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Abstract

Most existing research on authorship attribution uses various lexical, syntactic and semantic fea-
tures. In this paper we demonstrate an effective template-based approach for combining various
syntactic features of a document for authorship analysis. The parse-tree based features that we
propose are independent of the topic of a document and reflect the innate writing styles of authors.
We show that the use of templates including sub-trees of parse trees in conjunction with other
syntactic features result in improved author attribution rates. Another contribution is the demon-
stration that Dempster’s rule based combination of evidence from syntactic features performs
better than other evidence-combination methods. We also demonstrate that our methodology
works well for the case where actual author is not included in the candidate author set.

1 Introduction

In the past decade authorship analysis has become a significant need due to its various application areas
such as identification of authors of anonymous posts in blogs (Koppel et al., 2011; Koppel and Yeron,
2014), of emails (Patchala et al., 2015), for copyright issues, plagiarism detection, and authentication
of electronic documents (Abbasi and Chen, 2005; Chaski, 2005). Typically we encounter two types of
author attribution problems. The first kind is the closed author set problem where the test-document is
written by someone within the set of candidate authors being examined. The second kind is the semi-
closed authorship problem where the test-document may or may not be written by someone in the set of
candidate authors.

The main hypothesis underlying authorship attribution methods is that the grammatical style of an
author remains the same across topics and is fairly unique to each author. This uniqueness of an author
is easily identifiable when considering small sets of authors, and it expectedly dilutes as the author set
becomes large. It is, therefore, desirable to discover from texts more such features that are unique to an
author and help increase the discriminability of authors based on their writings. The focus of this paper
is on identification and integration of features to enable improved authorship attribution.

We use template based classification and an evidence combination method for ex-
ploiting information embedded in different types of syntactic features of documents.

Figure 1: Height two, height three and height four sub-trees of a
parse tree.

We build templates using the
frequencies of sub-trees of var-
ious heights derived from the
parse trees of sentences in doc-
uments. Our intuitive basis
for using these new features is
that they capture the grammati-
cal style very well. We consider
the frequencies of sub-trees of
heights two, three, and four, as
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possible features to describe an author’s writings. Examples of sub-trees of various heights derived from
a syntactic parse tree are shown in Figure 1. In addition to these we also include three other feature types,
namely, character n-grams, function words, and Part-of-Speech (POS) tags’ n-grams.

We evaluate the effectiveness of each individual feature type for author attribution and then show
that combining the evidence from multiple feature types enhances the performance. We show that the
consensus formation approach of Dempster-Shafer (DS) framework (Dempster, 1967; Shafer, 1976)
performs better than other evidence combination methods. We have used the consensus formation rule of
the Dempster-Shafer theory because the six feature types that we use capture very similar and overlapping
underlying information about the syntax of the text. Each feature type also has some unique insights
that are not provided by the other features. We cannot combine the six features as independent pieces
of evidence, and therefore seek only the consensus among individual inferences based on them. Such
consensus among sources of evidence is highlighted by the Dempster’s rule of combination.

Figure 2: An example of Dempster’s rule.

Using the example in Figure 2, we illustrate
the intuitive differences between the DS consen-
sus approach, voting, and aggregation (combi-
nation) approaches. Figure 2 shows three fea-
tures (columns) and three authors ’a’, ’b’, and
’c’ (rows). Given a test document the mass
values assigned to the three authors by each fea-
ture type are shown in their respective columns.
The fourth row, including all the authors, captures the uncertainty of the evidence source and this much
mass is not assigned to any individual author. When an author is selected based on voting, author ’c’ is
elected because two out of three feature types declare author ’c’ as the winner. When we use a combina-
tion approach (0.2 + 0.27 + 0.5 = 0.97), author ’b’ is selected. When Dempster’s rule is used, author
’a’ is selected because the extent to which all the different features ”agree” on an author is highest for
author ’a’.

2 Related work

Any framework for authorship attribution has two main tasks: 1) Feature selection, and 2) A classification
technique to do authorship attribution using the selected features.

2.1 Feature Selection

The crux of the authorship attribution problem is the selection of a set of features that remain stable
across a large number of writings created by an author. A large variety of features built from lexical,
syntactic, semantic, content, and structural properties of the texts have been used as style markers in the
past (Juola, 2006; Stamatatos, 2009).

The work published in Kjell et al. (1994) is the first to use the character bigrams and trigrams for au-
thorship analysis of Federalist papers. Later, the work in (Keelj et al., 2003; Houvardas and Stamatatos,
2006; Stamatatos, 2007; Stamatatos, 2012) used character n-grams of different sizes and reported an ac-
curacy of up to 72% with 50 authors.

