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Abstract

Stance detection aims to assign a stance label (for or against) to a post toward a specific target.
Recently, there is a growing interest in using neural models to detect stance of documents. Most
of these works model the sequence of words to learn document representation. However, much
linguistic information, such as polarity and arguments of the document, is correlated with the
stance of the document, and can inspire us to explore the stance. Hence, we present a neural
model to fully employ various linguistic information to construct the document representation.
In addition, since the influences of different linguistic information are different, we propose a hi-
erarchical attention network to weigh the importance of various linguistic information, and learn
the mutual attention between the document and the linguistic information. The experimental re-
sults on two datasets demonstrate the effectiveness of the proposed hierarchical attention neural
model.

1 Introduction

While a lot of works on document-level opinion mining have involved determining the polarity expressed
in a customer review (Pang et al., 2008; Liu, 2012), researchers have begun exploring new opinion
mining tasks in recent years. One such task is stance detection: given a post written for a two-sided topic
discussed in an online debate forum, determine which of the two sides (i.e., for and against) its author is
taking. Stance detection system can potentially have a positive social impact and are of practical interest
to non-profits, governmental organizations, and companies.

Previously, some of the related researches used feature engineering to extract either linguistic (Soma-
sundaran and Wiebe, 2010) or structure (Sridhar et al., 2015) features manually. Recently, neural models
have achieved high success and obtained the best results on stance detection (Zarrella and Marsh, 2016;
Du et al., 2017).

A key issue of the neural model is document representation, and most of previous works learn docu-
ment representation from word sequence using Convolutional Neural Networks (CNNs) (Chen and Ku,
2016; Vijayaraghavan et al., 2016) or Recurrent Neural Networks (RNNs) (Augenstein et al., 2016; Du
et al., 2017).

E1: I understand that homosexuals can't have kids. They can adopt children and 

thus, support the advancement of the human race. (Target: Gay Rights)

nsubj dobj

dobj nmod:of

Arguments pairs: (adopt,they),(adopt,children),(support,advancement),(advancement,race)

However, besides the word sequence, stance is correlated with some explicit and implicit linguistic
factors. Take E1 for example, both sentimental words (i.e., understand, support) and argument sentence
(i.e., They can adopt ...) support the favor stance toward the target “Gay Rights”. In addition, the
dependency pair, (adopt, children) and (advancement, race), also express a positive stance. Hence,
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we should learn the document representation by fully employing these linguistic factors (i.e., sentiment,
argument, dependency) into neural model.

Moreover, the influence of different linguistic factors of each document is different. For example, the
argument sentence in E1 is more important than sentiment and dependency information, and indicates
the stance toward the target directly. Hence, we should measure the importance of different linguistic
factors for each document through the neural model.

To address the above challenges, we propose a hierarchical attention model, which stands for the mu-
tual attention between the document and the linguistic factors. The model contains two parts: linguistic
attention part and hyper attention part. The former helps learn flexible and adequate document represen-
tation with different linguistic feature set, and the latter helps adjust the weight of different feature sets.
In summary, the contributions are as follows.

• We present a novel hierarchical attention based neural model tailored to stance detection task, which
considers the mutual influence between the representation of documents and the corresponding
feature sets.

• We make a systematic comparison of LSTM with different linguistic features using the same bench-
marks, and we explore influence of different linguistic features on neural models for stance detec-
tion.

• Experimental results on two open datasets demonstrate the effectiveness of the proposed approach.

2 Related Works

Previous works on stance detection have focused on congressional debates (Thomas et al., 2006; Burfoot
et al., 2011), company-internal discussions (Agrawal et al., 2003), and debates in online forums (So-
masundaran and Wiebe, 2010; Anand et al., 2011). Recently, there is a growing interest in performing
stance detection on microblogs (Mohammad et al., 2016; Du et al., 2017). Most of existing works on
stance detection can be separated into three categories: using linguistic features, using structure features,
and using neural models. In the following subsections, we discuss the works on these three categories
one by one.

