemented in Keras (Chollet and others, 2015).

6.2 Evaluation

Metrics Since our data is annotated on a 5-point ordinal scale, we used mean absolute error (MAE),
which asserts more penalty when the predicted label is further away from the true label, i.e., if the system
predicts 1, and the true label is -2, the error will be 3 (instead of just “incorrect”). On a test set Te where
the true class of tweet i is ci, the mean absolute error (MAE) is:

MAE =
1

|Te|
∑
xi∈Te

|ypred − ytrue| (1)

We report the overall MAE as well as the MAE values for each sentiment class.

Results Table 5 tabulates the MAE values for each system. Due to the fact that our data set is largely
negative, our systems in general are better at predicting negative and very negative tweets. Except mask-
ing, vulgarity features improves the overall performance of the system. Concatenating a vulgar token



2935

Bi-LSTM + Masking + Token Insertion + Concatenation

1.320 1.666 1.068 1.148

Table 6: MAE on SemEval 2017 task 4 subtask C test set, vulgar tweets only.

Text True
Label

Baseline
Prediction

Insertion
Prediction

Concatenation
Prediction

the bitch is back jamies new tumblr page Negative Neutral Negative Negative

welcome to my personal hell Negative Neutral Negative Negative

the simpsons donut hell apptrailers 0 likes Neutral Neutral Negative Negative

so fucking excited Very Positive Neutral Negative Negative

Table 7: Example Tweets and their predictions.

produced the lowest MAE overall, followed by insertion. The best per-class results are significantly
better than the baseline Bi-LSTM with the Wilcoxon signed-rank test.

Across sentiment labels, masking improves the prediction of positive tweets; however, the prediction
of negative tweets suffer. With masking, the actual vulgar word is replaced by a special token, stripping
its meaning. One reason for this behavior could be that for positive tweets, vulgarity is more often used
as an intensifier than other sentiment classes (Table 4, positive-weaken), so there is less of an impact on
the loss of meaning, vs. the benefit of explicit vulgarity information. Token insertion and concatenation
improves the prediction of negative tweets, and the prediction of non-negative tweets remain stable. This
shows that retaining the meaning of vulgar expressions is in general more helpful and especially for
negative sentiment.

Finally, we report on systems trained on SemEval and tested on the 339 vulgar-only tweets in the
SemEval test set, shown in Table 6. Again, we see that inserting and concatenating vulgar word count
both improves performance.6

Qualitative Analysis In Table 7, we show example tweets along with their labels and predictions. The
first two are correct predictions, and the two others are incorrect predictions.

In the first tweet, “is back” is often used in positive sentences. For example, the tweet “pretty little liars
is back in action hell yes” is rated very positive. However, “bitch” is often used as a negative word, mak-
ing the baseline predict the sentence is neutral. The addition of vulgar features gave greater significance
to the word “bitch,” pulling the sentiment in the negative direction. The baseline may have rated the
second tweet as neutral because the combination of the positive word “welcome” and the negative word
“hell” gives the tweet a neutral prediction. Again, the vulgarity features give “hell” more significance,
allowing the system to pick up on the negativity of the tweet.

In the third sentence, the presence of the word “hell” pushed the prediction to be negative, although in
this case it made the prediction incorrect. In the last sentence, the systems with vulgar features predicted
negative although the sentence is very positive. The baseline predicted negative, indicating that it did
not have enough power to counterbalance “fucking” and “excited”. However, our systems pulled the
sentiment in the wrong direction. This may also be because vulgarity is often used in a negative form in
this context (e.g. “so fucking angry”).

7 Conclusions

We have introduced a new data set of 6.8K vulgar tweets labeled for sentiment on a five-point scale
by nine annotators. Analysis of the ratings revealed that the expressiveness of vulgarity interacts with
a number of demographic features, including age, gender, education, income, religiosity, and political
ideology. Vulgarity is used to different ends by users who differ in age and faith. An examination of the
impact of vulgarity on tweet sentiment perception showed that, in cases where the presence of vulgarity

6The MAE of Bi-LSTM on all the SemEval 2017 test set is 0.52, comparable with submitted systems (Rosenthal et al.,
2017).
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influences sentiment perception, it is most often used to intensify existing sentiment. Finally, we have
shown that utilizing vulgarity-centric features yields increased sentiment analysis system performance.
Future work will look directly at modeling the functions of vulgar words.
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