Syntactic features explain the grammatical structure of sentences and are considered to be reliable
style markers as they are not under the conscious control of the author (Bayyen et al., 1996). There are
many studies (Argamon and Levitan, 2005; Garcia and Martin, 2007; Kestemont, 2014) that showed the
effectiveness of function words as features in authorship attribution tasks. Using rewrite rules as features
- Gamon (2004) reported an accuracy of 86% (author set size 3), and Patchala et al. (2015) reported
74% accuracy (30 authors). The work in Eder (2013) studied the effectiveness of POS trigrams with a
set of 21 authors and reported an accuracy of 65%. The problem with POS n-grams is that, they don’t
provide much information about how an author forms the phrases in sentences. The features generated
with partial parsing (Luyckx and Dalemens, 2005) capture only the dependency between phrases but
not how each phrase is formed. Our intuition is that considering various levels of sub-trees will capture
dependency between phrases and also how a phrase is formed. The authors of Kim et al. (2011) identified
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• For each author

1. Combine all the articles in training text set for each author.
2. Generate the character trigrams from raw text and compute their frequencies.
3. Tokenize the text into sentences.
4. Using a parser (Klein and Manning, 2003), parse the sentences and extract the POS tri-

grams, function words, and height two, three, four level sub-trees, and compute the fre-
quencies for each feature type.

5. Sort the features within each feature type by decreasing frequencies.
6. Choose the top n discriminating features using the entropy metric for each feature.

Figure 3: Steps to generate the features

the most discriminating sub-trees in syntactic parse-trees and reported an accuracy of 84% (for 7 authors).
Even though the sub-trees we derived from syntactic trees are in the same spirit as in Kim et al. (2011),
we use them in building author templates, and combine the information of these features with other
syntactic feature types in a completely different and novel way.

2.2 Attribution Techniques

There are two types of classifiers used in authorship attribution: 1) Template-matching classifiers, and 2)
Machine-learning based classifiers (such as SVMs).

In template-matching approaches, all the training documents by an author are merged to form a single
text collection and is used to generate a feature template for each author’s writing style. A test document’s
signature is then compared with each author’s template and authorship is assigned to the author with the
closest match. Using character n-grams as features and entropy as similarity measure, the work in Peng
et al. (2003) has reported an accuracy of 90% (for 8 authors). Instead of using a single template for
each author, the work in (Jankowska et al., 2013; Layton, 2014; Koppel et al., 2011) created multiple
templates for each author by selecting subsets of features and the result from each template is combined
to find the best match using voting. The work in Koppel et al. (2011) has reported precision and recall
values of 90% and 43% for 1000 authors and proved that this template based approach works well even
in the case of large author sets.

In machine learning based approaches each document is treated as a representative data point of an
author’s style in a feature space and a classifier is trained. The work in Abbasi and Chen (2005) uses a
combination of lexical, structural and syntactic features, employs Decision Trees as model, and reports
an accuracy of 90% (for 20 authors). A number of studies in authorship analysis (Gamon, 2004; Zheng
et al., 2006; Stamatatos, 2007; Luyckx and Daelemans, 2008; Luyckx, 2011; Silva et al., 2011) have
used various Support Vector Machine (SVM) based classifiers. The work in Luyckx and Daelemans
(2008) uses SVM and POS n-grams to assign authorship of essays written by 145 students and reported
an accuracy of 55%. Work in (Stamatatos, 2007; Stamatatos, 2012) reported an accuracy of 75% (50
authors) by using character n-grams and SVM.

3 Methodology

We address the authorship attribution problem using the template-based methodology. The main reasons
for this choice include stability in the face of changing sets of authors, ability to handle semi-closed
authorship problems, and ability to more effectively combine different types of syntactic feature sets.

Each syntactic feature type captures a different mix of properties of the text in a document. This
necessitates inclusion of a number of different feature types to design a robust classification system. We
consider six types of features: character trigrams, function words, POS trigrams, and sub-trees of height
two, three and four.