2.1 Linguistic Features

Mosts of previous works employed various kinds of linguistic features for stance detection. For example,
Somasundaran and Wiebe (2010) developed a baseline for stance detection by modeling verbs and sen-
timents. Anand et al. (2011) augmented the n-gram features with lexicon-based and dependency-based
features. Except the above transitional linguistic factors, Hasan and Ng (2014) considered the importance
of argument for stance detection, and explored the relations between stance and argument, and proposed
a pipeline system to predict the stance and extract argument sentence from documents jointly.

2.2 Structure Features

Although linguistic features show effectiveness for stance detection in many works, stance detection has
been newly posed as collective classification task with extra structure information. For example, citation
structure (Burfoot et al., 2011) or rebuttal links (Walker et al., 2012), was used as extra information to
model agreements or disagreements in debate posts and to infer their labels. Moreover, since similar
users should express a similar opinion toward the same topic, user information is always used in stance
detection. For example, Murakami and Raymond (2010) proposed a maximum cut method to aggregate
stances in multiple posts to infer a user’s stance on the target. Rajadesingan and Liu (2014) used a
retweet-based label propagation method, which started from a set of opinionated users and labeled tweets
by the people who are in the retweet network. Sridhar et al. (2015) utilized Probabilistic Soft Logic (PSL)
to collectively classify the stance of users and stance in posts.
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Figure 1: Overview of proposed model.

2.3 Neural Network Models

Since the deep neural network approaches can automatically extract features, there are many works
using neural models to detect the stance recently, instead of using various kinds of linguistic features.
For example, Augenstein et al. (2016) used two bidirectional RNN to model both target and text for
stance detection, and Vijayaraghavan et al. (2016) proposed a combination of classifiers using word-
level or character-level CNN models for stance detection. In addition, extra-information, especially
user information, is incorporated into neural models for stance detection. For example, Chen and Ku
(2016) proposed a user-based neural model to classify stance by using user tastes, topic tastes, and user
comments on posts. Du et al. (2017) proposed a neural network-based model, which incorporated target-
specific information into stance detection by following a novel attention mechanism.

Different from previous works, which either consider linguistic features individually, or learn the
document representation on the word sequence, we propose a neural model to learn mutual attention
between the document and the linguistic factors, and achieve best results.

3 Hierarchical Attention Neural Model

Formally, given a natural language document X , the stance detection system returns a binary label Y
to denote the stance of the document, where Y = 1 denotes favor and Y = 0 denote against toward a
special target. The architecture of our proposed hierarchical attention based stance detection system is
shown in Figure 1, which illustrates the basic flow of our approach. First, we learn the representation
of each document and linguistic features. Then, a hierarchical attention neural network is employed to
represent the document under the influence of the different linguistic features: linguistic attention is used
to learn the correlations between document representation and different linguistic feature set, and the
hyper attention is employed to adjust the weight of different feature sets.

In the following subsections, we firstly show the representation of a document, and then show the
representation of different linguistic features. Finally, we illustrate hierarchical attention model, and
training process.

3.1 Document Representation

We use a standard Long Short-Term Memory (LSTM) model (Hochreiter and Schmidhuber, 1997) to
learn the document representation. LSTM has been proven to be effective in many natural language pro-
cessing (NLP) tasks such as machine translation (Sutskever et al., 2014) and dependency parsing (Dyer
et al., 2015), and it is adept in harnessing long sentences. Let X = (w1, w2, ..., wn) be a document,
where n is the document length and wi is the i-th token. We transform each token wi into a real-valued
vector xi using the word embedding vector of wi, obtained by looking up a pre-trained word embedding
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table D. We use the skip-gram algorithm to train embeddings (Mikolov et al., 2013).
The LSTM is used over X to generate a hidden vector sequence (h1, h2, ..., hn). At each step t, the

hidden vector ht of LSTM model is computed based on the current vector xt and the previous vector ht−1,
and ht = LSTM(xt, ht−1). The initial state and all stand LSTM parameters are randomly initialized
and tuned during training. We use H = hn as the representation for X .