The steps to generate author’s template are summarized in Figure 3. Instead of including thousands
of feature values into an author template, we find the most frequent and then within them the most
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informative feature values of each feature type. That is, we may include some character trigrams by first
selecting the most frequent ones and then within those the most informative ones as measured by their
informational entropy across all the authors. Typically 800 to 1500 of each feature’s values and their
frequencies are included in a template. The most frequent feature items used by an author are likely to
persist in their higher relative frequencies across their multiple writings. One such template for each of
the six feature types is created for each author. Let us say the resulting six templates for an author are:
T1, T2, T3, T4, T5, and T6. Each template contains the relative frequencies of occurrence of individual
feature items of a feature type for an author. For example, a template may contain relative frequencies of
selected 1000 character trigrams, or 1000 POS trigrams, or 1000 height two sub-trees of parse trees.

Given a test document, six signatures referred to as: S1, S2, S3, S4, S5, and S6, which are similar
in structure to the six templates generated for authors are generated. We use the Kullback-Leibler (KL)
divergence (Kullback and Leibler, 1951) to compute the dissimilarity values between a test document’s
six signatures and the corresponding six templates for an author. This gives us six different divergence
values for each document-author pair.

We now consider the decision rules for assigning an author to a test document. We examine the cases
of making a decision for: (i) the closed author set using only one feature type (ii) the semi-closed author
set using only one feature type; (iii) the closed author set using all the six feature types; and (iv) the
semi-closed author set using all the six feature types. Our decision making strategies for these four cases
are as follows.

Case-1: Compute the divergence value between the test document’s selected feature signature, Sm,
and each author’s template for themth feature type, Tm. Let us say, D(Sm , Tm(i)) is the divergence value
for the mth feature type for the ith author’s template. We find the kth author for whom this divergence
value is the smallest and assign him/her the authorship.

Case-2: We use the intuitive idea that if the kth author is the true author then the value D(Sm , Tm(k))
must be significantly smaller than the average of D(Sm , Tm(i)) values for all the authors in the pool.
We capture this notion by requiring that the kth author is assigned to a document only when the z-score
of D(Sm , Tm(k)) is -2.0 or smaller when compared to the values D(Sm , Tm(i)), for all authors else we
announce that the true author is not in the candidate set.

Case-3: In this case we seek to combine information obtained from all six feature types and obtain
consensus among the inferences arrived by each of them individually. We use Dempster’s rule from
Theory of Evidence to combine the evidences. Let us say there are k authors in the pool of known
authors and for the mth feature type we compute the k divergence values as Div(m,i) = D(Sm , Tm(i))
where i takes the value from 1 to k. Now such a divergence vector is generated for each of the six feature
types.

To apply the Dempster’s Rule we need to convert these divergence values for authors (for a fixed
feature type) to a mass assignment. As part of this conversion process we have to group all those
authors who have very similar divergence values for a feature type into a single group. Given a vector
of k divergence values (one feature type), we first normalize the divergence values by scaling them as
follows:

NormDiv(i, j) =
(maxj(Div(i, j)) −Div(i, j))

(maxj(Div(i, j)) − (minj(Div(i, j)))
. (1)

Here, i represents the author number, j represents the feature type and Div(i, j) denotes the divergence
value of ith author for jth feature type. These scaled values are such that the author with the template
closest to the document signature gets a value of 1 and the author with the template farthest from the
document gets a value of 0. If two or more authors have very similar scaled scores (say 1.0 and 0.98) then
they are equally likely to be the authors of the document (as per the feature type under consideration).

Therefore, as the next step of this process we form groups of authors from the perspective of this
feature type. For each author in the candidate set, we identify the authors whose scaled scores are within
the threshold δ and include all these authors to form an author set. The score of the author group is
set equal to the average of the scaled values of the authors contained in the group. We then remove
the duplicate author groups, if any are formed, and normalize all the group scores (for the author sets,
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for each feature type) so that all the scores (for each feature type) add up to 1.0 as per the DS theory
requirement of a mass assignment. We call these scores as mass values. Now, we have generated one
mass assignment function for each feature type.

Author groups Scaled scores Average mass values
<a,b > <1, 0.97 > 0.985 0.157
<a, b, c, d > <1, 0.97, 0.94, 0.92 > 0.957 0.153
<b, c, d > <0.97, 0.94, 0.92 > 0.943 0.151
<b, c, d, e > <0.97, 0.94, 0.92, 0.87 > 0.925 0.148
<d, e > <0.92, 0.87 > 0.895 0.143
<f > <0.81 > 0.81 0.129
<g > <0.73 > 0.73 0.116
<h > <0 > 0 0

Table 1: Mass assignment process using eight authors and δ value 0.05

For example, say, for
eight authors (a, b, c, d, e,
f, g, h) the scaled values are:
(1, 0.97, 0.94, 0.92, 0.87,
0.81, 0.73, 0). The mass as-
signment for these eight au-
thors is shown in Table 1.