3.2 Representation of Linguistic Information

After obtaining the document representation, we learn the representation of different linguistic informa-
tion.

Sentiment Representation
In principle, sentiment information of a post highly influences the stance. For example, the author is in
favor of the target in E2, since he expresses the positive opinion toward the target. In addition, the stance
toward the target and the sentiment of the post may be opposite in some posts. As in E3, the author is in
favor of the given target although the post expresses the negative opinion.

E2: Hillary is our best choice if we truly want to continue being a progressive nation. (Target:
Hillary Clinton)

E3: When the last tree is cut down, the last fish eaten & the last stream poisoned, you will
realize that you cannot eat money. (Target: Climate Change is a Real Concern)

Hence, it is a challenge task to employ sentiment information for stance detection, since the polarity
of a post could be either the same or opposite toward the stance. In this study, we do not integrate
sentiment information into document representation directly, but use attention mechanism to measure
the correlation between document representation and sentiment information.

Particularly, we simply extract the sentimental word sequence X(sent) = {xs1, xs2, ..., xsm} of each
document from sentiment lexicon, where xsi means sentiment word. We then learn the representation of
sentiment information through this sentimental word sequence using LSTM model, and use H(sent) =
LSTM(xsm, hm−1) as sentiment representation.

Dependency Representation
The dependency-based features can be utilized to capture the inter-word relationships (Anand et al., 2011;
Persing and Ng, 2016). The dependency structure involves some stance-taking text related to the given
target. As in E4, we notice that the important words that express a stance in the sentence are “murder”,
“never” and “necessity”. By analyzing the dependency structure in this and other prompt parts, we can
extract the stance-taking dependency information we identify as “murder-never-necessity”.

E4: Murder   is   never   a   necessity.
 NN        VBZ       RB       DT           NN

nsubj cop
neg

det

Hence, we extract the pair of arguments sequence X(dep) = {xd1, xd2, ..., xdm} = {x1⊕x3, ..., xi⊕xj}
involved in each dependency relation from a dependency parser as a feature, where xdi = xj ⊕ xk is
arguments pair from dependency relation.

We then learn the representation of dependency information through the dependency sequence X(dep)

using LSTM model, and we use H(dep) = LSTM(xdm, hm−1) as dependency representation.

Argument Representation
In general, there are not only the stance of the author toward the target in a post, but also personal beliefs
about what is true or what action should be taken. This personal belief is called argument (Wilson and
Wiebe, 2005). There exist some arguments behind the stance people express on a specified target. If we
can extract the argument sentence from the post, then it will be beneficial to detect the author’s stance.
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As in E5, with the help of argument sentence with bold, it will be easy to detect that the author support
the legalization of marijuana.

E5: Most issues like this, such as sex between minors and alcohol, come down to one
thing: it’s your choice. If you want to ruin your life, be my guest. It isn’t the government’s
job to control that. (Target: Legalization of marijuana)

In order to utilize argument information for stance detection, we extract the argument sentence from
each document, and treat argument sentence detection as a binary classification task (Hasan and Ng,
2014). After we get the argument sequence X(argument) = {xa1, xa2, ..., xam} from argument sentences,
where xai is the i-th word in the argument sentences. We then learn the representation of argument
information through the argument sequenceX(argument) using LSTM model, and we useH(argument) =
LSTM(xam, hm−1) as argument representation.

3.3 Linguistic Attention

Based on our assumption, each linguistic resource should focus on different words of the same document.
The extent of attention can be measured by the relatedness between each word representation hj ∈ H
and a linguistic representation li ∈ {H(sent), H(dep), H(argument)}. We propose the following formulas
to calculate the weights.

αij =
exp(wij)∑n
j=1 exp(wij)

(1)

wij = tanh(W T [hj : li] + b) (2)

Here, αij denotes the weight of attention from a feature set li to the jth word in the document. tanh
is a non-linear activation function. W is an intermediate matrix, and b is the offset. Both of them
are randomly initialized and updated during training. Subsequently, according to the specific linguistic
feature li, the attention weights are employed to calculate a weighted sum of the hidden representations,
resulting in a semantic vector qi that represents the document with the corresponding feature set.

qi =
n∑

j=1

αijhj (3)

3.4 Hyper Attention

Intuitively, different documents should value the three linguistic feature set differently. We thus define
the final representation by weighting document representation and different linguistic representations
{H, q1, q2, q3}, as follows.

q =
4∑

j=1

βjkj , kj ∈ {H, q1, q2, q3} (4)

βj =
exp(wj)∑4
j=1 exp(wj)

(5)

wj = tanh(W TVj + b) (6)

Here βj denotes the attention of different document representation, indicating which document repre-
sentation should be more focused. W is also an intermediate matrix, V is the weight matrix of different
document representation and b is an offset value. Both of them are randomly initialized and updated
during training. We use q as the final representation to learn and predict the model.
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Stance Abortion GayRights Obama Marijuana
Favor (%) 54.9 63.4 53.9 69.5
Against (%) 45.1 36.6 46.1 30.5
Total 1741 1376 985 626

Table 1: Distribution of H&N14 dataset.

Stance Atheism Climate Feminism Hillary Abortion
Favor (%) 16.9 59.4 28.2 16.6 17.9
Against (%) 63.3 4.6 53.9 57.4 58.3
None (%) 19.8 36.0 17.9 26.0 23.8
Total 733 564 949 984 933

Table 2: Distribution of SemEval16 dataset.

3.5 Training

We employ cross-entropy loss function to train the model. Specially, the loss function is defined as
follows:

L(Θ) = − 1

n

n∑
i=1

m∑
j=1

yij log pij +
λ

2
||Θ||2 (7)

where n is the total number of items of training data; m is the number of category; yij indicates whether
the i-th sample belongs to the j-th category, which is the ground-truth label; and pij represents the
predicted probability. Θ is the set of model parameters and λ is a parameter for L2 regularization.

Standard back propagation is performed to optimize parameters. We employ Adam (Kingma and
Ba, 2014) for parameter optimization and Word embeddings are trained using the Skip-gram algo-
rithm (Mikolov et al., 2013)1.

4 Experiments

4.1 Datasets and Preprocessing

We use two datasets to evaluate the performance of the proposed system. H&N14 is collected by Hasan
and Ng (2014), and SemEval16 is from SemEval-2016 Share Task 6.A (Mohammad et al., 2016).

H&N14 is collected from an English online debate forum with four targets: “Abortion” , “Gay Rights”,
“Obama”, and “Marijuana”. The distribution of the dataset is shown in Table 1. In Hasan and Ng (2014)’s
setting, the dataset is split into five folds, and they conduct five-fold cross-validation on the division. For
fair comparison, we follow their setting in all experiments.

SemEval16 is the dataset for stance detection from English tweets, and each tweet corresponds
to a special target: “Atheism”, “Climate Change is a Real Concern”(“Climate”), “Feminist Move-
ment”(“Feminist”), “Hillary Clinton”(“Hillary”), and “Legalization of Abortion”(“Abortion”). The dis-
tribution of the dataset is shown in Table 2. The dataset has already been separated into training and
testing set (Mohammad et al., 2016).

The average length of documents in H&N14 and SemEval16 is 114 and 18, respectively. The length of
document in SemEval16 is much shorter than H&N14, since SemEval16 is collected from tweets. Based
on such difference of source and document length, we can evaluate the performance of the proposed
model on a different setting.