We repeat this process
for the divergence vector of
each feature type and gen-
erate mass assignments for
groups of authors. Then, the
mass assignments for each
feature type are combined using Dempster’s rule of combination. Given two mass assignments m1,
m2, the combined mass assignment m12 is computed as follows:

m12(A) =
1

1 −K

∑
B∩C=A 6=∅

m1(B)m2(C), K =
∑

B∩C=∅
m1(B)m2(C) (2)

Here, K is the measure of the amount of conflict between two mass assignments andA,B,C represent
subsets of authors.

After computing the consensus mass assignment from six feature types we compute the plausibility
values of each candidate author being the true author of the test document.

The plausibility pl(A) is the sum of all the masses of sets ’B’ that intersect the set of interest-’A’ and
is defined as follows:

pl(A) =
∑

B|B∩A 6=∅
m(B) (3)

We then select the author with the highest plausibility value as the true author of the test document.
Case-4: For this situation we follow the same process as in case-3 and then determine if the author

with the highest plausibility has a plausibility value greater than 0.5, and its z-score among plausibility
values for all authors is larger than 2.0. If not, we say that the true author is not in the given author set.

4 Dataset Description

News Articles’ Dataset: We selected 7 columnists from the New York Times newspaper and 3 from
the Guardian newspaper and extracted 50 articles for each author. To make each author’s writings topic
independent we selected the topics of sports, education, immigration, elections, health and politics and
made sure that each author has written articles on at least 4 of these topics in our collection. These
articles consists of, on an average, 800 words per document.

Reuter 50 50 Dataset: Reuter 50 50 dataset (Houvardas and Stamatatos, 2006; Stamatatos, 2007;
Bache and Lichman, 2013) has 50 authors and 5,000 documents. The training corpus has 2,500 doc-
uments and test corpus has 2,500 documents (50 documents for each author in train and test) with an
average of 500 words per document.

Blogs Dataset: We used the blogs dataset (Schler et al., 2006; Koppel et al., 2011) and selected the
top 100 authors based on the number of posts. We selected 10 posts for each author as test documents
and rest as training documents. Each posting has around 200 words on average.

5 Results and Analysis

We have used the traditional metrics - accuracy, precision, and recall for measuring the performance of
our author attribution study.
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We have used the Näıve Bayes, Support Vector Machine (SVM), Voting, and the method proposed in
Koppel et al. (2011) which we call as ’Koppel 2011’ to compare the performance of proposed features
types and methodology. Matlab’s Näıve Bayes classifier with multinomial distribution and LIBSVM
one-vs-one classifier with RBF kernel are used for Näıve Bayes and SVM based classification, and
parameters are optimized in each case.

In case of attributing an author based on all six feature types, the method labeled ’Combined (C)’ is
performed by concatenating all the six feature templates of an author into one large template and then
making the decisions using the divergence of similarly concatenated test signatures. The voting method
labeled ’Voting’ is executed by assigning the authorship to the author selected by maximum number of
feature types. The method with label ’Koppel 2011’ uses the approach discussed in Koppel et al. (2011).
The purpose of these methods is to contrast their result with proposed Dempster’s combination rule based
method (DS combined).

5.1 Closed author set using only one feature type

The main reason to assign authorship considering each feature type (section 3: case-1) separately is
to compare and contrast their individual performances. For each feature type, we kept the number of
features - ’n’ to be constant at 1,500 and reported the accuracies in Figure 4. This figure shows the
accuracy of author attribution using four different classifiers: our proposed method KL-Divergence,
Näıve Bayes, SVM, and Koppel 2011.

Figure 4: Accuracy values for closed-author set using one fea-
ture type.

Here, we can see that the frequen-
cies of sub-trees of height two, and
three, and POS trigrams - yielded
greater accuracy in news articles
and blogs datasets irrespective of the
classification algorithm used. In
Reuter 50 50 dataset, character tri-
grams gave a slightly better accuracy
compared to other features. A com-
mon intuition with character n-grams
is that they capture the thematic in-
formation along with the author style
(Stamatatos, 2012). Many authors in
Reuter 50 50 dataset have written ar-
ticles on a particular subtopic with a

high occurrence of a set of words specific to the topic. This makes it easy for character trigrams to dis-
tinguish different authors. Parse trees frequencies work better for the News Articles dataset because each
author has written articles on different topics and the feature is topic independent.

5.1.1 Effect of feature set size

Figure 5: Effect of feature set size.

For this analysis (Figure 5), we
kept the training and test doc-
ument sets fixed, and gradually
increased the number of best
feature items (number of best
character 3-grams, or height 2
sub-trees etc.) included in each
template. Most of the feature
types attained maximum accu-
racy when 1000 to 2000 fea-
ture items are included and are
stable in performance when few
hundred feature items are added.
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Afterward, the performance decreased as more feature items are added. The results presented in (Sta-
matatos, 2007; Stamatatos, 2012) suggest considering at least a feature set size of 3000 - 5000 for charac-
ter trigrams in Reuter 50 50 dataset. In their formulation they include the 5000 most frequent character
trigrams in the feature set whereas in our formulation we select the top ’n’ discriminating features based
on informational entropy. From Figure 5, we can observe that there is no overall consensus on ideal size
for feature sets. However, one can achieve a reasonable accuracy by considering the most discriminating
features numbering between 1000 and 2000. This is a very wide range. For larger numbers it seems the
curse of dimensionality sets in and the extra feature items, that are less discriminating, add noise to the
author attribution process. Fewer feature items have lower accuracy because they may not have enough
information in them to make best decisions.

5.1.2 Effect of training data size

Figure 6: Effect of training data size.

To analyze the effect of limited train-
ing data, we started with ten doc-
uments and increased the number
of documents in multiples of ten
for news article and Reuter 50 50
dataset. In blogs dataset, we started
with 40 documents and increased the
size in multiples of 40. Each doc-
ument in news article dataset is ap-
proximately twice the size of the
document in Reuter 50 50 and blogs
dataset. The test set is kept constant
for each author and the attribution ac-
curacy results are shown in Figure 6.

There is a large difference in accuracy between the character trigrams and other syntactic features es-
pecially with limited training data and this difference narrows once we start increasing the number of
training documents. The function words and character 3-grams templates have the best performance
when the training dataset is very small. So, these features are very effective even with very small training
set sizes. We also notice that, expectedly, as the number of training documents increases the performance
for each feature type improves consistently. At the higher end of the number of training documents, sub-
trees of height two became the best feature types for the News Articles and the Blogs datasets and kept
improving their performance even for the Reuters dataset.

5.2 Semi-closed author set using only one feature type

Here, we use the approach described in Case-2 of the methodology section (Section 3). In addition to
the test documents in the news articles dataset, we added 200 randomly selected documents from the
Reuter 50 50 dataset to the news article test set. Similarly, we added 200 test documents from news
article dataset to Reuter 50 50 dataset. For blogs dataset, we randomly selected 500 documents written
by the authors who are not in the selected sample dataset and added them to the test set. The feature set
size ’n’ is kept constant at 1500 items and z-score threshold for making a decision is selected as -1.5 for
all the datasets.

In Table 2, we show the precision and recall values, measured individually for each feature type. We
can observe the similar behavior as in the closed author set case. That is, grammar based features gave
better performance in news article and blogs datasets and character trigrams gave higher performance in
Reuter 50 50 dataset. We observe that as the number of authors increases the precision and recall values
decline. They are the highest for the News articles dataset (10 authors), followed by Reuters (50 authors)
and then the lowest for the Blogs dataset (100 authors). Also, the recall is consistently smaller than the
precision because for the semi-closed case an author is announced only if he/she stands significantly
apart compared to other authors.
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Character Function POS Height 2 Height 3 Height 4
trigrams words trigrams sub-trees sub-trees sub-trees

News article prec. 69 72 71 77 74 59
rec. 51 47 56 54 58 43

Reuter 50 50 prec. 64 66 57 54 57 51
rec. 56 53 49 53 51 49

Blogs prec. 41 43 46 47 46 44
rec. 36 41 43 41 41 37

Table 2: Precision and Recall for semi-closed authorship using individual features (Case-2)

Combined Voting Koppel SVM DS DS
(C) 2011 combined(3) combined(6)

News Article prec. 77±4.4 69±2.9 80±3.4 76±3.8 78±4.5 88±3.0
rec. 73±5.1 71±2.7 83±2.9 72±4.4 73±3.2 82±2.0

Reuter 50 50 prec. 56±3.9 64±3.2 64±4.2 63±3.5 67±4.0 73±3.7
rec. 61±4.8 59±3.6 62±2.6 64±3.1 62±4.6 67±5.0