Some preprocessing approaches are employed to extract sentiment, dependency, and argument infor-
mation from the two datasets:

• The sentiment word sequence of each document is extracted from MPQA subjective lexicon2.

1https://code.google.com/p/word2vec/
2http://mpqa.cs.pitt.edu/lexicons/subj lexicon/
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• The dependency sequence is extracted from each sentence by using Stanford Parser3. We select
the relations which include noun, verb, adjective, adverb or negation words such as “nsubj”, “acl”,
“dobj” etc. and get the argument pairs in these relations.

• The argument sentence is extracted from each document. We firstly separate the document into a
sentence set based on punctuation and connective, and then we use a SVM classifier to predict the
argument label of each sentence. We employ the annotated training set in (Hasan and Ng, 2014) and
simplify the argument sentence detection as a binary classification task which means that sentence
is just identified whether or not an argument of the related stance specifically.

Hyper-parameters
We train 300 dimensional word embedding using Word2Vec (Mikolov et al., 2013) on all the training
data, and fine-turning during the training process. The dimension of LSTM layers and the output of
attention mechanism is set to 300. The dropout rate is set to 0.25. The other hyper-parameters and
learning rate are tuned on the development data. The development data are extracted from 10% of
training data.

4.2 Evaluation Metrics

Both micro and macro average of F1-score across topics are adopted as the metrics (Mohammad et al.,
2016). F1-score for Favor and Against categories of all instances is calculated as:

Ffavor =
2× Pfavor ×Rfavor

Pfavor +Rfavor
(8)

Fagainst =
2× Pagainst ×Ragainst

Pagainst +Ragainst
(9)

where P and R is precision and recall. Then the average of FFavor and FAgainst is calculated as the final
metrics:

Favg =
Ffavor + Fagainst

2
(10)

We average the Favg on each topic to calculate macro-average F score(MacFavg). Besides, we calcu-
late Favg score across all targets to get micro-average F score (MicFavg).

Note that, different from H&N14, which only contains favor and against posts, SemEval16 dataset
contains none posts, which do not express any stance. However, the final metrics disregard the None
class. Following Mohammad et al. (2016) and Du et al. (2017), we take the average F-score for Favor
and Against classes, and treat None as a class that is not of interest.

4.3 Experiment Results

Comparison with Baselines
We compare our proposed model with the following state-of-the-art baseline systems:

• SVM is a baseline model in many previous works (Hasan and Ng, 2014; Mohammad et al., 2016).
We use libSVM4 to train the SVM model with bag-of-words features.

• LSTM employs word embedding, and learn the document representation through LSTM model.

• TAN is proposed by Du et al. (2017), it uses an attention mechanism to learn the correlation between
topic and document representation. It reports the best results on SemEval16 dataset.

• HAN is our proposed model, which uses Hierarchical Attention Neural (HAN) model to learn the
mutual attention between document and linguistic information.
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Model Abortion GayRights Obama Marijuana MacFavg MicFavg

SVM 59.48 59.52 63.02 55.02 59.26 60.52
LSTM 60.72 56.07 60.14 55.58 58.13 59.45
TAN 63.96 58.13 63.00 56.88 60.49 62.35
HAN 63.66 57.36 65.67 62.03 62.18 63.25

Table 3: Comparison with baselines on H&N14 dataset.

Model Atheism Climate Feminism Hillary Abortion MacFavg MicFavg

SVM 62.16 42.91 56.43 55.68 60.38 55.51 67.01
LSTM 58.18 40.05 49.06 61.84 51.03 52.03 63.21
TAN 59.33 53.59 55.77 65.38 63.72 59.56 68.79
HAN 70.53 49.56 57.50 61.23 66.16 61.00 69.79

Table 4: Comparison with baselines on SemEval16 dataset.