Blogs prec. 58±4.1 54±3.8 62±3.9 57±3.6 57±3.4 68±2.4
rec. 61±3.2 52±3.4 63±3.4 54±3.9 56±2.2 65±1.1

Table 3: Precision and Recall values using all feature types (Case-3)

5.3 Closed author set using all the six feature types

We consider feature item set sizes between 500 - 3000, in multiples of 500, and the average values for
precision and recall along with their standard deviations are show in Table 3. Here, the threshold δ for
forming the groups of authors for the Dempster’s rule combination method, is kept constant at 0.05. We
observed that for δ values between 0.025 and 0.075 there is negligible change in performance in all the
datasets. To show that the sub-tree features derived from the parse trees capture some additional author
discriminating information that is not captured by the char. trigrams, func. words, and POS trigrams, we
performed the following experiment. First we used the three feature types (func. words, char. trigrams,
POS trigrams) and calculated the precision and recall values using our DS combined approach (DS
combined(3)). Then we considered all six feature types, and calculated the precision and recall values
(DS combined(6)). There is a significant increase in precision and recall values when we include the
sub-tree features for consensus formation compared to only combining the three non-tree feature types.
This validates our hypothesis that the sub-tree feature types capture some additional information that is
not captured by the other three feature types. We also can see that the performance improves significantly
when inferences from multiple features types are combined using various aggregation methods; and the
best performance for all datasets is obtained when Dempster’s rule is used.

Robustness Analysis:

Original Adding 50 words Adding 100 words
News Article prec. 88±3.0 86±4.3 83±3.8

rec. 82±2.1 80±3.9 77±5.7
Reuter 50 50 prec. 73±3.7 71±2.8 65±2.7

rec. 66±5.0 64±3.7 60±3.6
Blogs prec. 68±2.4 61±2.1 54±2.4

rec. 65±1.1 58±2.4 51±2.3

Table 4: Precision and Recall values with slight changes to test documents

The main aim of
our test described
in this section is to
analyze how our DS
combined method
performs when small
changes are intro-
duced in the test
documents. For each
test document in an
author’s test set we
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added 50 random words of text taken from a different author within the same dataset. We repeated this
in all the three datasets and used feature set sizes between 500 - 3000, in multiples of 500. The results
obtained are shown in Table 4. The δ value is kept constant at 0.05 for all the datasets. The Blogs dataset
is very sensitive to changes in test documents as the test document size is very small (200 words). There
is very small drop in precision and recall values in other datasets when we added 50 random words
to a test document. However, when we added 100 random words to each test document, performance
decreased more in Reuter 50 50 dataset but not that much in news article dataset. This is because the
average test document size is small (500 words) in the former dataset and the average size in news
article dataset is 800 words.

Figure 7: Precision and recall values for different
candidate author set sizes.

To study the effect of candidate author set size
on DS combined approach, we kept the feature
set size constant at 1500 items and analyzed the
performance by gradually increasing the author
set size. For each author set size, we repeated the
experiment ten times by randomly selecting the
authors and the average precision and recall val-
ues are reported in Figure 7. As expected, both
the precision and recall values slowly decrease
with an increase in the author set size.

5.4 Semi-closed author set using all the six
feature types

Figure 8: Precision and recall values for different
z-score cutoff values.

For this test, we have used the same datasets as
described in Section 5.2 and used the approach
described in case-4 of the methodology section.
The precision and recall values for various z-
score cut off values are shown in Figure 8. In
all datasets the precision values do not decline,
but rise slightly, as the z-score cutoff goes up
to 2.5. This is because a larger z-score cutoff
means that the winning author must have a sig-
nificantly higher plausibility value compared to
all the other authors. Therefore, an author is
announced for a document only if he/she is the
clear winner compared to all the others. The re-
call values reduce somewhat with increasing z-
score cutoff and this is because the authors who

do not stand out very strongly compared to the other authors do not get attributed to the documents.

6 Conclusion

In the above discussion we have shown two main contributions of our proposed methodology for author
attribution of documents. The first is that templates formed from the sub-tree frequencies in the parse tree
of an author’s text provide very valuable insights about one’s writing style. The second main contribution
is the demonstration that information embedded in different types of syntactic features is best combined
using Dempster’s rule compared to some other methods of information fusion. We have also shown
successfully that our proposed approach works well for both - ’closed’ and ’semi-closed’ cases. We have
shown the robustness of our proposed approach from various perspectives and the best results obtained
using Dempster’s Rule based combination of all six features are of significantly high quality.
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