Model Abortion GayRights Obama Marijuana MacFavg MicFavg

SVM 59.48 59.52 63.02 55.02 59.26 60.52
SVM+Ling 62.17 58.69 65.14 56.56 60.64 62.25
LSTM 60.72 56.07 60.14 55.58 58.13 59.45
LSTM+Att+Sentiment 63.88 58.69 63.76 57.08 60.85 62.45
LSTM+Att+Dependency 63.15 59.48 64.69 59.21 61.63 62.67
LSTM+Att+Argument 62.82 58.31 64.50 61.91 61.89 63.14
HAN 63.66 57.36 65.67 62.03 62.18 63.25

Table 5: Influence of linguistic feature.

We compare the proposed HAN model with baseline systems on H&N14 and SemEval16 datasets,
and the results are given in Table 3 and Table 4. From the results, we can find that SVM outperforms
LSTM in these two datasets. It indicates that, simply document representation on word sequence cannot
capture useful information for stance detection. TAN outperforms both SVM and LSTM, and it indicates
that target information is helpful for stance detection. Moreover, our proposed model outperforms all the
discrete and neural models. It shows the effectiveness of linguistic features and proposed hierarchical
attention model.

4.4 Influence of Linguistic Features

We then analyze the influence of proposed different linguistic features on H&N14 dataset. The results
are shown in Table 5, where SVM+Ling is SVM classification with all the linguistic features employed
in our paper, and LSTM+Att+* employs attention mechanism to consider the correlations between docu-
ment representation and each linguistic representation individually. For example, LSTM+Att+Sentiment
means the model just employs linguistic attention of sentiment information in Section 3.3.

From the results, we can find that SVM+Ling outperforms SVM, it proves the effectiveness of linguis-
tic information directly. Moreover, we find that every linguistic information with attention mechanism
is effective for stance detection. Especially, the argument information outperforms other features, it may
be due to that argument information is highly related with stance than other linguistic information. In
addition, the proposed model with all kinds of linguistic information outperforms all other models which
consider each linguistic information individually.

3https://nlp.stanford.edu/software/lex-parser.shtml
4https://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Model Abortion GayRights Obama Marijuana MacFavg MicFavg

HAN 63.66 57.36 65.67 62.03 62.18 63.25
-Hyper 62.84 57.63 64.71 58.61 60.95 62.45
-Hyper,-Ling 62.33 56.96 63.26 57.60 60.04 61.50
LSTM 60.72 56.07 60.14 55.58 58.13 59.45

Table 6: Influence of network configuration.

4.5 Influence of Network Configurations
We study the influence of various network configurations by performing ablation experiments on H&N14
dataset, as shown in Table 6. -Hyper denotes ablation of the hyper attention layer, and concatenate
{H, q1, q2, q3} directly and put them into a fully-connected layer. -Hyper,-Ling denotes ablation both
of the hyper attention and linguistic attention layer, and concatenates {H,H(sent), H(dep), H(argument)}
together into a fully-connected layer.

By comparing between HAN and “-Hyper”, we can find that hyper attention over all the linguistic rep-
resentation does have significant influence on the results. Comparison between “-Hyper” and “-Hyper,
-Ling”, we can find that linguistic attentions with each linguistic features does have significant improve-
ment. On the other hand, using LSTM to detect stance (LSTM) does not obtain a better performance
compared to concatenating linguistic information directly (“-Hyper, -Ling”). This confirms our intuition
that stance of document is influenced by various linguistic information.

5 Conclusion

In this paper, we focus on stance detection task. We consider the impacts of different linguistic features
when representing the document, and propose a novel hierarchical attention model for stance detection.
Specifically, we employ a neural model to represent the documents and their linguistic features with
attention mechanism. In addition, on the top of different document representation, we use an attention
model to measure the importance of different linguistic features, and learn the mutual attention between
the document and the linguistic information. The extensive experiments demonstrate that the proposed
model achieves better performance compared with the state-of-the-art models on two datasets.
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